介电陶瓷和层叠陶瓷电容器转让专利

申请号 : CN201010233523.2

文献号 : CN101962285B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 矢尾刚之

申请人 : 株式会社村田制作所

摘要 :

本发明提供即使将介电陶瓷层薄层化也能实现可靠性、特别是负载试验中的寿命特性优异的层叠陶瓷电容器的介电陶瓷。该介电陶瓷的主成分是Ba(Ti,Mn)O3系或(Ba,Ca)(Ti,Mn)O3系,作为副成分,含有R(R是La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和/或Y)和M(M是Fe、Co、V、W、Cr、Mo、Cu、Al和/或Mg)及Si。在各主成分粒子11的截面中,存在有R和M中的至少一种的区域12的面积比例,按平均值计为10%以下。

权利要求 :

1.一种介电陶瓷,其主成分是Ba(Ti,Mn)O3系或(Ba,Ca)(Ti,Mn)O3系,作为副成分,含有R和M及Si,在各主成分粒子的截面中,存在有选自R和M中的至少1种的区域的面积比例,按平均值计为10%以下,所述R是选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu以及Y中的至少一种,所述M是选自Fe、Co、V、W、Cr、Mo、Cu、Al以及Mg中的至少一种。

2.根据权利要求1所述的介电陶瓷,其中,在整个(Ti,Mn)位点中,Mn的含有比例为

0.01~1摩尔%。

3.根据权利要求1或2所述的介电陶瓷,其中,在整个(Ba,Ca)位点中,Ca的含有比例为15摩尔%以下。

4.一种层叠陶瓷电容器,其具备电容器主体和多个外部电极,

所述电容器主体由层叠的多层介电陶瓷层、以及沿所述介电陶瓷层间的特定界面形成的多个内部电极构成,所述多个外部电极形成于所述电容器主体的外表面上的互不相同的位置,并且与所述内部电极的特定电极电连接,其中,所述介电陶瓷层由权利要求1至3中任一项所述的介电陶瓷形成。

说明书 :

介电陶瓷和层叠陶瓷电容器

技术领域

[0001] 本发明涉及介电陶瓷和层叠陶瓷电容器,特别是涉及适用于薄层大容量型的层叠陶瓷电容器的介电陶瓷以及使用该介电陶瓷构成的层叠陶瓷电容器。

背景技术

[0002] 作为满足层叠陶瓷电容器的小型化和大容量化要求的有效手段之一,可以使层叠陶瓷电容器所具备的介电陶瓷层薄层化。但是,伴随着介电陶瓷层的薄层化,每层介电陶瓷层的电场强度变得更高。因此,要求所使用的介电陶瓷具有更高的可靠性,特别是在负载试验中具有更高的寿命特性。
[0003] 另一方面,作为构成层叠陶瓷电容器的介电陶瓷层的介电陶瓷,常用BaTiO3系介电陶瓷。另外,在BaTiO3系介电陶瓷中,为了使可靠性和各种电特性良好,添加稀土类元素或Mn等元素作为副成分。
[0004] 例如,在日本特开平10-330160号公报(专利文献1)中,为了提高绝缘破坏电压,公开了如下介电陶瓷:其是以ABO3(A必须含有Ba,有时还含有Ca和Sr中的至少一种。B必须含有Ti,有时还含有Zr、Sc、Y、Gd、Dy、Ho、Er、Yb、Tb、Tm和Lu中的至少一种。)为主成分的核壳(core-shell)结构的介电陶瓷,其中,Mn、V、Cr、Co、Ni、Fr、Nb、Mo、Ta和W中的至少一种几乎均匀地分布于粒子整体。另外,在专利文献1中还公开了如下实施例:以Mg为壳成分,该Mg不分布于核部而仅分布于壳部。
[0005] 但是,即使使用了上述专利文献1中记载的介电陶瓷,当使介电陶瓷层进一步薄层化时,可靠性、特别是负载试验中的寿命特性也存在不足,希望进一步改善。
[0006] 专利文献1:特开平10-330160号公报

发明内容

[0007] 为此,本发明的目的在于提供即使介电陶瓷层进一步薄层化也能实现高可靠性的介电陶瓷以及使用该介电陶瓷构成的层叠陶瓷电容器。
[0008] 本发明首先涉及一种介电陶瓷,其主成分是Ba(Ti,Mn)O3系或(Ba,Ca)(Ti,Mn)O3系,作为副成分,含有R(R是选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu以及Y中的至少一种)和M(M是选自Fe、Co、V、W、Cr、Mo、Cu、Al以及Mg中的至少一种)及Si,其特征在于,为了解决上述技术课题,在各主成分粒子的截面中,存在有选自R和M中的至少一种的区域的面积比例,按平均值计为10%以下。
[0009] 在本发明的介电陶瓷中,Mn的含有比例优选在整个(Ti,Mn)位点中为0.01~1摩尔%。
[0010] 另外,Ca的含有比例优选在整个(Ba,Ca)位点中为15摩尔%以下。
[0011] 本发明还涉及一种层叠陶瓷电容器,其具备电容器主体和多个外部电极,所述电容器主体由层叠的多层介电陶瓷层、以及沿介电陶瓷层间的特定界面形成的多个内部电极构成;所述多个外部电极形成于电容器主体的外表面上的互不相同的位置上,并且与内部电极的特定电极电连接。
[0012] 本发明的层叠陶瓷电容器的特征在于,介电陶瓷层由上述本发明的介电陶瓷形成。
[0013] 根据本发明的介电陶瓷,通过使Mn均匀地固溶于主成分粒子内,能提高主成分粒子内的绝缘性。此时,由于作为副成分的R成分和/或M成分的固溶区域为10%以下,因而能抑制烧结时的局部的颗粒成长。因此,若使用本发明的介电陶瓷来构成层叠陶瓷电容器,则能使烧结后的介电陶瓷层变平滑。这有助于层叠陶瓷电容器的薄层化,即使是薄层化后的层叠陶瓷电容器,也能维持高的可靠性、特别是负载试验中的良好寿命特性。
[0014] 若单纯地在主成分粒子内均匀地固溶Mn,是不会引起局部的颗粒成长的。关于上述局部的颗粒成长,认为是在Mn均匀地固溶于主成分粒子内的情况下,进一步在主成分粒子内按一定以上的比例共存R和/或M时容易产生局部的颗粒成长。关于这点,据推测通过如上所述那样使R成分和/或M成分的固溶区域为10%以下,能抑制局部的颗粒成长。
[0015] 在本发明的介电陶瓷中,当主成分为(Ba,Ca)(Ti,Mn)O3系时,也就是说若事先使Ca在Ba位中固溶,则可抑制上述局部颗粒成长的作用更高,可靠性进一步得到提高。
[0016] 在本发明的介电陶瓷中,若Mn的含有比例在整个(Ti,Mn)位点中为0.01~1摩尔%,则能进一步提高寿命特性。
[0017] 另外,在本发明的介电陶瓷中,若Ca的含有比例在整个(Ba,Ca)位点中为15摩尔%以下,则能进一步提高寿命特性。

附图说明

[0018] 图1为图示使用本发明的介电陶瓷构成的层叠陶瓷电容器1的截面图。
[0019] 图2为图示本发明的介电陶瓷的主成分粒子11的截面图。
[0020] (符号说明)
[0021] 1 层叠陶瓷电容器
[0022] 2 介电陶瓷层
[0023] 3,4 内部电极
[0024] 5 电容器主体
[0025] 6,7 外部电极
[0026] 11 主成分粒子
[0027] 12 存在有R和/或M中的至少1种的区域(R/M区域)

具体实施方式

[0028] 参照图1,首先对使用本发明的介电陶瓷的层叠陶瓷电容器1进行说明。
[0029] 层叠陶瓷电容器1具备电容器主体5,该电容器主体5由层叠的多层介电陶瓷层2和沿介电陶瓷层2间的特定界面形成的多个内部电极3和4构成。内部电极3和4例如以Ni为主成分。
[0030] 在电容器主体5的外表面上的互不相同的位置上,形成第1和第2外部电极6和7。外部电极6和7例如以Ag或Cu为主成分。在图1所示的层叠陶瓷电容器1中,第1和第2外部电极6和7形成于电容器主体5的相对的各端面上。关于内部电极3和4,具有与第1外部电极6电连接的多个第1内部电极3和与第2外部电极7电连接的多个第2内部电极4,这些第1和第2内部电极3和4沿层叠方向交替配置。
[0031] 另外,层叠陶瓷电容器1可以是具备2个外部电极6和7的二端子型电容器,也可以是具备多个外部电极的多端子型电容器。
[0032] 在这种层叠陶瓷电容器1中,介电陶瓷层2由如下介电陶瓷构成,该介电陶瓷的主成分是Ba(Ti,Mn)O3系或(Ba,Ca)(Ti,Mn)O3系,Mn在主成分粒子内均匀存在,作为副成分含有R(R是选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu以及Y中的至少一种)和M(M是选自Fe、Co、V、W、Cr、Mo、Cu、Al以及Mg中的至少一种)及Si。
[0033] 图2为图示介电陶瓷的主成分粒子11的截面图。参照图2,在主成分粒子11内的几乎整个区域,如上所述那样,均匀地固溶Mn。另一方面,关于上述R和M,未固溶于主成分粒子11内。即,选自R和M中的至少一种所在的区域(以下称为“R/M区域”)12形成于主成分粒子11的表面部分。但是,R/M区域12并非以形成与主成分粒子11同心圆状的薄壳的方式存在。因此,主成分粒子11与上述专利文献1中记载的介电陶瓷的情况不同,不构成核壳结构。
[0034] 构成介电陶瓷层2的介电陶瓷的特征在于,各主成分粒子11的截面中,R/M区域12的面积比例按平均值计为10%以下。
[0035] 根据这样的介电陶瓷,通过使Mn在主成分粒子内均匀固溶,能提高主成分粒子11内的绝缘性。此时,由于主成分粒子11的截面中的R/M区域12的面积比例只不过才10%以下,因而能抑制烧结时的局部的颗粒成长。因此,即使层叠陶瓷电容器薄层化,也能实现高可靠性、特别是负载试验中的良好的寿命特性。
[0036] 关于上述Mn的含有比例,若在整个(Ti,Mn)位点中为0.01~1摩尔%,则能进一步提高寿命特性。
[0037] 在上述介电陶瓷中,当主成分为(Ba,Ca)(Ti,Mn)O3系时,也就是说若事先使Ca固溶于Ba位,则可抑制上述局部颗粒成长的作用更高,可靠性进一步提高。关于该Ca的含有比例,若在整个(Ba,Ca)位点中为15摩尔%以下,则能进一步提高寿命特性。
[0038] 在制作介电陶瓷用原料时,首先制作Ba(Ti,Mn)O3系或(Ba,Ca)(Ti,Mn)O3系的主成分粉末。为此,例如采用固相合成法,即:将含有主成分的构成元素的氧化物、碳酸物、氯化物、金属有机化合物等化合物粉末按规定的比例混合、煅烧。此时,例如通过调节煅烧温度,来控制得到的主成分粉末的粒径。予以说明,还可以采用水热合成法、水解法等来代替上述固相合成法。
[0039] 另一方面,准备分别含有作为副成分的R、M和Si的氧化物、碳酸物、氯化物、金属有机化合物等的化合物粉末。然后,将这些副成分粉末按规定的比例与上述主成分粉末混合,得到介电陶瓷用原料粉末。
[0040] 为了制造层叠陶瓷电容器1,实施如下工序:使用如上所述得到的介电陶瓷原料粉末,制作陶瓷浆料,再由该陶瓷浆料形成陶瓷生片,将这多块陶瓷生片层叠,得到成为电容器主体5的生层叠体,再将该生层叠体烧结。在将该生层叠体烧结的工序中,如上所述将配合所得的介电陶瓷原料粉末烧结,得到由烧结后的介电陶瓷形成的介电陶瓷层2。
[0041] 另外,为了制作上述陶瓷浆料,例如将介电陶瓷原料粉末和粘合剂及有机溶剂与鹅卵石一起在球磨机中混合,通过调节在该工序中使用的上述鹅卵石的直径,能控制烧结后的介电陶瓷中的主成分粒子中的R和/或M的固溶区域即R/M区域的面积比例。当然,为了控制R/M区域的面积比例,还可以采用调节鹅卵石直径的方法以外的方法,例如调节混合时间的方法等。
[0042] 以下,对基于本发明而实施的实验例进行说明。
[0043] [实验例1]
[0044] 在实验例1中,对主成分为Ba(Ti,Mn)O3系、改变了R/M区域的面积的介电陶瓷进行评价。
[0045] (A)陶瓷原料的制作
[0046] 首先,作为主成分的初始原料,准备微粒BaCO3、TiO2以及MnCO3的各粉末,按Ba(Ti0.995Mn0.005)O3进行称量,并以水为介质,用球磨机混合8小时。然后,进行蒸发干燥,在1100℃的温度下煅烧2小时,得到主成分粉末。
[0047] 接着,准备作为副成分的Y2O3、V2O5以及SiO2的各粉末,按相对于上述主成分100摩尔份,作为R的Y为1.0摩尔份、作为M的V为0.25摩尔份且Si为1.5摩尔份来进行称量,并在上述主成分粉末中配合,接着,以水为介质,用球磨机混合24小时。然后,进行蒸发干燥,得到介电陶瓷原料粉末。
[0048] (B)层叠陶瓷电容器的制作
[0049] 在上述陶瓷原料粉末中,加入聚乙烯醇缩丁醛类粘合剂和乙醇,用球磨机进行湿式混合16小时,制作陶瓷浆料。在该利用球磨机的湿式混合工序中,通过将样品101、102、103、104、105、106以及107中分别使用的鹅卵石直径改为2mm、1.5mm、1mm、0.8mm、0.6mm、
0.5mm以及0.3mm,使在后续的烧结工序中得到的烧结状态的介电陶瓷中的主成分粒子中的R(=Y)和/或M(=V)固溶的区域的面积比例、即“R/M区域的面积比例”如表1所示发生变化。
[0050] 接着,采用模唇方式该陶瓷浆料成形成层状,得到陶瓷生片。
[0051] 接着,在上述陶瓷生片上,进行丝网印刷以Ni为主体的导电性糊,形成会成为内部电极的导电性糊膜。
[0052] 然后,以导电性糊膜的拔拉侧互不相同的方式,将形成了导电性糊膜的陶瓷生片多层层叠,得到成为电容器主体的生层叠体。
[0053] 接着,将该生层叠体在N2气氛中加热至300℃的温度,使粘合剂燃烧后,在由氧分-10压为10 MPa的H2-N2-H2O气体形成的还原性气氛中,在1200℃的温度下烧结2小时,得到烧结后的电容器主体。
[0054] 接着,在烧结后的电容器主体的两端面上,涂布含有B2O3-Li2O-SiO2-BaO系玻璃粉的Cu糊,在N2气氛中,于800℃的温度下烧接在一起,形成与内部电极电接连的外部电极,得到作为样品的层叠陶瓷电容器。
[0055] 如此得到的层叠陶瓷电容器的外形尺寸为长2.0mm、宽1.2mm、厚1.0mm,介于内部电极间的介电陶瓷层的厚度为1.0μm。有效介电陶瓷层的层数为100层,每层陶瓷层的内2
部电极的对置面积为1.4mm。
[0056] (C)陶瓷结构分析和特性评价
[0057] 对得到的层叠陶瓷电容器,观察并分析介电陶瓷层的截面上的陶瓷结构。在该观察·分析中,在包含20个左右粒子的视野内利用STEM模式进行EDX元素图谱分析,算出粒子中后添加的副成分Y(=R)和/或V(=M)成分的固溶面积比例,求出在视野中该固溶面积比例的平均值。其结果示于表1的“R/M区域的面积比例”一栏中。予以说明,在上述图谱分析中,探针直径为2nm,加速电压为200kY。
[0058] 另外,对得到的层叠陶瓷电容器实施高温负载寿命试验。在高温负载寿命试验中,对100个样品,在温度125℃下施加12V的直流电压(12kV/mm的电场强度),将经过1000小时和2000小时之前绝缘电阻值变为100kΩ以下的样品判定为不良,求出不良个数。其结果示于表1的“高温负载寿命试验不良个数”一栏中。
[0059] [表1]
[0060]
[0061] 由表1可知,“R/M区域的面积比例”为10%以下的样品101~103,在高温负载寿命试验中,不仅在1000小时的时刻没有出现不良,在2000小时的时刻也没有出现不良。
[0062] 与此相对,“R/M区域的面积比例”超过10%的样品104~107,在高温负载寿命试验中,在1000小时的时刻出现不良。
[0063] 由此可知,若主成分为Ba(Ti,Mn)O3系、且“R/M区域的面积比例”为10%以下,则能得到良好的可靠性。
[0064] [实验例2]
[0065] 在实验例2中,与实验例1的情况同样,对主成分为Ba(Ti,Mn)O3系、Mn量发生改变的介电陶瓷进行评价。
[0066] (A)陶瓷原料的制作
[0067] 作为主成分粉末,制成组成为Ba(Ti1-x/100Mnx/100)O3,且(Ti,Mn)位点中的Mn的含有比例x为表2的“x”一栏中所示的值,除此以外按与实验例1的情况相同的要领,得到介电陶瓷原料粉末。
[0068] (B)层叠陶瓷电容器的制作
[0069] 使用上述介电陶瓷原料粉末,按与实验例1的情况相同的要领,制作各样品的层叠陶瓷电容器。予以说明,在利用球磨机的湿式混合工序中,与实验例1的样品102的情况同样,使用直径1.5mm的鹅卵石,混合16小时。
[0070] (C)陶瓷结构分析和特性评价
[0071] 按与实验例1的情况相同的要领,进行陶瓷结构分析,结果样品201~208的“R/M区域的面积比例”均为3.5%左右。
[0072] 另外,按与实验例1的情况相同的要领,实施高温负载寿命试验。其结果示于表2的“高温负载寿命试验不良个数”一栏中。
[0073] [表2]
[0074]
[0075] 由表2可知,Mn的含有比例“x”在0.01~1.0的范围内的样品201~206,在高温负载寿命试验中,不仅在1000小时的时刻没有出现不良,在2000小时的时刻也没有出现不良。
[0076] 与此相对,Mn的含有比例“x”超出0.01~1.0的范围的样品207和208,在高温负载寿命试验中,虽然在1000小时的时刻没有出现不良,但在2000小时的时刻出现不良。
[0077] 由此可知,若Mn的含有比例“x”在0.01~1.0的范围内,则能得到更高的可靠性。
[0078] [实验例3]
[0079] 在实验例3中,与实验例1的情况同样,以Ba(Ti,Mn)O3系为主成分,评价杂质的影响。
[0080] 在原料制作等、层叠陶瓷电容器的制造过程中,Sr、Zr、Hf、Zn、Na、Ag、Pd以及Ni等可能会以杂质的形式混入介电陶瓷中,它们可能会存在于结晶粒子内以及占据结晶粒子间的结晶粒界。另外,在层叠陶瓷电容器的烧结工序等中,内部电极成分可能会在介电陶瓷中的结晶粒子内以及占据结晶粒子间的结晶粒界扩散。实验例3对这些杂质的影响进行评价。
[0081] (A)陶瓷原料的制作
[0082] 相对于实验例1中得到的介电陶瓷原料100摩尔份,以表3所示的含量加入表3所示的杂质成分,除此以外按与实验例1的情况相同的要领,得到介电陶瓷原料粉末。
[0083] (B)层叠陶瓷电容器的制作
[0084] 使用上述介电陶瓷原料粉末,按与实验例1的情况相同的要领,制作各样品的层叠陶瓷电容器。另外,在利用球磨机的湿式混合工序中,与实验例1的样品102的情况同样,使用直径为1.5mm的鹅卵石,混合16小时。
[0085] (C)陶瓷结构分析和特性评价
[0086] 按与实验例1的情况相同的要领,进行陶瓷结构分析,结果样品301~310的“R/M区域的面积比例”均为3.5%左右。
[0087] 另外,按与实验例1的情况相同的要领,实施高温负载寿命试验。其结果示于表3的“高温负载寿命试验不良个数”一栏中。
[0088] [表3]
[0089]
[0090] 由表3可知,混入了杂质的样品301~310,在高温负载寿命试验中,不仅在1000小时的时刻没有出现不良,在2000小时的时刻也没有出现不良,均显示出优异的可靠性。
[0091] [实验例4]
[0092] 实验例4与实验例1对应。在实验例1中,以Ba(Ti,Mn)O3系为主成分,但在实验例4中,以(Ba,Ca)(Ti,Mn)O3系为主成分。
[0093] (A)陶瓷原料的制作
[0094] 首先,作为主成分的初始原料,准备微粒BaCO3、CaCO3、TiO2以及MnCO3各粉末,按(Ba0.99Ca0.01)(Ti0.995Mn0.005)O3进行称量,并以水为介质,用球磨机混合8小时。然后,进行蒸发干燥,在1100℃的温度下煅烧2小时,得到主成分粉末。
[0095] 接着,准备作为副成分的Y2O3、V2O5以及SiO2的各粉末,按相对于上述主成分100摩尔份,Y为1.0摩尔份、V为0.25摩尔份且Si为1.5摩尔份来进行称量,并在上述主成分粉末中配合,接着,以水为介质,用球磨机混合24小时。然后,进行蒸发干燥,得到介电陶瓷原料粉末。
[0096] (B)层叠陶瓷电容器的制作
[0097] 在上述陶瓷原料粉末中,加入聚乙烯醇缩丁醛类粘合剂和乙醇,用球磨机进行湿式混合16小时,制作陶瓷浆料。在该利用球磨机的湿式混合工序中,通过将样品401、402、403、404、405、406以及407中分别使用的鹅卵石的直径改为2mm、1.5mm、1mm、0.8mm、0.6mm、
0.5mm以及0.3mm,使在后续的烧结工序中得到的烧结状态的介电陶瓷中的主成分粒子中的“R/M区域的面积比例”如表4所示发生改变。
[0098] 之后,实施与实验例1的情况相同的工序,得到作为样品的层叠陶瓷电容器。
[0099] (C)陶瓷结构分析和特性评价
[0100] 对得到的层叠陶瓷电容器,按与实验例1的情况相同的要领,求“R/M区域的面积比例”。其结果如表4所示。
[0101] 另外,对得到的层叠陶瓷电容器,按与实验例1的情况相同的要领,实施高温负载寿命试验。另外,在实验例4中,除经过1000小时后和经过2000小时后以外,还对经过3000小时后也进行了评价。其结果示于表4的“高温负载寿命试验不良个数”一栏中。
[0102] [表4]
[0103]
[0104] 由表4可知,“R/M区域的面积比例”为10%以下的样品401~403,在高温负载寿命试验中,不仅在1000小时的时刻没有出现不良,在2000小时以及在3000小时的时刻也没有出现不良。
[0105] 与此相对,“R/M区域的面积比例”超过10%的样品404~407,在高温负载寿命试验中,在1000小时的时刻出现不良。
[0106] 由此可知,若主成分为(Ba,Ca)(Ti,Mn)O3系、“R/M区域的面积比例”为10%以下,则能得到良好的可靠性。
[0107] [实验例5]
[0108] 在实验例5中,与实验例4的情况同样,对以(Ba,Ca)(Ti,Mn)O3系为主成分、且Ca量以及Mn量改变的介电陶瓷进行评价。
[0109] (A)陶瓷原料的制作
[0110] 作为主成分粉末,制成组成为(Ba1-x/100Cax/100)(Ti1-y/100Mny/100)O3的组成,且(Ba,Ca)位点中的Ca的含有比例x为表5的“x”一栏中所示的值,且(Ti,Mn)位点中的Mn的含有比例y为表5的“y”一栏中所示的值,除此以外按与实验例4的情况相同的要领,得到介电陶瓷原料粉末。
[0111] (B)层叠陶瓷电容器的制作
[0112] 使用上述介电陶瓷原料粉末,按与实验例4的情况相同的要领,制作各样品的层叠陶瓷电容器。另外,在利用球磨机的湿式混合工序中,与实验例4的样品402的情况同样,使用直径1.5mm的鹅卵石,混合16小时。
[0113] (C)陶瓷结构分析和特性评价
[0114] 按与实验例4的情况相同的要领,进行陶瓷结构分析,结果样品501~508的“R/M区域的面积比例”均为3.5%左右。
[0115] 另外,按与实验例4的情况相同的要领,实施高温负载寿命试验。其结果示于表5的“高温负载寿命试验不良个数”一栏。
[0116] [表5]
[0117]
[0118] 由表5可知,Ca的含有比例“x”为15以下、且Mn的含有比例“y”为0.01~1.0的范围内的样品501~505、507和508,在高温负载寿命试验中,不仅在1000小时的时刻没有出现不良,在2000小时以及3000小时的时刻也没有出现不良。
[0119] 与此相对,Ca的含有比例“x”超过15的样品506以及Mn的含有比例“y”在0.01~1.0的范围外的样品509,在高温负载寿命试验中,在1000小时的时刻以及2000小时的时刻未出现不良,但在3000小时的时刻出现不良。另外,Ca的含有比例“x”超过15且Mn的含有比例“y”在0.01~1.0的范围外的样品510,在高温负载寿命试验中,虽然在1000小时的时刻未出现不良,但在2000小时以及在3000小时的时刻出现不良。
[0120] 由此可知,若Ca的含有比例“x”在15以下且Mn的含有比例“y”为0.01~1.0的范围,则能得到更高的可靠性。
[0121] [实验例6]
[0122] 在实验例6中,与实验例4的情况同样,以(Ba,Ca)(Ti,Mn)O3系为主成分,评价杂质的影响。实验例6与上述实验例3对应。
[0123] (A)陶瓷原料的制作
[0124] 相对于实验例4中得到的介电陶瓷原料100摩尔份,以表6所示的含量添加表6所示的杂质成分,除此以外,按与实验例4的情况相同的要领,得到介电陶瓷原料粉末。
[0125] (B)层叠陶瓷电容器的制作
[0126] 使用上述介电陶瓷原料粉末,按与实验例4的情况相同的要领,制作各样品的层叠陶瓷电容器。另外,在利用球磨机的湿式混合工序中,与实验例4的样品402的情况同样,使用直径1.5mm的鹅卵石,混合16小时。
[0127] (C)陶瓷结构分析和特性评价
[0128] 按与实验例4的情况相同的要领,进行陶瓷结构分析,结果,样品601~610的“R/M区域的面积比例”均在3.5%左右。
[0129] 另外,按与实验例4的情况相同的要领,实施高温负载寿命试验。其结果示于表6的“高温负载寿命试验不良个数”一栏中。
[0130] [表6]
[0131]
[0132] 由表6可知,混入了杂质的样品601~610,在高温负载寿命试验中,不仅在1000小时的时刻未出现不良,在2000小时以及在3000小时的时刻也未出现不良,显示出优异的可靠性。
[0133] 在以上说明的实验例中,作为副成分R,采用Y,作为副成分M,采用V,但即使采用Y以外的La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu作为R,或采用V以外的Fe、Co、W、Cr、Mo、Cu、Al或Mg作为M,也能得到实质上相同的结果。