用于解码三维内容的弯曲透镜转让专利

申请号 : CN200980107287.5

文献号 : CN101971074B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 大卫·A·约翰逊詹姆斯·普里茨

申请人 : MEI三维有限责任公司

摘要 :

用于解码三维内容的弯曲透镜及其制造方法。所述透镜包括:在两面都层压有三醋酸酯的聚乙烯醇偏振膜,其中所述偏振膜的偏振效率等于或者大于99%,并且透光百分比等于或者大于35%;以及延迟膜(例如,降冰片烯共聚物树脂),层压在三醋酸酯所层压的聚乙烯醇偏振膜的前表面上,对准以产生与指定延迟波长对应的预定圆偏振。

权利要求 :

1.一种用于解码三维内容的弯曲透镜,包括:在两面层压有三醋酸酯的聚乙烯醇偏振膜,所述偏振膜的偏振效率等于或大于99%并且透光百分比等于或大于35%;和延迟膜,所述延迟膜位于所述层压的聚乙烯醇偏振膜的前表面上以形成片,所述延迟膜被对准以产生与指定的延迟波长对应的期望的圆偏振;

其中,利用热成形工艺弯曲从所述片切削的坯件,以形成所述弯曲透镜。

2.如权利要求1所述的透镜,其中所述聚乙烯醇偏振膜利用碘晶体而被着色。

3.如权利要求1所述的透镜,其中所述延迟膜是降冰片烯共聚物树脂。

4.如权利要求1所述的透镜,进一步包括在-1.0度到1.0度的范围内的偏振角。

5.如权利要求1所述的透镜,进一步包括在44.0度到46.0度的范围内的延迟角。

6.如权利要求1所述的透镜,进一步包括在134.0度到136.0度的范围内的延迟角。

7.如权利要求1所述的透镜,进一步包括在37.5%到42.5%的范围内的透光比。

8.如权利要求1所述的透镜,进一步包括在750微米到2000微米的范围内的透镜厚度。

9.如权利要求1所述的透镜,进一步包括在110纳米到140纳米的范围内的透镜延迟。

10.一种用于制造用于解码三维内容的弯曲透镜的方法,包括:从材料片中切削透镜坯件,所述材料片包括:在两个表面上层压有三醋酸酯膜的聚乙烯醇偏振膜、以及层压在所述三醋酸酯膜之一上的用于产生圆偏振膜的延迟膜;

将一层三醋酸酯层压到所述延迟膜以实现期望的透镜厚度;

加热所述坯件至形变温度;

使用真空抽吸和/或压迫来弯曲所述坯件;

冷却弯曲的坯件;以及

在所述弯曲的坯件的一面或两面上涂覆硬化涂料。

11.如权利要求10所述的方法,进一步包括将保护性的片应用到所述硬化涂料。

12.如权利要求10所述的方法,进一步包括将所述坯件加热至在90℃到130℃的范围内的形变温度。

13.如权利要求10所述的方法,进一步包括制造所述透镜以具有在-1.0度到1.0度的范围内的偏振角。

14.如权利要求10所述的方法,进一步包括制造所述透镜以具有在44.0度至46.0度的范围内的延迟角。

15.如权利要求10所述的方法,进一步包括制造所述透镜以具有在134.0度至136.0度的范围内的延迟角。

16.如权利要求10所述的方法,进一步包括制造所述透镜以具有在37.5%至42.5%的范围内的透光比。

17.如权利要求10所述的方法,进一步包括制造所述透镜以具有在750微米至2000微米的范围内的透镜厚度。

18.如权利要求10所述的方法,进一步包括制造所述透镜以具有在110纳米至140纳米的范围内的延迟。

说明书 :

用于解码三维内容的弯曲透镜

[0001] 相关申请的交叉引用
[0002] 本申请要求申请日为2008年1月7日的美国临时申请61/019,545的优先权。

技术领域

[0003] 本发明的具体实施例涉及透镜,其被设计成能解码显示在电视,电影,计算机或者类似屏幕或监视器上的三维内容。

背景技术

[0004] 电影院中的三维电影已经出现十多年了。随着技术的进步,三维内容正在电视,计算机监视器以及家庭投影仪上得到发展。过去,并且甚至今天,特制玻璃使用户得以看到三维内容。将红色和绿色膜用于透镜的平板纸眼镜(flat paper eyeglasses)是当今使用的主要眼镜。然而,平板纸眼镜在形成期望的三维效应方面并不是非常地有效。另外,平板纸眼镜并不是很舒适,并且通常被看作成新奇的事物。其它的平板透镜也存在同样的缺点。
[0005] 在发展用于解码三维内容的线性和圆偏振上已经存在进步。尽管有些进步,但透镜以及眼镜片技术仍未有显著地提高。
[0006] 因此,在更有效地制作预期的三维效果的同时,就需要透镜利用线性以及圆偏振技术。有利地,透镜和眼镜在为用户提供舒适以及通用性的同时,可以提供改进的光学和对比度。同样有利的是,透镜可以被安装进时髦的镜框里面。

发明内容

[0007] 因此,本发明的一个具体实施例是一种用于解码三维内容的弯曲透镜,包括:在两面层压有三醋酸酯(triacetate)的聚乙烯醇(polyvinylalcohol)偏振膜,所述偏振膜的偏振效率等于或大于99%并且透光百分比等于或大于35%;以及延迟膜,位于层压有三醋酸酯的聚乙烯醇偏振膜的前表面之上,并且用于产生与指定的延迟波长对应的期望的圆偏振。
[0008] 本发明的另一个具体实施例是一种生产用于解码三维内容的弯曲透镜的方法,包括:从材料片中切削透镜坯件,包括:在两个表面上层压有三醋酸酯的聚乙烯醇偏振膜以及层压在其前表面上的用于产生圆偏振膜的延迟膜;将一层三醋酸酯层压于延迟膜以达到期望的透镜厚度;加热坯件至形变温度;使用真空抽吸和/或压迫来弯曲坯件;冷却弯曲坯件;在弯曲坯件的一面或两面上涂覆硬化涂料。
[0009] 在一个实施例中,延迟剂是降冰片烯共聚物树脂(norbornene copolymer resin),例如阿特隆(Arton)膜(由日本合成橡胶有限公司(JSR Corp.)生产)或芝诺(Zenor)膜(由芝诺有限公司(Zeon Corp.)生产)。可以使用常规的粘合剂来粘合形成所述透镜的各个层。在一个实施例中,硬化涂层被涂覆于所述透镜的前后表面以便常规清洗以及延长寿命。在一个实施例中,透镜厚度在750至1500微米之间。
[0010] 本发明其它的变化,实施例以及特征将会随着下面的详细说明,附图和权利要求而变得明显。

附图说明

[0011] 图1和2所示的是本发明第一透镜实施例的示意性明细表;
[0012] 图3和4所示的是本发明第二透镜实施例的示意性明细表;并且
[0013] 图5所示的是详述了生产根据本发明实施例的透镜的一个实施例的流程图。

具体实施方式

[0014] 为了更好地理解本发明实施例的基本原理,在附图中所图示的实施例将会被参考并且具体语言将被用来描述实施例。然而,应当理解的是,本发明的范围并未想要因此而受到限制。这里所示出的发明特征的任何改变和进一步的修改,以及这里所示出的发明的基本原理的任何其他应用,其对相关技术领域的并且了解这里所公开的内容的技术人员来说是显而易见的,都应当认为落入了本发明权利要求的范围之内。
[0015] 传统平板透镜以及框已经被用于3D眼镜中。平板3D眼镜的一个问题是透镜离用户的面部,特别是用户的眼睛较远。因此,光将从透镜的顶部,底部以及侧面进入用户的眼睛,这就减少了视敏度(visual acuity)以及对比度从而降低了3D体验的效果。当在家里或者黑暗电影院外面的其他位置时显得尤其明显。此外,现行的平板3D眼镜的均码(one-size-fits-all)方法减少了3D体验的品质并且对于大多数用户来说在很多情况下造成了不舒适的佩戴。因此,本发明的实施例通过制作更加近乎于常规弯曲透镜和眼镜的3D透镜以及眼镜,来设法克服现有技术的平板3D眼镜的缺点。因此,这里所描述的透镜通常比传统的平板3D透镜更厚并且是弯曲的以防止环境光干扰3D体验。常规平板3D纸透镜有0.3至0.4毫米的厚度,而本发明的实施例大体上在0.75至1.5毫米的范围内。上述曲率进一步确保了在用户头部的更好佩戴。另外,所述厚透镜能使它们可以被安装在人们更习惯的时髦框内。
[0016] 图1-4所示的是与利用本发明实施例所制造的透镜相关的明细表。图1和2描述了图表100和105,列举了根据第一实施例的透镜的明细表。图表100和105描述了尺寸,包括宽度110,长度115,偏振角120,延迟角125,透光百分比130,偏振效率135,厚度140以及延迟145。如图表100以及105中所示,宽度的变动范围是从495毫米到505毫米;长度从700毫米到710毫米;偏振角从-1.0度至1.0度;延迟角从44.0度到46.0度(或者134度到136度);透光百分比从37.5%到42.5%v;偏振效率为99%或者更大;厚度从
1020微米到1080微米(或者1.02毫米到1.08毫米)并且延迟从110到130纳米。前面提到的每个类项都有可能具有更大的范围。图3和4中所示的图表101和106,分别描述了根据第二实施例的类似透镜的明细表。
[0017] 透镜的制造是通过使用层压以及热成形技术完成的。图5所示的是详述了一种生产根据本发明实施例的透镜的方法的流程图200。在205处,透镜坯件从材料片上被切削,材料片包括:在两个表面上层压有三醋酸酯的聚乙烯醇偏振膜(即,线偏振膜)以及层压在其前表面上的用于产生圆偏振膜的延迟膜;在210处,为了达到预定的厚度(例如.9毫米),一层三醋酸酯被层压在所述延迟膜上。层压机形成材料片,以便使偏振膜和延迟膜的轴在很小的公差下完全地对准。在一个实施例中,延迟剂是阿特隆(Arton)膜(由日本合成橡胶有限公司(JSR Corp.)生产)或芝诺(Zenor)膜(由芝诺有限公司(Zeon Corp.)生产)。聚碳酸酯材料可同样被用作延迟剂。粘合剂将上述材料粘合在一起。坯件的尺寸由想要的框尺寸确定。典型的尺寸是50毫米×70毫米。在215处,坯件被投入热成形机器,其将坯件加热到形变温度(例如,90℃到130℃)。在220处,加热的坯件利用真空抽吸和/或压迫被弯曲成光学校正弯曲表面。想要的基本曲度越高(例如,4,6和8),所需的热成形温度就越高。一旦形成,在225处,弯曲坯件被冷却并且从机器上移开。在230处,坯件,即现在的透镜可以利用常规透镜干式切削机(dry cutting machine)而完成。在235处,硬化涂层被涂覆在弯曲透镜之上。所述硬化涂层允许常规清洁以及扩展使用同时保护形成透镜的操作材料。在240处,提供保护性的,可移动的片,以在随后的操作期间保护透镜,其中随后的操作包括安装到框内,包装以及运输。
[0018] 所述三醋酸酯本身包括复数层,并且具有一些性质,包括透明度,无应力,双折射,轻重量以及强度。此外,所述三醋酸酯与层压,热成形工艺和技术相对应。
[0019] 对于本发明实施例中使用的圆偏振透镜,聚乙烯醇偏振膜被碘晶体(iodine crystal)着色以增加偏振效率和透光比至可接受的程度(例如分别>99%和>35%)。
[0020] 这里所公开的弯曲透镜与现有技术中的平板3D眼镜相比具有许多优点。弯曲透镜提供了一种具有更大锐度和对比度的更清晰和自然的3D图像。更特别地,弯曲透镜减少了从眼镜框的侧面,顶部或者底部进入用户眼睛的光,从而增加所看到的3D图像的舒适度和对比度。弯曲透镜可以被放进任何商业眼镜框以制作为一副时髦的眼镜。
[0021] 尽管本发明已经参考若干实施例进行了详细描述,但是额外的变化和修改存在于本发明的范围和精神之内,如随附权利要求所描述和限定。