监测柴油颗粒过滤器内烃含量的方法转让专利

申请号 : CN201010244956.8

文献号 : CN101985894B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : N·辛格

申请人 : 万国引擎知识产权有限责任公司

摘要 :

提供一种确定滑过用于具有电子控制模块和排气系统的发动机的柴油催化氧化剂的烃含量的方法,排气系统具有柴油氧化催化器和柴油颗粒过滤器。电子控制模块接收指示柴油氧化催化器输入温度、柴油氧化催化器输出温度以及柴油颗粒过滤器输出温度的数据。使用指示柴油氧化催化器输入温度、柴油氧化催化器输出温度以及柴油颗粒过滤器输出温度的数据用电子控制模块来计算能量转换率。将计算的能量转换率与由电子控制模块所访问的存储器内存储的能量转换率相比较。用控制模块基于计算的能量转换率与存储的能量转换率的比较产生滑过柴油氧化催化器的烃的估值。

权利要求 :

1.一种监测用于发动机的柴油颗粒过滤器内烃含量的方法,所述发动机具有电子控制模块和排气系统,所述排气系统具有柴油氧化催化器和柴油颗粒过滤器,所述方法包括:在电子控制模块内接收指示柴油氧化催化器输入温度、柴油氧化催化器输出温度以及柴油颗粒过滤器输出温度的数据;

使用指示所述柴油氧化催化器输入温度、所述柴油氧化催化器输出温度以及所述柴油颗粒过滤器输出温度的所述数据用所述电子控制模块来计算能量转换率;

将所述计算的能量转换率与可由所述电子控制模块访问的存储器内存储的能量转换率相比较;以及基于所述计算的能量转换率与存储的能量转换率的比较产生滑过所述柴油氧化催化器的烃的估值,用以下的公式产生所述计算的能量转换率:

其中T1是所述柴油氧化催化器输入处的温度、T2是所述柴油氧化催化器输出处的温度,以及T3是所述柴油颗粒过滤器输出处的温度。

2.如权利要求1所述的方法,其特征在于,计算所述能量转换率之前,对一段时期内接收的指示所述柴油氧化催化器输入温度、所述柴油氧化催化器输出温度以及所述柴油颗粒过滤器输出温度的所述数据求平均值。

3.如权利要求1所述的方法,其特征在于,还包括:在所述电子控制模块内接收指示所述发动机的排气流率的数据;以及基于所述排气流率数据确定所述发动机是否以瞬态方式或稳态方式中的一种运行。

4.如权利要求1所述的方法,其特征在于:所述电子控制模块可访问的所述存储器设置在所述电子控制模块内。

5.如权利要求1所述的方法,其特征在于,还包括:将指示所述柴油氧化催化器输入温度、所述柴油氧化催化器输出温度以及 所述柴油颗粒过滤器输出温度的所述数据与所存储的校准数据范围相比较。

6.一种估算柴油颗粒过滤器再生期间柴油颗粒过滤器内烃含量的方法,所述柴油发动机具有电子控制模块、柴油氧化催化器和柴油颗粒过滤器,所述方法包括:开始柴油颗粒过滤器再生循环;

使用指示所述柴油氧化催化器输入温度、所述柴油氧化催化器输出温度以及所述柴油颗粒过滤器输出温度的数据,用所述电子控制模块计算能量转换率;

用所述控制模块基于所述能量转换率产生滑过所述柴油氧化催化器的烃的估值;以及当滑过柴油氧化催化器的烃的估值超过临界值时,停止所述柴油颗粒过滤器再生循环,用以下的公式产生所述计算的能量转换率:

其中T1是所述柴油氧化催化器输入处的温度、T2是所述柴油氧化催化器输出处的温度,以及T3是所述柴油颗粒过滤器输出处的温度。

7.如权利要求6所述的方法,其特征在于,还包括:在所述电子控制模块内接收指示柴油氧化催化器输入温度、柴油氧化催化器输出温度以及柴油颗粒过滤器输出温度的数据。

8.如权利要求6所述的方法,其特征在于,还包括:当滑过所述柴油氧化催化器的烃的估值超过所述临界值时,降低发动机功率输出。

9.如权利要求6所述的方法,其特征在于,还包括:在所述电子控制模块内接收指示所述发动机的排气流率的数据;以及基于所述排气流率数据确定所述发动机是以瞬态方式运行还是以稳态方式运行,其中仅在所述发动机以稳态方式运行时才用所述电子控制模块计算所述能量转换率。

10.如权利要求6所述的方法,其特征在于,还包括:当滑过所述柴油氧化催化器的烃的估值超过临界值时,在所述电子控制 模块内设置故障码。

11.如权利要求6所述的方法,其特征在于:通过将所述计算的能量转换率与由所述电子控制模块访问的存储器内存储的能量转换率的相比较,产生滑过所述柴油氧化催化器的烃的估值。

12.一种计算用于柴油发动机的柴油氧化催化器和柴油颗粒过滤器的能量转换率的方法,所述柴油发动机具有柴油氧化催化器、柴油颗粒过滤器以及电子控制模块,所述方法包括:将所述柴油氧化催化器的入口处的温度提供给所述电子控制模块;

将所述柴油氧化催化器的出口处的温度提供给所述电子控制模块;

将所述柴油颗粒过滤器的出口处温度传送给所述电子控制模块;以及用电子控制模块使用以下公式计算能量转换率:

其中T1是所述柴油氧化催化器输入处的温度、T2是所述柴油氧化催化器输出处的温度,以及T3是所述柴油颗粒过滤器输出处的温度。

13.如权利要求12所述的方法,其特征在于,还包括:在所述电子控制模块内接收指示所述发动机的排气流率的数据;以及基于所述排气流率的数据确定所述发动机是以瞬态方式运行还是以稳态方式运行,其中在所述发动机以稳态方式运行时计算所述能量转换率。

14.如权利要求12所述的方法,其特征在于,还包括:计算所述能量转换率之前,对一段时期内接收的指示所述柴油氧化催化器输入温度、所述柴油氧化催化器输出温度以及所述柴油颗粒过滤器输出温度的数据求平均值。

说明书 :

监测柴油颗粒过滤器内烃含量的方法

技术领域

[0001] 本专利涉及柴油催化氧化剂,且更具体地涉及用于确定滑过柴油催化氧化剂的烃的方法和控制这些方法的电子控制模块。

背景技术

[0002] 包括环境责任的努力和发动机废气排放的现代环境规章在内的多种因素降低了在化石燃料燃烧后进入大气的某些污染物的可接受含量。越来越多的严格排放标准可能要求进一步控制燃料燃烧和废气燃烧后处理中的任一种或两种。例如,在过去几年,所允许的氧化氮(NOx)和颗粒物质的含量已经大大降低。其中,为了解决环境问题,许多柴油发动机现在在柴油发动机的排气系统内具有柴油氧化催化器(DOC)和柴油颗粒过滤器(DPF),以减少释放到大气的未燃烧烃和颗粒物质的量。
[0003] 在某些柴油发动机运行条件下,诸如产生低排气温度的条件下,未燃烧烃可能滑过DOC并阻塞在DPF内或其前表面上。当随后进行DPF再生时,这些附加的烃可能燃烧并基于滑过DOC的这些烃的燃烧产生的附加热使DPF裂开。此外,DOC本身可能有时被未燃烧烃阻塞,从而DOC不能正常工作。因此,这些未燃烧烃可能造成对DOC和DPF的损坏,导致可能高成本的修理。
[0004] 因此,需要一种确定未燃烧烃何时积聚在DOC和DPF上或其内的方法。

发明内容

[0005] 根据本发明的一方面,提供一种监测用于发动机的柴油颗粒过滤器内烃含量的方法,发动机具有电子控制模块和排气系统,排气系统具有柴油氧化催化器和柴油颗粒过滤器。电子控制模块接收指示柴油氧化催化器输入温度、柴油氧化催化器输出温度以及柴油颗粒过滤器输出温度的数据。使用指示柴油氧化催化器输入温度、柴油氧化催化器输出温度以及柴油颗粒过滤器输出温度的数据用电子控制模块来计算能量转换率。将计算的能量转换率与由电子控制模块所访问的存储器内存储的能量转换率相比较。用电子控制模块基于计算的能量转换率与存储的能量转换率的比较产生滑过柴油氧化催化器的烃的估值。
[0006] 根据本发明的另一方面,提供一种估算柴油颗粒过滤器再生期间柴油颗粒过滤器内烃含量的方法,该柴油发动机具有电子控制模块、柴油氧化催化器和柴油颗粒过滤器。开始柴油颗粒过滤器再生循环。使用指示柴油催化氧化剂输入温度、柴油催化氧化剂输出温度以及柴油颗粒过滤器输出温度的数据,用电子控制模块计算能量转换率。用电子控制模块基于能量转换率产生滑过柴油氧化催化器的烃的估值。当滑过柴油催化氧化剂的烃的估值超过临界值时,停止柴油颗粒过滤器再生循环。
[0007] 根据本发明的又一方面,提供一种计算用于柴油发动机的柴油氧化催化器和柴油颗粒过滤器的能量转换率的方法,该柴油发动机具有柴油氧化催化器、柴油颗粒过滤器以及电子控制模块。将柴油氧化催化器的入口温度提供给电子控制模块。将柴油氧化催化器的出口温度提供给电子控制模块。将柴油颗粒过滤器的出口温度传送给电子控制模块。用电子控制模块使用以下公式计算能量转换率:
[0008] 其中T1是柴油氧化催化器输入处的温度、T2是柴油氧化催化器输出处的温度,以及T3是柴油颗粒过滤器输出处的温度。

附图说明

[0009] 图1是示出控制发动机以用电子控制模块确定未燃烧烃滑过柴油催化氧化剂并进入柴油颗粒过滤器的方法的流程图。

具体实施方式

[0010] 尽管可能以多种不同形式实施本发明的过程,但在附图中示出并在此详细描述了某些过程,应当理解本公开内容应认为是示例本发明过程的原理且不意图将过程的宽范围限制于在此说明和描述的具体过程。
[0011] 根据图1所示的一个过程,示出在柴油颗粒过滤器(DPF)再生循环期间,控制发动机以确定未燃烧烃滑过柴油催化氧化剂(DOC)的方法10。该方法通过发动机的电子控制模块(ECM)实施并在框12处开始。作为过程10的一方面,ECM在一段时期从发动机接收某些数据的读数,如框14所示。ECM接收的数据可能包括排气流率、DOC入口处的温度、DOC出口处的温度以及柴油颗粒过滤器(DPF)出口处的温度。可利用该排气流率确定发动机是以瞬态方式运行还是以稳态方式运行。
[0012] 该方法在框12处开始,且ECM在框16处将从发动机14接收的数据与所存储的校准范围相比较。该校准范围可存储在ECM的存储器内,或者可包含在ECM读取的计算机可读介质上。如果ECM确定有任何发动机数据在所存储的校准范围之外,则重新开始该方法并在框14处接收新的数据。如果数据在校准范围内,则产生所接收数据的平均值。
[0013] 如在框18处所示,ECM产生数据的平均值。所计算的平均值将包括DOC入口处的平均温度、DOC出口处的平均温度和DPF出口处的平均温度。
[0014] 一旦计算好数据的平均值,则在框20处计算能量转换率。
[0015] 用以下的公式计算能量转换率:
[0016]
[0017] 其中T1是DOC入口处的平均温度、T2是DOC出口处的平均温度,且T3是DPF出口处的平均温度。该能量转换率计算DPF再生循环期间DOC内的能量转换与DOC和DPF两者内能量转换的比值。一旦确定了能量转换率,在框22处ECM就将该能量转换率与ECM的存储器内或者由ECM访问的计算机可读介质内存储的能量转换率相比较,以确定滑过DOC的烃的量。
[0018] 接着,如框24处所示,ECM将基于能量转换率确定的滑过DOC的烃的量与滑过DOC的烃的临界量相比较。如果滑过DOC的烃的量小于该临界值,则该方法如框14处所示再次获得数据。但是,如果滑过DOC的烃的量大于该临界值,则ECM控制发动机,如框26处所示使得DPF的再生中断。此外,可在框26处将故障码置于ECM的存储器内,以使技术人员能够更方便地识别是否需要维护发动机。
[0019] 此外,一旦DPF的再生停止,则发动机动力输出可能减额或减速,以防止发动机发生损坏,如框28处所示。除了防止对发动机造成损坏,发动机功率输出减额将鼓励车辆操作者寻求维护发动机。因此,除了对发动机功率输出减额之外,还考虑到车辆操作者可能收到出错信息,或者立刻维护发动机的灯可能亮起,以通知车辆操作者,发动机需要维护。
[0020] 尽管已经说明和描述了各具体实施例,但会想到各种改型而不显著脱离本发明的精神,且保护范围仅限于所附权利要求书的范围。