电动机转让专利

申请号 : CN200980112913.X

文献号 : CN101999203B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 大矢聪义笠冈广太阿部典行圷重光

申请人 : 本田技研工业株式会社

摘要 :

本发明提供一种能够实现小型化及制造成本的削减,并且能够提高设计的自由度的电动机。电动机(1)具备:具有磁极列的第一结构体(4),该磁极列由沿规定方向排列的规定的多个磁极(4a)构成且配置成相邻的各两个磁极具有相互不同的极性;具有电枢列的第二结构体(3),该电枢列配置成与磁极列相对向,在多个电枢(3c~3e)伴随电力的供给而产生的规定的多个电枢磁极的作用下,在电枢列与磁极列之间产生沿规定方向移动的移动磁场;具有软磁性体列的第三结构体(5),该软磁性体列由相互隔开间隔而沿规定方向排列的规定的多个软磁性体(5a)构成且配置成位于磁极列与电枢列之间,其中,电枢磁极数与磁极(4a)数与软磁性体(5a)数的比设定为1∶m∶(1+m)/2(m≠1.0)。

权利要求 :

1.一种电动机,其特征在于,具备:

具有磁极列的第一结构体,该磁极列由沿规定方向排列的规定的多个磁极构成且配置成相邻的各两个所述磁极具有相互不同的极性;

具有电枢列的第二结构体,该电枢列由沿所述规定方向排列的多个电枢构成且配置成与所述磁极列相对向,在所述多个电枢伴随电力的供给而产生的规定的多个电枢磁极的作用下,在所述电枢列与所述磁极列之间产生沿所述规定方向移动的移动磁场;

具有软磁性体列的第三结构体,该软磁性体列由相互隔开间隔而沿所述规定方向排列的规定的多个软磁性体构成且配置成位于所述磁极列与所述电枢列之间,沿所述规定方向的规定的区间中的所述电枢磁极数与所述磁极数与所述软磁性体数的比设定为1∶m∶(1+m)/2,其中m≠1.0。

2.根据权利要求1所述的电动机,其特征在于,还具备:对所述第一~第三结构体的相对的位置关系进行检测的相对位置关系检测机构;

基于该检测出的第一~第三结构体的相对的位置关系,控制移动磁场的控制机构。

3.根据权利要求2所述的电动机,其特征在于,

所述相对位置关系检测机构分别检测所述第一结构体及第三结构体相对于所述第二结构体的电气角度位置作为所述第一~第三结构体的相对的位置关系,所述控制机构基于将所述检测出的第三结构体的电气角度位置乘以(1+m)的值与将所述检测出的第一结构体的电气角度位置乘以m的值之差,控制所述移动磁场。

4.根据权利要求1~3中任一项所述的电动机,其特征在于,所述磁极是永久磁铁的磁极。

5.根据权利要求1所述的电动机,其特征在于,

所述电动机为旋转机械。

6.根据权利要求1所述的电动机,其特征在于,

所述电动机为线性电动机。

说明书 :

电动机

技术领域

[0001] 本发明涉及具有多个可动件和固定件并将供给来的电力变换成动力而从可动件输出的电动机。

背景技术

[0002] 作为以往的此种电动机,已知有例如专利文献1所公开的电动机。该电动机是所谓旋转机械,具备分别与第一旋转轴及第二旋转轴连结的第一转子及第二转子和单一的定子。第一及第二旋转轴相互配置成同心状,第一转子、第二转子及定子沿第一旋转轴的径向从内侧以该顺序排列。
[0003] 第一转子具有分别沿周向排列的多个第一永久磁铁及第二永久磁铁,第一及第二永久磁铁沿第一转子的轴线方向相互并联排列。定子由于电力的供给而产生沿周向旋转的第一旋转磁场及第二旋转磁场,该第一旋转磁场产生在定子与第一转子的第一永久磁铁侧的部分之间,该第二旋转磁场产生在定子与第一转子的第二永久磁铁侧的部分之间。第二转子具有分别沿周向排列的多个第一铁心及第二铁心。所述第一及第二铁心由软磁性体构成,第一铁心配置在第一转子的第一永久磁铁侧的部分与定子之间,第二铁心配置在第一转子的第二永久磁铁侧的部分与定子之间。第一及第二永久磁铁的磁极、第一及第二旋转磁场的磁极、以及第一及第二铁心数设定为彼此相同。
[0004] 在以上的结构的电动机中,伴随着向定子的电力供给所形成的第一及第二旋转磁场的产生,在第一及第二旋转磁场的磁极和第一及第二永久磁铁的磁极的作用下,第一及第二铁心被磁化,从而在所述要素之间产生磁力线。而且,通过磁力线的磁力产生的作用,驱动第一及第二转子,进而,从第一及第二旋转轴输出动力。
[0005] 在上述以往的电动机中,在其结构方面,应当将向定子供给的电力变换成动力而从第一旋转轴或第二旋转轴输出,为了使上述的磁力线产生的磁力适当地起作用,不仅由多个第一铁心构成的第一软磁性体列不可或缺,而且由多个第二铁心构成的第二软磁性体列也不可或缺,从而不可避免地会导致电动机的大型化或制造成本的增加。而且,在电动机的结构方面,由于仅在第一及第二旋转磁场的转速与第二转子的转速的差、和第二转子的转速与第一转子的转速的差成为相同的速度关系下成立,因此其设计的自由度低。

发明内容

[0006] 本发明为了解决上述课题而作出,其目的在于提供一种能够实现小型化及制造成本的削减,并且能够提高设计的自由度的电动机。
[0007] 专利文献1:日本特开2008-67592号公报
[0008] 为了实现上述目的,本发明的第一方面的电动机1、31的特征在于,具备:具有磁极列的第一结构体(第一转子4、第一旋转轴6、第二定子34),该磁极列由沿规定方向排列的规定的多个磁极(永久磁铁4a、34a)构成且配置成相邻的各两个磁极具有相互不同的极性;具有电枢列的第二结构体(定子3、第一定子33),该电枢列由沿规定方向排列的多个电枢(铁心3a、U相~W相的绕组3c~3e、铁心33a、U相~W相的绕组33c~33e)构成且配置成与磁极列相对向,在多个电枢伴随电力的供给而产生的规定的多个电枢磁极的作用下,在该电枢列与磁极列之间产生沿规定方向移动的移动磁场;具有软磁性体列的第三结构体(第二转子5、第二旋转轴7、可动件35),该软磁性体列由相互隔开间隔而沿规定方向排列的规定的多个软磁性体(铁心5a、铁心35b)构成且配置成位于磁极列与电枢列之间,其中,沿规定方向的规定的区间中的电枢磁极数与磁极数与软磁性体数的比设定为1∶m∶(1+m)/2(m≠1.0)。
[0009] 根据该电动机,第三结构体的软磁性体列配置成位于相互相对向的第一结构体的磁极列与第二结构体的电枢列之间,且分别构成所述磁极列、电枢列及软磁性体列的多个磁极、电枢及软磁性体沿规定方向排列。而且,伴随向电枢列的电力的供给,会产生多个电枢磁极,而所述电枢磁极形成的移动磁场产生在该电枢列与磁极列之间,并沿规定方向移动。此外,相邻的各两个磁极具有相互不同的极性,相邻的各两个软磁性体间空出间隔。如上所述,由于在磁极列与电枢列之间产生由多个电枢磁极形成的移动磁场且配置有软磁性体列,因此软磁性体被电枢磁极和磁极磁化。由于这种情况和如上所述相邻的各两个软磁性体间空出间隔的情况,而产生将磁极、软磁性体以及电枢磁极连结的磁力线。而且,在该磁力线产生的磁力的作用下,向电枢供给的电力被变换成动力,从第一结构体或第二结构体、第三结构体输出。
[0010] 在这种情况下,例如在下面的条件(a)及(b)下构成本发明的电动机时,移动磁场、第一及第三结构体之间的速度的关系、第一~第三结构体之间的转矩的关系如下所示。而且,与电动机相当的等价电路如图19所示。
[0011] (a)电动机为旋转机械,电枢具有U相、V相及W相这三相绕组
[0012] (b)电枢磁极为两个,磁极为四个,即,电枢磁极的以N极及S极为1组的极对数为1,磁极的以N极及S极为1组的极对数为2,软磁性体为3个
[0013] 此外需要说明的是,如上所述,本说明书中使用的“极对”是指N极及S极这一组。
[0014] 这种情况下,软磁性体中的通过第一软磁性体的磁极的磁通Ψk1由下式(1)表示。
[0015] [数学式1]
[0016] Ψk1=ψf·cos[2(θ2-θ1)] ……(1)[0017] 在此,ψf为磁极的磁通的最大值,θ1及θ2为磁极相对于U相绕组的旋转角度位置及软磁性体相对于U相绕组的旋转角度位置。而且,这种情况下,由于磁极的极对数相对于电枢磁极的极对数的比为2.0,因此磁极的磁通相对于移动磁场以2倍的周期进行旋转(变化),在上述的式(1)中,为了表示这种情况,而将(θ2-θ1)乘以2.0。
[0018] 因此,经由第一软磁性体而通过U相绕组的磁极的磁通Ψu1由通过将式(1)乘以cosθ2得到的下式(2)表示。
[0019] [数学式2]
[0020] Ψu1=ψf·cos[2(θ2-θ1)]cosθ2 ……(2)[0021] 同样地,通过软磁性体中的第二软磁性体的磁极的磁通Ψk2由下式(3)表示。
[0022] [数学式3]
[0023]
[0024] 由于第二软磁性体相对于电枢的旋转角度位置相对于第一软磁性体超前2π/3,因此在上述式(3)中,为了表示这种情况,将θ2加上2π/3。
[0025] 因此,经由第二软磁性体而通过U相绕组的磁极的磁通Ψu2由通过将式(3)乘以cos(θ2+2π/3)得到的下式(4)表示。
[0026] [数学式4]
[0027]
[0028] 同样地,经由软磁性体中的第三软磁性体而通过U相绕组的磁极的磁通Ψu3由下式(5)表示。
[0029] [数学式5]
[0030]
[0031] 在图19所示的电动机中,经由软磁性体而通过U相绕组的磁极的磁通Ψu是将由上述的式(2)、(4)及(5)表示的磁通Ψu1~Ψu3加在一起的结果,由下式(6)表示。
[0032] [数学式6]
[0033]
[0034]
[0035] 另外,将该式(6)一般化时,经由软磁性体而通过U相绕组的磁极的磁通Ψu由下式(7)表示。
[0036] [数学式7]
[0037]
[0038] 在此,a、b及c分别是磁极的极对数、软磁性体数及电枢磁极的极对数。
[0039] 另外,将该式(7)基于三角函数的和与积的公式进行变形时,得到下式(8)。
[0040] [数学式8]
[0041]
[0042]
[0043] 在该式(8)中,b=a+c,并且基于cos(θ+2π)=cosθ进行整理时,得到下式(9)。
[0044] [数学式9]
[0045]
[0046]
[0047] 基于三角函数的加法定理对该式(9)进行整理时,得到下式(10)。
[0048] [数学式10]
[0049]
[0050]
[0051]
[0052] 该式(10)的右边的第二项以a-c≠0为条件,基于级数的总和或欧拉公式进行整理时,如下式(11)所示成为0。
[0053] [数学式11]
[0054]
[0055]
[0056]
[0057]
[0058]
[0059] 另外,上述的式(10)的右边的第三项也以a-c≠0为条件,基于级数的总和或欧拉公式进行整理时,如下式(12)所示成为0。
[0060] [数学式12]
[0061]
[0062]
[0063]
[0064]
[0065]
[0066] 以上,在a-c≠0时,经由软磁性体而通过U相绕组的磁极的磁通Ψu由下式(13)表示。
[0067] [数学式13]
[0068]
[0069] 另外,在该式(13)中,a/c=α时,得到下式(14)。
[0070] [数学式14]
[0071]
[0072] 此外,在该式(14)中,c·θ2=θe2,并且c·θ1=θe1时,得到下式(15)。
[0073] [数学式15]
[0074]
[0075] 在此,从在软磁性体相对于U相绕组的旋转角度位置θ2上乘以电枢磁极的极对数c可知,θe2表示软磁性体相对于U相绕组的电气角度位置。而且,从在磁极相对于U相绕组的旋转角度位置θ1上乘以电枢磁极的极对数c可知,θe1表示磁极相对于U相绕组的电气角度位置。
[0076] 同样地,经由软磁性体而通过V相绕组的磁极的磁通Ψv由于V相绕组的电气角度位置相对于U相绕组超前2π/3电气角,因此由下式(16)表示。而且,经由软磁性体而通过W相绕组的磁极的磁通Ψw由于W相绕组的电气角度位置相对于U相绕组滞后2π/3电气角,因此由下式(17)表示。
[0077] [数学式16]
[0078]
[0079] [数学式17]
[0080]
[0081] 另外,对由上述的式(15)~(17)分别表示的磁通Ψu~Ψw进行时间微分时,分别得到下式(18)~(20)。
[0082] [数学式18]
[0083]
[0084] [数学式19]
[0085]
[0086] [数学式20]
[0087]
[0088] 在此,ωe1是θe1的时间微分值,即,是将第一结构体相对于第二结构体的角速度换算成电气角速度的值,ωe2是θe2的时间微分值,即,是将第三结构体相对于第二结构体的角速度换算成电气角速度的值。
[0089] 再者,不经由软磁性体而直接通过U相~W相的绕组的磁通极小,可以忽视其影响。因此,经由软磁性体而分别通过U相~W相的绕组的磁极的磁通Ψu~Ψw(式(18)~(20))的时间微分值dΨu/dt~dΨw/dt分别表示伴随磁极或软磁性体相对于电枢列的旋转(移动)而U相~W相的绕组产生的反电动势(感应电动势)。
[0090] 由此,分别在U相、V相及W相的绕组中流动的电流Iu、Iv及Iw由下式(21)、(22)及(23)表示。
[0091] [数学式21]
[0092] Iu=I·sin[(α+1)θe2-α·θe1] ……(21)[0093] [数学式22]
[0094]
[0095] [数学式23]
[0096]
[0097] 在此,I是在U相~W相的绕组中流动的电流的振幅(最大值)。
[0098] 另外,根据所述式(21)~(23),移动磁场(旋转磁场)相对于U相绕组的矢量的电气角度位置θmf由下式(24)表示,并且移动磁场相对于U相绕组的电气角速度ωmf由下式(25)表示。
[0099] [数学式24]
[0100] θmf=(α+1)θe2-α·θe1 ……(24)
[0101] [数学式25]
[0102] ωmf=(α+1)ωe2-α·ωe1 ……(25)
[0103] 另外,电枢列与第二结构体一起构成为不能移动时,由于电流Iu~Iw分别向U相~W相的绕组流动,而向第一及第三结构体输出的机械输出(动力)W除磁阻量之外,由下式(26)表示。
[0104] [数学式26]
[0105]
[0106] 将式(18)~(23)代入该式(26),进行整理,得到下式(27)。
[0107] [数学式27]
[0108]
[0109] 再者,该机械输出W、经由磁极而传递给第一结构体的转矩(以下称为“第一转矩”)T1、经由软磁性体而传递给第三结构体的转矩(以下称为“第二转矩”)T2、第一结构体的电气角速度ωe1及第三结构体的电气角速度ωe2的关系由下式(28)表示。
[0110] [数学式28]
[0111] W=T1·ωe1+T2·ωe2 ……(28)
[0112] 从所述式(27)及(28)可知,第一及第二转矩T1、T2分别由下式(29)及(30)表示。
[0113] [数学式29]
[0114]
[0115] [数学式30]
[0116]
[0117] 另外,将与向电枢列供给的电力及移动磁场的电气角速度ωmf等价的转矩作为驱动用等价转矩Te时,根据向电枢列供给的电力与机械输出W相互相等(其中,忽视损失)的情况和式(28),该驱动用等价转矩Te由下式(31)表示。
[0118] [数学式31]
[0119]
[0120] 再者,根据所述式(29)~(31),得到下式(32)。
[0121] [数学式32]
[0122]
[0123] 由该式(32)表示的转矩的关系及由所述式(25)表示的电气角速度的关系与行星齿轮装置的恒星齿轮、冕状齿轮及载体的旋转速度及转矩的关系完全相同。而且,此种电气角速度的关系及转矩的关系并不局限于上述第二结构体无法移动的情况,而在所有的第一~第三结构体的可否移动的条件下成立。例如,在不构成为使第二结构体无法移动而以对第二结构体输入动力的状态供给电力的情况下也成立,在第二结构体的基础上,在第一或第三结构体构成为无法移动的情况下、或在以对第一或第三结构体输入动力的状态向电枢列供给电力的情况下也成立。而且,在使第二结构体构成为能够移动并且第一及/或第三结构体构成为无法移动的情况下、或在以向第一及/或第三结构体输入动力的状态供给电力的情况下也成立。
[0124] 再者,如上所述,以b=a+c及a-c≠0为条件,式(25)的电气角速度的关系及式(32)的转矩的关系成立。该条件b=a+c在磁极数为p且电枢磁极数为q时,由b=(p+q)/2,即,b/q=(1+p/q)/2表示。在此,从p/q=m时能得到b/q=(1+m)/2的情况可知,上述的b=a+c的条件成立的情况表示电枢磁极数与磁极数与软磁性体数的比为1∶m∶(1+m)/2。而且,上述的a-c≠0的条件成立的情况表示m≠1.0。根据本发明的电动机,在规定方向上的规定的区间中,由于电枢磁极数与磁极数与软磁性体数的比设定为1∶m∶(1+m)/2(m≠1.0),因此式(25)所示的电气角速度的关系及式(32)所示的转矩的关系成立,电动机恰当地工作。
[0125] 另外,与所述以往的情况不同地,由于仅通过单一的软磁性体列就能够使电动机工作,因此能够实现电动机的小型化及制造成本的削减。此外,从式(25)及(32)可知,α=a/c,即,通过设定磁极的极对数相对于电枢磁极的极对数的比,而能够自由地设定移动磁场、第二及第三结构体之间的电气角速度的关系、以及第一~第三结构体之间的转矩的关系,因此,能够提高电动机的设计的自由度。在多个电枢的绕组的相数为所述的值3以外的情况下能同样地得到该效果,而且,在电动机不是旋转机械而是线性电动机的情况下也能同样地得到该效果。此外,在线性电动机的情况下,能够自由设定的不是“转矩”而是“推力”的关系的情况不言自明。
[0126] 本发明的第二方面在第一方面所记载的电动机1、31的基础上,其特征在于,还具备:对第一~第三结构体的相对的位置关系进行检测的相对位置关系检测机构(第一旋转位置传感器21、第二旋转位置传感器22、电气角变換器16b、位置传感器41);基于检测出的第一~第三结构体的相对的位置关系,控制移动磁场的控制机构(ECU16)。
[0127] 根据该结构,通过相对位置关系检测机构检测第一~第三结构体这三者的相对的位置关系,并且基于检测出的第一~第三结构体这三者的相对的位置关系,通过控制机构控制移动磁场。由此,能够使磁力线适当地产生在磁极与软磁性体与电枢磁极之间,并使该磁力线产生的磁力适当地发挥作用,因此能够确保电动机的恰当的动作。
[0128] 本发明的第三方面在第二方面所记载的电动机1、31的基础上,其特征在于,相对位置关系检测机构(第一旋转位置传感器21、第二旋转位置传感器22、电气角变換器16b)分别检测第一结构体及第三结构体相对于第二结构体的电气角度位置作为第一~第三结构体的相对的位置关系,控制机构基于将检测出的第三结构体的电气角度位置(第二转子电气角θER2)乘以(1+m)的值与将检测出的第一结构体的电气角度位置(第一转子电气角θER1)乘以m的值之差,来控制移动磁场。
[0129] 根据该结构,基于将第三结构体相对于第二结构体的电气角度位置乘以(1+m)的值与将第一结构体相对于第二结构体的电气角度位置乘以m的值之差,来控制移动磁场。从本发明的第一方面可知,该m表示磁极数相对于电枢磁极数的比。而且,如在本发明的第一方面的作用中已述那样,在电动机工作中,移动磁场的电气角度位置与第二及第三结构体的电气角度位置的关系由式(24)表示。该式(24)中的α表示磁极的极对数相对于电枢磁极的极对数的比(a/c),即,磁极数相对于电枢磁极数的比,与m相等。因此,根据上述结构,能够确保电动机的更恰当的动作。
[0130] 本发明的第四方面以第一方面至第三方面中任一方面所记载的电动机1、31为基础,其特征在于,磁极是永久磁铁4a、34a的磁极。
[0131] 根据该结构,由于使用永久磁铁的磁极作为磁极,因此与使用电磁铁的磁极的情况不同,不需要用于向电磁铁供给电力的电气回路或绕组。由此,能够使电动机进一步小型化,并且能够使结构简单化。而且,例如,将具有磁极的第一结构体构成为能够旋转时,不需要在使用电磁铁的磁极作为磁极时的电力供给用的集电环,因此,能够使电动机小型化,并且能够提高效率。
[0132] 本发明的第五方面以第一方面所记载的电动机1为基础,其特征在于,电动机为旋转机械。
[0133] 根据该结构,在旋转机械中能够得到本发明的第一方面所述的效果。
[0134] 本发明的第六方面以第一方面所记载的电动机31为基础,其特征在于,电动机为线性电动机。
[0135] 根据该结构,在线性电动机中能够得到本发明的第一方面所述的效果。

附图说明

[0136] 图1是简要示出本发明的第一实施方式的电动机的剖视图。
[0137] 图2是示出图1的电动机或ECU的框图。
[0138] 图3是沿周向展开并简要示出图1的电动机的定子、第一及第二转子的图。
[0139] 图4是示出图1的电动机中的磁场电气角速度、第一及第二转子电气角速度的关系的一例的共线图。
[0140] 图5是用于说明在将图1的电动机的第一转子固定后的状态下向定子供给电力时的动作的图。
[0141] 图6是用于说明图5的持续动作的图。
[0142] 图7是用于说明图6的持续动作的图。
[0143] 图8是用于说明从图5所示的状态开始,电枢磁极旋转2π电气角时的电枢磁极或铁心的位置关系的图。
[0144] 图9是用于说明在将图1的电动机的第二转子固定后的状态下向定子供给电力时的动作的图。
[0145] 图10是用于说明图9的持续动作的图。
[0146] 图11是用于说明图10的持续动作的图。
[0147] 图12是示出将本发明的电动机的第一转子固定后的U相~W相的反电动势的推移的一例的图。
[0148] 图13是示出将本发明的电动机的第一转子固定后的驱动用等价转矩、第一及第二转子传递转矩的推移的一例的图。
[0149] 图14是示出将本发明的电动机的第二转子固定后的U相~W相的反电动势的推移的一例的图。
[0150] 图15是示出将本发明的电动机的第二转子固定后的驱动用等价转矩、第一及第二转子传递转矩的推移的一例的图。
[0151] 图16是简要示出本发明的第二实施方式的电动机等的主视图。
[0152] 图17是简要示出图16的电动机的一部分的俯视图。
[0153] 图18是用于说明图16的电动机中的电枢磁极、铁心及磁铁磁极的数目的关系的图。
[0154] 图19是示出本发明的电动机的等价电路的图。

具体实施方式

[0155] 以下,参照附图,说明本发明的优选实施方式。图1示出本发明的第一实施方式的电动机1。该电动机1构成为旋转机械,其动作由图2所示的ECU16控制。如图1所示,电动机1具备:不动的箱体2、设置在箱体2内的定子3、在箱体2内与定子3相对向设置的第一转子4、设置在两者3、4之间的第二转子5、第一旋转轴6及第二旋转轴7。此外,在图1中,为了便于图示,用轮廓图描绘第一旋转轴6等一部分要素。而且,在图1及后述的其它附图中,省略了表示截面的部分的剖面线。
[0156] 箱体2具有圆筒状的周壁2a、一体设置在该周壁2a两端部的圆板状的一对侧壁2b、2c。在所述侧壁2b、2c的中央分别形成有安装孔2d、2e,所述安装孔2d、2e中分别安装有轴承8及9。
[0157] 上述的第一及第二旋转轴6、7分别由轴承8、9支承为旋转自如,且相互配置成同心状。而且,第一及第二旋转轴6、7都是一部分收容在箱体2内而其余部分向箱体2的外方突出。此外,上述的定子3、第二转子5及第一转子4沿第一旋转轴6的径向(以下,简称为“径向”)从外侧以该顺序排列,并配置成同心状。
[0158] 定子3是产生旋转磁场的部件,如图3所示,具有铁心3a、设置在该铁心3a上的U相、V相及W相的绕组3c、3d、3e。此外,在图1中,为了简便,仅示出U相绕组3c。铁心3a是层叠了多个钢板的圆筒状的部件,沿第一旋转轴6的轴线方向(以下,简称“轴线方向”)延伸,并安装在箱体2的周壁2a的内周面上。而且,铁心3a的内周面上形成有12个槽3b,所述槽3b沿轴线方向延伸,并且沿第一旋转轴6的周向(以下,简称“周向”)等间隔排列。上述的U相~W相的绕组3c~3e以分布绕组(波形绕组)卷绕于槽3b,并且与可变电源
15连接(参照图2)。该可变电源15是将由逆变器等构成的电气回路与蓄电池组合而成的部件,与ECU16连接。
[0159] 在上述结构的定子3中,从可变电源15供给电力时,在铁心3a的第一转子4侧的端部沿周向等间隔地产生四个磁极(参照图5),并且所述磁极产生的旋转磁场沿周向旋转。以下,将铁心3a产生的磁极称为“电枢磁极”。而且,沿周向相邻的各两个电枢磁极的极性相互不同。此外,在图5或后述的其它附图中,在铁心3a或U相~W相的绕组3c~3e的上面,利用(N)及(S)来标记电枢磁极。
[0160] 如图3所示,第一转子4具有由8个永久磁铁4a构成的磁极列。所述永久磁铁4a沿周向等间隔排列,该磁极列与定子3的铁心3a相对向。各永久磁铁4a沿轴线方向延伸,其轴线方向的长度设定为与定子3的铁心3a的轴线方向的长度相同。
[0161] 另外,永久磁铁4a安装在环状的固定部4b的外周面。该固定部4b由软磁性体,例如铁或层叠了多个钢板的部件构成,其内周面安装在圆板状的凸缘4c的外周面,该凸缘4c一体呈同心状地设置于第一旋转轴6。由此,包含永久磁铁4a的第一转子4成为与第一旋转轴6一体旋转自如。此外,如上所述,由于永久磁铁4a安装在由软磁性体构成的固定部4b的外周面,因此各永久磁铁4a上的定子3侧的端部出现(N)或(S)的一个磁极。此外,在图3或后述的其它附图中,利用(N)及(S)来标记永久磁铁4a的磁极。而且,沿周向相邻的各两个永久磁铁4a的极性相互不同。
[0162] 第二转子5具有由六个铁心5a构成的软磁性体列。所述铁心5a沿周向等间隔排列,该软磁性体列在定子3的铁心3a与第一转子4的磁极列之间分别隔开规定的间隔配置。各铁心5a是软磁性体,例如是层叠了多个钢板的部件,并沿轴线方向延伸。而且,与永久磁铁4a同样地,铁心5a的轴线方向的长度设定为与定子3的铁心3a的轴线方向的长度相同。此外,铁心5a通过沿轴线方向稍延伸的筒状的连结部5c安装在圆板状的凸缘5b的外端部。该凸缘5b与第二旋转轴7一体设置成同心状。由此,包含铁心5a的第二转子5与第二旋转轴7一体地旋转自如。此外,在图3中,为了简便,省略了连结部5c及凸缘5b。
[0163] 另外,如图2所示,电动机1上设有电磁感应式的第一旋转位置传感器21及第二旋转位置传感器22。该第一旋转位置传感器21将表示第一转子4的特定的永久磁铁4a相对于定子3的特定的U相绕组3c(以下称为“基准绕组”)的旋转角度位置(以下称为“第一转子旋转角θR1”)的检测信号向ECU16输出。上述的第二旋转位置传感器22将表示第二转子5的特定的铁心5a相对于基准绕组的旋转角度位置(以下称为“第二转子旋转角θR2”)的检测信号向ECU16输出。
[0164] 再者,电动机1上设有第一电流传感器23及第二电流传感器24。所述第一及第二电流传感器23、24分别将表示分别在U相及V相的绕组3c、3d中流动的电流(以下,分别称为“U相电流Iu”、“V相电流Iv”)的检测信号向ECU16输出。
[0165] ECU16由包括I/O接口、CPU、RAM及ROM等在内的微型计算机构成,根据来自上述的各种传感器21~24的检测信号,控制电动机1的动作。
[0166] 此外,在本实施方式中,永久磁铁4a相当于本发明中的磁极,并且第一转子4及第一旋转轴6相当于本发明中的第一结构体。而且,铁心3a及U相~W相的绕组3c~3e相当于本发明中的电枢,并且定子3相当于本发明中的第二结构体。再者,铁心5a相当于本发明中的软磁性体,并且第二转子5及第二旋转轴7相当于本发明中的第三结构体。此外,ECU16相当于本发明中的控制机构,并且第一及第二旋转位置传感器21、22相当于本发明中的相对位置关系检测机构。
[0167] 如上所述,在电动机1中,电枢磁极为4个,永久磁铁4a的磁极(以下称为“磁铁磁极”)为8个,铁心5a为6个。即,电枢磁极数与磁铁磁极数与铁心5a数的比(以下称为“极数比”)设定为1∶2.0∶(1+2.0)/2。从这种情况和上述的式(18)~(20)可知,伴随第一转子4或第二转子5相对于定子3的旋转而U相~W相的绕组3c~3e分别产生的反电动势(以下,分别称为“U相反电动势Vcu”、“V相反电动势Vcv”、“W相反电动势Vcw”)由下式(33)、(34)及(35)表示。
[0168] [数学式33]
[0169] Vcu=-3·ψF[(3·ωER2-2·ωER1)sin(3·θER2-2·θER1)] ……(33)[0170] [数学式34]
[0171]
[0172] [数学式35]
[0173]
[0174] 在此,I是在U相~W相的绕组3c~3e中流动的电流的振幅(最大值),ψF是磁铁磁极的磁通的最大值。θER1是所谓机械角,即,是将第一转子旋转角θR1换算成电气角度位置的值(以下称为“第一转子电气角”),具体来说,是将第一转子旋转角θR1乘以电枢磁极的极对数,即乘以2的值。θER2是机械角,即,是将第二转子旋转角θR2换算成电气角度位置的值(以下称为“第二转子电气角”),具体来说,是将第二转子旋转角θR2乘以电枢磁极的极对数(值2)的值。而且,ωER1是θER1的时间微分值,即,是将第一转子4相对于定子3的角速度换算成电气角速度的值(以下称为“第一转子电气角速度”)。此外,ωER2是第二转子电气角速度,是θER2的时间微分值,即,是将第二转子5相对于定子3的角速度换算成电气角速度的值(以下称为“第二转子电气角速度”)。
[0175] 另外,从所述极数比和所述式(21)~(23)可知,在U相电流Iu、V相电流Iv、及W相的绕组3e中流动的电流(以下称为“W相电流Iw”)分别由下式(36)、(37)及(38)表示。
[0176] [数学式36]
[0177] Iu=I·sin(3·θER2-2·θER1) ……(36)
[0178] [数学式37]
[0179]
[0180] [数学式38]
[0181]
[0182] 再者,从极数比和所述式(24)及(25)可知,定子3相对于基准绕组的旋转磁场的矢量的电气角度位置(以下称为“磁场电气角度位置θMFR”)由下式(39)表示,旋转磁场相对于定子3的电气角速度(以下称为“磁场电气角速度ωMFR”)由下式(40)表示。
[0183] [数学式39]
[0184] θMFR=3·θER2-2·θER1 ……(39)
[0185] [数学式40]
[0186] ωMFR=3·ωER2-2·ωER1 ……(40)
[0187] 因此,通过所谓共线图表示磁场电气角速度ωMFR与第一转子电气角速度ωER1与第二转子电气角速度ωER2的关系时,例如图4所示。
[0188] 另外,将与向定子3供给的电力及磁场电气角速度ωMFR等价的转矩形成为驱动用等价转矩TSE时,该驱动用等价转矩TSE与向第一转子4传递的转矩(以下称为“第一转子传递转矩”)TR1与向第二转子5传递的转矩(以下称为“第二转子传递转矩”)TR2的关系从极数比和所述式(32)可知,由下式(41)表示。
[0189] [数学式41]
[0190]
[0191] 由上述的式(40)表示的电气角速度的关系及由上述的式(41)表示的转矩的关系与恒星齿轮及冕状齿轮的齿轮比为1∶2的行星齿轮装置的恒星齿轮、冕状齿轮及载体的旋转速度及转矩的关系完全相同。
[0192] ECU16基于上述式(39),控制向U相~W相的绕组3c~3e的通电,由此,控制旋转磁场。具体来说,如图2所示,ECU16具有目标电流算出部16a、电气角变換器16b、电流坐标变換器16c、偏差算出部16d、电流控制器16e及电压坐标变換器16f,通过所谓矢量控制而控制U相~W相的电流Iu、Iv、Iw,从而控制旋转磁场。此外,在本实施方式中,电气角变換器16b相当于相对位置关系检测机构。
[0193] 上述的目标电流算出部16a算出后述的d轴电流Id及q轴电流Iq的目标值(以下,分别称为“目标d轴电流Id_tar”、“目标q轴电流Iq_tar”),并将算出的目标d轴电流Id_tar及目标q轴电流Iq_tar向偏差算出部16d输出。此外,所述目标d轴电流Id_tar及目标q轴电流Iq_tar例如根据电动机1的负载等算出。
[0194] 由第一及第二旋转位置传感器21、22分别检测出的第一及第二转子旋转角θR1、θR2输入到电气角变換器16b。电气角变換器16b通过将输入的第一及第二转子旋转角θR1、θR2乘以电枢磁极的极对数(值2),而算出所述的第一及第二转子电气角θER1、θER2。而且,将算出的第一及第二转子电气角θER1、θER2向电流坐标变換器16c及电压坐标变換器16f输出。
[0195] 除第一及第二转子电气角θER1、θER2之外,由第一及第二电流传感器23、24分别检测出的U相及V相的电流Iu、Iv也输入到电流坐标变換器16c。电流坐标变換器16c基于输入的U相及V相的电流Iu、Iv和第一及第二转子电气角θe1、θe2,将各时的三相交流坐标上的U相~W相的电流Iu~Iw变换成dq坐标上的d轴电流Id及q轴电流Iq。该dq坐标以(3·θER2-2·θER1)为d轴并以与该d轴正交的轴为q轴,以(3·ωER2-2·ωER1)进行旋转。具体来说,d轴电流Id及q轴电流Iq由下式(42)算出。
[0196] [数学式42]
[0197]
[0198] 另外,电流坐标变換器16c将算出的d轴电流Id及q轴电流Iq向偏差算出部16d输出。
[0199] 偏差算出部16d算出输入的目标d轴电流Id_tar与d轴电流Id的偏差(以下称为“d轴电流偏差dId”),并且算出输入的目标q轴电流Iq_tar与q轴电流Iq的偏差(以下称为“q轴电流偏差dIq”)。而且,将算出的d轴电流偏差dId及q轴电流偏差dIq向电流控制器16e输出。
[0200] 电流控制器16e基于输入的d轴电流偏差dId及q轴电流偏差dIq,通过规定的反馈控制算法、例如PI控制算法,算出d轴电压Vd及q轴电压Vq。由此,以使d轴电流Id成为目标d轴电流Id_tar的方式算出d轴电压Vd,以使q轴电流Iq成为目标q轴电流Iq_tar的方式算出q轴电压Vq。而且,将算出的d轴及q轴的电压Vd、Vq向电压坐标变換器16f输出。
[0201] 电压坐标变換器16f基于输入的第一及第二转子电气角θER1、θER2,将输入的d轴电压Vd及q轴电压Vq变换成三相交流坐标上的U相~W相的电压Vu、Vv、Vw的指令值(以下,分别称为“U相电压指令值Vu_cmd”、“V相电压指令值Vv_cmd”、“W相电压指令值Vw_cmd”)。具体来说,U相~W相的电压指令值Vu_cmd~Vw_cmd通过下式(43)算出。
[0202] [数学式43]
[0203]
[0204] 另外,电压坐标变換器16f将算出的U相~W相的电压指令值Vu_cmd~Vw_cmd向上述的可变电源15输出。
[0205] 伴随于此,可变电源15以使U相~W相的电压Vu~Vw分别成为U相~W相的电压指令值Vu_cmd~Vw_cmd的方式对电动机1施加。由此,控制U相~W相的电流Iu~Iw,这种情况下,所述电流Iu~Iw分别由所述式(36)~(38)表示。而且,电流的振幅I基于目标d轴电流Id_tar及目标q轴电流Iq_tar决定。
[0206] 在以上的ECU16所进行的控制下,磁场电气角度位置θMFR被控制为使所述式(39)成立,磁场电气角速度ωMFR被控制为使所述式(40)成立。
[0207] 以上的结构的电动机1例如如下所述使用。即,固定第一及第二转子4、5的一方,或者,在向所述一方输入动力的状态下,将向定子3供给的电力变换为动力,从所述另一方输出。而且,从第一及第二转子4、5这双方同时输出动力时,满足式(41)的负载转矩同时作用于第一及第二转子4、5,例如作为双重反转螺旋桨的动力源使用。
[0208] 接下来,具体地说明如何将向定子3供给的电力变换为动力而从第一转子4或第二转子5输出。首先,参照图5~图7,说明在将第一转子4固定后的状态下向定子3供给电力的情况。此外,在图5~图7中,为了简便,而省略了多个构成要素的符号。后述的其它附图也相同。而且,为了容易理解,对与图5~图7所示的同一个电枢磁极及铁心5a添加剖面线。
[0209] 首先,如图5(a)所示,某一个铁心5a的中心与某一个永久磁铁4a的中心在周向上相互一致,并且距该铁心5a第三个的铁心5a的中心与距该永久磁铁4a第四个的永久磁铁4a的中心在周向上相互一致,从该状态开始,产生沿该图的左方旋转的旋转磁场。在该旋转磁场开始产生时,使相互具有相同极性的每隔一个的电枢磁极的位置与各永久磁铁4a的中心在周向上一致,并且使该电枢磁极的极性与该永久磁铁4a的磁铁磁极的极性不同,所述各永久磁铁4a的中心与铁心5a一致。
[0210] 如上所述由于定子3产生的旋转磁场产生在其与第一转子4之间,且具有铁心5a的第二转子5配置在定子3与第一转子4之间,因此通过电枢磁极及磁铁磁极来磁化各铁心5a。由于这种情况和相邻的各铁心5a之间隔开间隔的情况,从而产生将电枢磁极与铁心5a与磁铁磁极连结的磁力线ML。此外,在图5~图7中,为了简便,省略了铁心3a或固定部4b中的磁力线ML。这种情况在后述的其它附图中也相同。
[0211] 在图5(a)所示的状态下,磁力线ML以将周向的位置相互一致的电枢磁极、铁心5a及磁铁磁极连结并将在所述电枢磁极、铁心5a及磁铁磁极的各自的周向的各两侧相邻的电枢磁极、铁心5a及磁铁磁极连结的方式产生。而且,在该状态下,通过使磁力线ML为直线状,而使沿周向旋转的磁力不会作用于铁心5a。
[0212] 并且,伴随旋转磁场的旋转而电枢磁极从图5(a)所示的位置旋转到图5(b)所示的位置时,磁力线ML成为弯曲的状态,伴随于此,磁力以使磁力线ML成为直线状的方式作用于铁心5a。这种情况下,相对于将通过磁力线ML相互连结的电枢磁极及磁铁磁极连结的直线,磁力线ML在该铁心5a中成为沿与旋转磁场的旋转方向(以下称为“磁场旋转方向”)反方向呈凸状弯曲的状态,因此上述的磁力以沿磁场旋转方向驱动铁心5a的方式起作用。在此种磁力线ML产生的磁力的作用下,铁心5a被沿磁场旋转方向驱动,旋转到图5(c)所示的位置,从而设有铁心5a的第二转子5及第二旋转轴7也沿磁场旋转方向旋转。此外,图5(b)及(c)中的虚线表示磁力线ML的磁通量极小,电枢磁极与铁心5a与磁铁磁极之间的磁性的连接弱。这在后述的其它附图中也相同。
[0213] 另外,伴随旋转磁场的进一步旋转,上述的一连串动作,即,“磁力线ML在铁心5a中沿与磁场旋转方向反方向呈凸状弯曲→磁力以使磁力线ML成为直线状的方式作用于铁心5a→铁心5a或第二转子5、第二旋转轴7沿磁场旋转方向进行旋转”的动作如图6(a)~图6(d)、图7(a)及(b)所示,反复进行。在以上的磁力线ML产生的磁力的作用下,向定子3供给的电力被变换成动力,从第二旋转轴7输出。
[0214] 另外,图8示出使电枢磁极从图5(a)的状态旋转2π电气角的状态,从图8与图5(a)的比较可知,铁心5a相对于电枢磁极沿同方向旋转1/3的旋转角度。其结果是,在所述式(40)中,与通过使ωER1=0而得到ωER2=ωMFR/3的情况一致。
[0215] 接下来,参照图9~图11,说明在将第二转子5固定后的状态下向定子3供给电力时的动作。此外,在图9~图11中,为了容易理解,对同一个电枢磁极及永久磁铁4a添加剖面线。首先,如图9(a)所示,与所述的图5(a)的情况相同地,某一个铁心5a的中心与某一个永久磁铁4a的中心在周向上相互一致,并且距该铁心5a第三个的铁心5a的中心与距该永久磁铁4a第四个的永久磁铁4a的中心在周向上相互一致,从该状态开始,产生沿该图的左方旋转的旋转磁场。在该旋转磁场开始产生时,使相互具有相同极性的每隔一个的电枢磁极的位置与各永久磁铁4a的中心在周向上一致,并使该电枢磁极的极性与该永久磁铁4a的磁极的极性不同,所述各永久磁铁4a的中心与铁心5a一致。
[0216] 在图9(a)所示的状态下,与图5(a)的情况相同地,磁力线ML以将周向的位置相互一致的电枢磁极、铁心5a及磁铁磁极连结并将在所述电枢磁极、铁心5a及磁铁磁极的各自的周向的各两侧相邻的电枢磁极、铁心5a及磁铁磁极连结的方式产生。而且,在该状态下,通过使磁力线ML为直线状,而使沿周向旋转的磁力不会作用于永久磁铁4a。
[0217] 并且,伴随旋转磁场的旋转而电枢磁极从图9(a)所示的位置旋转到图9(b)所示的位置时,磁力线ML成为弯曲的状态,伴随于此,磁力以使磁力线ML成为直线状的方式作用于永久磁铁4a。这种情况下,由于该永久磁铁4a处于比通过磁力线ML相互连结的电枢磁极及铁心5a的延长线沿磁场旋转方向超前的位置,因此上述的磁力作用为使永久磁铁4a位于该延长线上,即,沿与磁场旋转方向反方向驱动永久磁铁4a。在此种磁力线ML产生的磁力的作用下,永久磁铁4a被沿与磁场旋转方向反方向驱动,旋转到图9(c)所示的位置,从而设有永久磁铁4a的第一转子4及第一旋转轴6也沿与磁场旋转方向反方向旋转。
[0218] 另外,伴随旋转磁场的进一步旋转,上述的一连串动作,即,“磁力线ML弯曲,永久磁铁4a位于比通过磁力线ML相互连结的电枢磁极及铁心5a的延长线沿磁场旋转方向超前的位置→磁力以使磁力线ML成为直线状的方式作用于永久磁铁4a→永久磁铁4a或第一转子4、第一旋转轴6沿与磁场旋转方向反方向旋转”的动作如图10(a)~图10(d)、图11(a)及(b)所示,反复进行。在以上的磁力线ML产生的磁力的作用下,向定子3供给的电力被变换成动力,从第一旋转轴6输出。
[0219] 另外,图11(b)示出电枢磁极从图9(a)的状态旋转2π电气角的状态,从图11(b)与图9(a)的比较可知,永久磁铁4a相对于电枢磁极沿反方向旋转1/2的旋转角度。其结果是,在所述式(40)中,与通过使ωER2=0而得到-ωER1=ωMFR/2的情况一致。
[0220] 另外,图12及图13示出将电枢磁极、铁心5a及永久磁铁4a的数目分别设定为16、18及20,固定第一转子4,并且通过向定子3供给电力而从第二转子5输出动力时的模拟结果。图12示出第二转子电气角θER2在0~2π变化期间的U相~W相的反电动势Vcu~Vcw的推移的一例。
[0221] 这种情况下,固定第一转子4且电枢磁极及磁铁磁极的极对数分别为8及10时,根据所述式(25),磁场电气角速度ωMFR、第一及第二转子电气角速度ωER1、ωER2的关系由ωMFR=2.25·ωER2表示。如图12所示,第二转子电气角θER2在0~2π变化期间,U相~W相的反电动势Vcu~Vcw大致产生2.25周期量。而且,图12示出从第二转子5观察到的U相~W相的反电动势Vcu~Vcw的变化状态,如该图所示,所述反电动势以第二转子电气角θER2为横轴,排列成W相反电动势Vcw、V相反电动势Vcv及U相反电动势Vcu的顺序,这种情况表示第二转子5沿磁场旋转方向旋转的情况。如上所述,从图12所示的模拟结果能够确认ωMFR=2.25·ωER2成立。
[0222] 此外,图13示出驱动用等价转矩TSE、第一及第二转子传递转矩TR1、TR2的推移的一例。这种情况下,电枢磁极及磁铁磁极的极对数分别为8及10,根据所述式(32),驱动用等价转矩TSE、第一及第二转子传递转矩TR1、TR2的关系由TSE=TR1/1.25=-TR2/2.25表示。如图13所示,驱动用等价转矩TSE大致成为-TREF,第一转子传递转矩TR1大致成为1.25·(-TREF),第二转子传递转矩TR2大致成为2.25·TREF。该TREF为规定的转矩值(例如200Nm)。如此,从图13所示的模拟结果能够确认TSE=TR1/1.25=-TR2/2.25成立。
[0223] 另外,图14及图15示出将电枢磁极、铁心5a及永久磁铁4a的数目与图12及图13的情况同样地设定,代入第一转子4而固定第二转子5,并且通过向定子3供给电力而从第一转子4输出动力时的模拟结果。图14示出第一转子电气角θER1在0~2π变化期间的U相~W相的反电动势Vcu~Vcw的推移的一例。
[0224] 这种情况下,固定第二转子5且使电枢磁极及磁铁磁极的极对数分别为8及10时,根据所述式(25),磁场电气角速度ωMFR、第一及第二转子电气角速度ωER1、ωER2的关系由ωMFR=-1.25·ωER1表示。如图14所示,在第一转子电气角θER1在0~2π变化期间,U相~W相的反电动势Vcu~Vcw大致产生1.25周期量。而且,图14表示从第一转子4观察到的U相~W相的反电动势Vcu~Vcw的变化状态,如该图所示,所述反电动势以第一转子电气角θER1为横轴,排列成U相反电动势Vcu、V相反电动势Vcv及W相反电动势Vcw的顺序,这表示第一转子4沿与磁场旋转方向反方向旋转的情况。如上所述,从图14所示的模拟结果能够确认ωMFR=-1.25·ωER1成立。
[0225] 再者,图15表示驱动用等价转矩TSE、第一及第二转子传递转矩TR1、TR2的推移的一例。这种情况下,与图13的情况相同地,根据式(32),驱动用等价转矩TSE、第一及第二转子传递转矩TR1、TR2的关系由TSE=TR1/1.25=-TR2/2.25表示。如图15所示,驱动用等价转矩TSE大致成为TREF,第一转子传递转矩TR1大致成为1.25·TREF,第二转子传递转矩TR2大致成为-2.25·TREF。如此,从图15所示的模拟结果能够确认TSE=TR1/1.25=-TR2/2.25成立。
[0226] 如上所述,根据本实施方式,由于仅通过由铁心5a构成的单一的软磁性体列就能够使电动机1工作,因此能够实现电动机1的小型化及制造成本的削减。而且,通过设定磁铁磁极的极对数相对于电枢磁极的极对数的比,能够自由地设定磁场电气角速度ωMFR、第一及第二转子电气角速度ωER1、ωER2的关系、以及驱动用等价转矩TSE、第一及第二转子传递转矩TR1、TR2的关系,因此,能够提高电动机1的设计的自由度。
[0227] 再者,由于将磁场电气角度位置θMFR控制为使所述式(40)成立,因此能够确保电动机1的恰当的动作。而且,由于使用永久磁铁4a的磁极,因此与使用电磁铁的磁极的情况不同,不需要用于向电磁铁供给电力的电气回路或绕组。由此,能够使电动机1进一步小型化,并且能够使结构简单化。而且,不需要使用电磁铁的磁极作为磁极时的电力供给用的集电环,因此,能够使电动机1小型化,并且能够提高效率。
[0228] 此外,在上述第一实施方式中,将第一及第二转子4、5构成为旋转自如,但是也可以将两者4、5的一方构成为不能旋转,并且仅将另一方构成为旋转自如,从另一方输出动力。这种情况下,由于第一及第二转子4、5的一方构成为不能旋转,因此在所述式(39)中,从两者4、5的一方的电气角度位置为0的情况可知,仅通过传感器等检测两者4、5的另一方的电气角度位置,并且根据检测出的另一方的电气角度位置,控制旋转磁场即可。而且,也可以将定子3构成为旋转自如,这种情况下,电动机例如如下所述使用。即,在向第一及第二转子4、5的一方和定子3输入动力的状态下,向定子3供给电力,将该电力变换成动力,从两转子4、5的另一方输出。或者,在将第一及第二转子4、5的一方固定后的状态(或者,将动力输入其一方的状态)下,从定子3及另一方同时输出动力时,满足式(41)的负载转矩同时作用于定子3及另一方,例如作为双重反转螺旋桨的动力源使用。
[0229] 再者,在第一实施方式中,分别检测特定的永久磁铁4a及铁心5a相对于基准绕组即特定的U相绕组3c的旋转角度位置作为第一及第二转子旋转角θR1、θR2,只要表示第一及第二转子4、5相对于定子3的旋转角度位置即可,也可以检测其它部位的旋转角度位置。例如,也可以将固定部4b或第一旋转轴6的特定的部位相对于特定的V相绕组3d或特定的W相绕组3e、箱体2的特定的部位的旋转角度位置作为第一转子旋转角θR1,并将凸缘5b或第二旋转轴7的特定的部位的旋转角度位置作为第二转子旋转角θR2,分别进行检测。
[0230] 另外,在第一实施方式中,使用由第一及第二旋转位置传感器21、22检测出的第一及第二转子旋转角θR1、θR2,通过式(39)算出旋转磁场的控制中使用的磁场电气角度位置θMFR,但也可以通过日本特愿2007-280916号记载的方法来求出。具体来说,准备恒星齿轮与冕状齿轮的歯数比为和电枢磁极及磁铁磁极的另一方的数目相对于一方的数目的比相同的值的行星齿轮装置、和单一的旋转位置传感器,将恒星齿轮及冕状齿轮的一方与第一转子4并将载体与第二转子5分别连结,并且通过旋转位置传感器检测恒星齿轮及冕状齿轮的另一方相对于特定的U相绕组3c的旋转角度位置。这种情况下,在电枢磁极数大于磁铁磁极数时,将恒星齿轮与第一转子4连结。
[0231] 以上,当磁铁磁极数相对于电枢磁极数的比为γ时,由上述的旋转位置传感器检测的旋转角度位置表示(1+γ)θR2-γ·θR1。由此可知,不用通过两个传感器分别检测第一及第二转子4、5的旋转角度位置,而通过行星齿轮装置和单一的旋转位置传感器,就能够求出旋转磁场的控制中使用的磁场电气角度位置θMFR。
[0232] 再者,在第一实施方式中,分别将定子3及第一转子4配置在径向的外侧及内侧,但是也可以与之相反地,分别配置在径向的内侧及外侧。而且,将定子3、第一及第二转子4、5配置成沿径向排列,而作为所谓径向型来构成电动机1,但是也可以将定子3、第一及第二转子4、5配置成沿轴线方向排列,而作为所谓轴向型来构成电动机1。
[0233] 接下来,参照图16及图17,说明本发明的第二实施方式的电动机31。该图所示的电动机31与第一实施方式不同,构成作为线性电动机,适用于输送装置。此外,在图16中,关于与第一实施方式相同的构成要素,使用相同符号表示。以下,以与第一实施方式的不同点为中心进行说明。
[0234] 如图16及图17所示,电动机31具备:不动的箱体32、设置在箱体32内的第一定子33、在箱体32内与第一定子33相对向设置的第二定子34、设置在两定子33、34之间的可动件35。
[0235] 箱体32一体具有以前后方向(图16的进深方向、图17的上下方向)为长度方向的板状的底壁32a和从该底壁32a的两端部分别向上方延伸,且相互相对向的侧壁32b及32c。
[0236] 第一定子33是产生移动磁场的部件,如图17所示,具有铁心33a和设置在该铁心33a上的U相、V相及W相的绕组33c、33d、33e。铁心33a是层叠有多个钢板的长方体状的部件,在前后方向上,沿箱体32的整体延伸,并安装在箱体32的侧壁32b。而且,铁心33a的第二定子34侧的面上形成有多个槽33b,所述槽33b沿上下方向延伸,并且沿前后方向等间隔排列。上述的U相~W相的绕组33c~33e以分布绕组(波形绕组)卷绕于槽33b,并且与所述可变电源15连接。
[0237] 在以上的结构的第一定子33中,从可变电源15供给电力时,多个磁极沿前后方向等间隔地产生在铁心33a的第二定子34侧的端部(参照图18),并且所述磁极产生的移动磁场沿前后方向移动。以下,与第一实施方式相同地,将铁心33a产生的磁极称为“电枢磁极”。此外,在图18中,与图5相同地,在铁心33a或U相~W相的绕组33c~33e的上面,利用(N)及(S)标记电枢磁极。这种情况下,如该图所示,沿前后方向的规定的区间INT中的电枢磁极数为4。
[0238] 第二定子34具有由多个永久磁铁34a构成的磁极列。所述永久磁铁34a沿前后方向等间隔排列,该磁极列与第一定子33的铁心33a相对向。各永久磁铁34a形成为长方体状,其上下方向的长度设定为与铁心33a的上下方向的长度相同。而且,永久磁铁34a通过固定部34b安装在底壁32a的上表面的右端部(图16的右侧为“右”),并且安装在侧壁32c上。该固定部34b由软磁性体、例如铁构成。如此,由于在由铁构成的固定部34b安装永久磁铁34a,因此各永久磁铁34a中的第一定子33侧的端部出现(N)或(S)的一个磁极。
此外,在图17及图18中,与图3相同地,利用(N)及(S)标记永久磁铁34a的磁极(以下,与第一实施方式相同地称为“磁铁磁极”)。而且,如图18所示,沿前后方向相邻的各两个永久磁铁34a的极性相互不同,规定的区间INT中的永久磁铁34a的数目为8。
[0239] 可动件35具有由设置在第一及第二定子33、34上方的顶扳35a和设置在该顶扳35a上的六个铁心35b构成的软磁性体列。顶扳35a的前后方向及左右方向的尺寸比箱体
32小,并覆盖第一及第二定子33、34的一部分。
[0240] 各铁心35b是软磁性体、例如层叠了多个钢板的长方体状的部件,其上下方向的长度与铁心33a的上下方向的长度相同。而且,六个铁心35b通过在各自的上端部设置的连结部35c被顶扳35a连结,并沿前后方向等间隔排列。此外,由铁心35b构成的软磁性体列在第一定子33的铁心33a与第二定子34的磁极列之间分别隔开规定的间隔配置。而且,在各铁心35b的底部设置车轮35d。铁心35b隔着该车轮35d载置在底壁32a的上表面的轨道(未图示)上,由此,包含铁心35b的可动件35沿前后方向移动自如,并且在左右方向上不能移动。此外,在图17及图18中,为了简便,省略了连结部35c。
[0241] 此外,在本实施方式中,第二定子34相当于本发明中的第一结构体,并且永久磁铁34a相当于本发明中的磁极。而且,第一定子33相当于本发明中的第二结构体,并且铁心33a及U相~W相的绕组33c~33e相当于本发明中的电枢。此外,可动件35相当于本发明中的第三结构体,铁心35b相当于本发明中的软磁性体。
[0242] 另外,电动机31上设有光学式的位置传感器41(相对位置关系检测机构),该位置传感器41将表示可动件35的特定的铁心35b相对于第一定子33的特定的U相绕组33c的位置(以下称为“可动件位置”)的检测信号向ECU16输出。ECU16根据检测出的可动件位置,求出可动件35与第一及第二定子33、34的相对的位置关系,并且基于该位置关系,控制向U相~W相的绕组33c~33e的通电,由此,控制移动磁场。更具体来说,该控制如下所述进行。
[0243] 如图18所示,在规定的区间INT中,与第一实施方式相同地,电枢磁极为4个,磁铁磁极为8个,铁心35b为6个。即,电枢磁极数与磁铁磁极数与铁心35b数的比设定为1∶2∶(1+2)/2。在本实施方式中,永久磁铁34a构成为不能移动,根据所述式(39),移动磁场的矢量的电气角度位置(以下称为“磁场电气角度位置θMFM”)被控制成使θMFM=
3·θEM成立。该θEM是将可动件位置换算成电气角度位置的值(以下称为“可动件电气角度位置”),具体来说,是将检测出的可动件位置乘以电枢磁极的极对数,即乘以2的值。
此外,与第一实施方式相同地,该控制通过利用矢量控制来控制在U相~W相的绕组33c~
33e中流动的电流而进行。
[0244] 以上,移动磁场的电气角速度(以下称为“磁场电气角速度ωMFM”)被控制成使ωMFM=3·ωEM成立。该ωEM是可动件电气角度位置θEM的时间微分值,是将可动件35的移动速度换算成电气角速度的值(以下称为“可动件电气角速度”)。而且,将与向第一定子33供给的电力及磁场电气角速度ωMFM等价的推力作为驱动用等价推力FSE时,该驱动用等价推力FSE与向可动件35传递的推力(以下称为“可动件传递推力”)FM的关系根据所述式(41)由FSE=-FM/3表示。
[0245] 以上,根据本实施方式,与第一实施方式相同地,由于仅通过由六个铁心35b构成的单一的软磁性体列就能够使电动机31工作,因此能够实现电动机31的小型化及制造成本的削减。而且,通过设定规定的区间INT中的磁铁磁极的极对数相对于电枢磁极的极对数的比,而能够自由地设定磁场电气角速度ωMFM及可动件电气角速度ωEM的关系、以及驱动用等价推力FSE及可动件传递推力FM的关系,因此,能够提高电动机31的设计的自由度。
[0246] 再者,由于将磁场电气角度位置θMFM控制成使θMFM=3·θEM成立,因此能够确保电动机31的恰当的动作。而且,与第一实施方式相同地,由于使用永久磁铁34a的磁极,因此能够实现电动机31的进一步小型化和结构的简单化。
[0247] 此外,也可以将电动机31如下构成。即,通过与顶扳35a不同的顶扳连结第二定子34的多个永久磁铁34a来构成第二可动件,并且将该第二可动件设置成相对于箱体32沿前后方向移动自如。并且,与第一实施方式相同地,也可以从可动件35及第二可动件的至少一方输出动力。而且,也可以通过将第一定子33的铁心33a安装在顶扳上来构成第三可动件,并将该第三可动件构成为相对于箱体32沿前后方向移动自如。并且,如第一实施方式所述那样,也可以从可动件35或第二可动件、第三可动件输出动力。
[0248] 如上所述设置第二可动件时,除了可动件35的可动件位置之外,通过传感器等检测第二可动件的特定的永久磁铁34a相对于特定的U相绕组33c的位置,并且根据可动件位置和检测出的第二可动件的位置,基于式(39),算出磁场电气角度位置θMFM。然后,将算出的磁场电气角度位置θMFM使用于转动磁场的控制。
[0249] 另外,在第二实施方式中,检测特定的铁心35a相对于特定的U相绕组33c的位置作为可动件位置,但是只要表示可动件35相对于第一定子33的位置即可,也可以检测其它部位的位置。例如,也可以检测顶扳35a等的特定的部位相对于特定的V相绕组33d或特定的W相绕组33e、箱体32的特定的部位的位置作为可动件位置。这同样地适用于上述设置第二可动件或第三可动件的情况。
[0250] 此外,本发明并不局限于说明的实施方式,而能够通过各种方式来实施。例如,在实施方式中,通过单一的永久磁铁4a、34a的磁极构成一个磁极,但是也可以通过多个永久磁铁的磁极构成。例如,通过以使两个永久磁铁的磁极在定子3(第一定子33)侧接近的方式将所述两个永久磁铁排列成倒V字状来构成一个磁极,从而能够提高磁力线ML的指向性。而且,也可以取代实施方式中的永久磁铁4a、34a而使用电磁铁或能够产生移动磁场的电枢。此外,在实施方式中,以分布绕组将U相~W相的绕组3c~3e、33c~33e卷绕于槽3b、33b,但是并不局限于此,也可以采用集中绕组。而且,在实施方式中,通过U相~W相这三相绕组构成绕组3c~3e、33c~33e,但是只要能够产生移动磁场(旋转磁场)即可,其绕组的相数并未特别限定,可以任意。
[0251] 再者,作为槽3b、33b的数目,也可以采用实施方式所示以外的任意数目的情况不言自明。而且,在实施方式中,将槽3b、33b或永久磁铁4a、34a、铁心5b、35b等间隔配置,但是也可以不等间隔配置。此外,在实施方式中,电枢磁极为4个,磁铁磁极为8个,铁心5a、35b为6个,但是只要所述数目的比满足1∶m∶(1+m)/2(m≠1.0)即可,作为电枢磁极、磁铁磁极及铁心5a、35b的数目可以采用任意数目。而且,在实施方式中,第一旋转位置传感器21或第二旋转位置传感器22、位置传感器41是电磁感应式的部件,但也可以是光学式的部件。此外,在实施方式中,作为本发明中的控制机构,使用了ECU16,但是也可以使用将微型计算机和电气回路组合在一起的部件。此外,在本发明的主要内容的范围内,能够适当变更细微部分的结构。
[0252] 工业实用性
[0253] 本发明的电动机能够实现小型化及制造成本的削减,并且在提高设计的自由度方面极为有用。