一种二氢黄酮醇木脂素用于制备糖苷酶抑制剂的药物用途转让专利

申请号 : CN201010521830.0

文献号 : CN102000064B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 莽朝勇来亦刚罗廷顺刘卫红巫秀美赵昱董心齐

申请人 : 大理学院

摘要 :

本发明涉及一种二氢黄酮醇木脂素用于制备糖苷酶抑制剂的药物用途,具体而言,本发明涉及一个B环二氧六环的二氢黄酮醇木脂素或其可药用盐在制备抑制α-葡萄糖苷酶、防治II型糖尿病的药物中的应用,该黄酮木脂素具有极其显著的抑制α-葡萄糖苷酶的活性,其在40微克/毫升浓度时对α-葡萄糖苷酶的抑制活性强度已达到93%,通过测定其半数抑制浓度显示:该黄酮木脂素抑制α-葡萄糖苷酶的强度是阳性对照药物阿卡波糖的12倍。药效学结果表明该黄酮木脂素或其可药用盐可预期作为糖苷酶抑制剂药物尤其是防治II型糖尿病药物之用途。

权利要求 :

1.具有式(1)所示结构之B环二氧六环的二氢黄酮醇木脂素或其可药用盐用于制备防治II型糖尿病的药物的用途;

式(1)

其中,式(1)化合物的名称为:(±)-2-[2,3-二氢-3-(3-苄氧基-4-羟基苯基)-2-羟甲基-1,4苯并二氧六环-5]-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮。

2.具有式(1)所示结构之B环二氧六环的二氢黄酮醇木脂素或其可药用盐在制备抑制α-葡萄糖苷酶的降糖药物中的应用;

式(1)

其中,式(1)化合物的名称为:(±)-2-[2,3-二氢-3-(3-苄氧基-4-羟基苯基)-2-羟甲基-1,4苯并二氧六环-5]-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮。

说明书 :

一种二氢黄酮醇木脂素用于制备糖苷酶抑制剂的药物用途

技术领域

[0001] 本发明涉及医药技术领域,具体而言,本发明涉及一种B环二氧六环的二氢黄酮醇木脂素或其可药用盐用于制备抑制α-葡萄糖苷酶、防治II型糖尿病也即非胰岛素依赖型糖尿病药物中的用途,该黄酮木脂素具有极其显著的抑制α-葡萄糖苷酶的活性,其在40微克/毫升浓度时对α-葡萄糖苷酶的抑制活性强度已达到93%,通过测定其半数抑制浓度显示:该黄酮木脂素抑制α-葡萄糖苷酶的强度是阳性对照药物阿卡波糖的12倍,因此该化合物或其可药用的盐,以及与制剂允许的药物赋形剂或载体制备成的药物组合物可预期作为糖苷酶抑制剂药物尤其是防治II型糖尿病也即非胰岛素依赖型糖尿病药物之用途。

背景技术

[0002] 随着科技进步和生活水平的提高,在全球范围内,糖尿病的发病率正在提高。据统计,糖尿病发生在约3%的人身上,全世界患者总人数已超过一亿两千万,造成国民经济的重大损失。
[0003] 糖尿病是临床常见的内分泌代谢性疾病。西医认为糖尿病病人可分为两种:即I型糖尿病(或称胰岛素依赖型,IDDM)和II型糖尿病(或称非胰岛素依赖型,NIDDM),其中II型糖尿病更广,危害更大。我国糖尿病患者有2000万以上,其中近90%为II型糖尿病。随着生活方式、饮食习惯的改变,以及科技和医疗水平的发展,检测早期糖尿病水平不断提高等因素,世界各国预期寿命和糖尿病发病率都在不断提高。该病在我国更是出现了多发性、年轻化的特点,给国民经济和生产力发展造成了非常大的损失。
[0004] 目前治疗II型糖尿病的口服药物有磺酰脲类、双胍类、α-糖苷酶抑制剂类和胰岛素增敏剂类四大种类,但各具优缺点。α-糖苷酶抑制剂是上世纪70年代开始兴起的新的治疗NIDDM之研发理念。此为治疗磺胺类药物继发无效之II型糖尿病的补充治疗手段。文献报道,使用竞争性α-糖苷酶抑制剂,可以推迟淀粉、蔗糖等糖类化合物在消化道内的转化和吸收,减轻肾脏负担;抑制饭后血糖急剧上升,使血糖浓度在一天内变化波动幅度减小。此乃有效抑制糖尿病患者前期的葡萄糖调节受损尤其是葡萄糖耐量受损(IGT)阶段,许多尚未发病的糖尿病潜在患者仍处于此阶段当中。德国拜耳公司研制的α-葡糖苷酶抑制剂阿卡波糖(acarbose)于1990年在德国上市,现已成为多个国家,包括我国,治疗II型糖尿病的一线用药,其商品名为拜糖平。亚太地区II型糖尿病政策研究组2005年给出治疗指南,将α-葡糖苷酶(α-glucosidase)抑制剂作为降低餐后血糖的首选用药。各国针对新的α-葡糖苷酶抑制剂暨降糖药物展开激烈竞争。日本开发的α-糖苷酶抑制剂voglibose(伏格列波糖)也已于1994年上市。然而其居高的价格必将受到新型低廉创新性同类药物的竞争。正在临床试验的α-糖苷酶抑制剂还有miglitol(米格列醇)、emigliate等。值得注意的是:越来越多的已上市α-糖苷酶抑制剂之不良反应也对更新换代的新型抑制剂提出要求。胃肠道副作用、红斑、皮疹和荨麻疹等皮肤过敏反应,黄疸、GOT、GPT上升等的严重肝功能障碍,心脏系统风险等都是该类已上市药物的治疗盲区[参见:李中芬,《药物不良反应杂志》2001年第4期;杨晓辉等,《中国药物警戒》2009年1期;等文献报道]。因而,积极发展更为强效、安全的新型非生物碱类α-葡糖苷酶抑制剂有着紧迫性和必要性。
[0005] 基于此目的,发明人曾完成多项开发新型α-糖苷酶抑制剂类天然产物及其结构改造衍生物的研究,并发现多种抑制α-葡萄糖苷酶活性的化合物,从而说明从天然产物及其合成衍生物中筛选出强效抑制α-糖苷酶抑制剂的创新性降糖药物是可行的[参见:“阿江榄仁酸在制备糖苷酶抑制剂药物中的应用”,张荣平、窦辉、赵昱、巫秀美等,CN101416970;“桦木酸在制备糖苷酶抑制剂药物中的应用”,郑汉其、窦辉、张荣平、赵昱、巫秀美等,CN 101416971;“A环多氧化取代的五环三萜类衍生物及其制备方法和用途”,赵昱、冯菊红、巫秀美、白骅、约阿施·史托克希特,CN 101117349;“A环和C环多氧化取代的五环三萜及其制备方法和用途”,赵昱、陈海永、郑汉其、巫秀美、白骅、约阿施·史托克希特,CN
101117348]。毋庸置疑,继续从天然产物及其结构改造衍生物中寻找能够抑制α-葡糖苷酶的先导化合物是非常必要和紧迫的。
[0006] 此外,在发明人长期积累的保肝类新药开发课题中,涉及到了临床上大量使用的一种天然药物:即存在于菊科植物水飞蓟的种子中的水飞蓟素。水飞蓟已在临床上广泛TM TM应用,在市场上其商品名为Legalon 利肝隆或Flavobion ,其代表性化合物当属黄酮木脂素水飞蓟宾。黄酮木质素化合物属于杂木质素类,是由一分子苯丙素和一分子黄酮结合而成的一类天然产物。水飞蓟中水飞蓟宾含量最多,活性也最高。该药作用主要有以下几点:(一)抗自由基活性:水飞蓟素对于由四氯化碳、半乳糖胺、醇类和其他肝毒素造成的肝损害具有保护作用。1990年Lotteron等人报道了在小鼠肝微粒体内,水飞蓟素能减少由四氯化碳代谢引起的体外脂质过氧化及由还原型辅酶单独引起的过氧化作用,这些都表明水飞蓟素为链中断抗氧化剂或为自由基清除剂。(二)保护肝细胞膜:通过抗脂质过氧化反应维持细胞膜的流动性,保护肝细胞膜。还能阻断真菌毒素鬼笔毒环肽和α-鹅膏蕈碱等与肝细胞上特异受体的结合,抑制其对肝细胞的攻击及跨膜转运,中断其肝肠循环,从而增强肝细胞膜对于多种损害因素的抵抗力。(三)促进肝细胞的修复和再生:水飞蓟宾进入细胞后可以与雌二醇受体结合,并使之激活,活化的受体可以增强肝细胞核内RNA聚合酶1的活性,使RNA转录增强,促进酶及蛋白质的合成,并间接促进DNA的合成,有利于肝细胞的修复和再生。(四)抗肿瘤作用:各种活性氧能氧化鸟嘌呤形成8-羟基鸟嘌呤,造成DNA损伤,进而引起肿瘤,水飞蓟宾作为一个有效的抗自由基物质也显示了预防和治疗肿瘤的作用。三十多年的临床实验证明该药具有确切的疗效和低毒性(参阅Flora K.等,Am.J.Gastroenterol.,1998,93,139-143;Saller R.等,Drugs,2001,61(14),
2035-2063; R.等,Curr.Med.Chem.,2007,14,315-338; Z.等,Phytother.Res.,2003,17,524-530; R. 等,Bioorg.Med.Chem.,2004,12,5677-5687;Varga Z.等,Phytothe.Res.,2001,15,608-612;Singh R.P.等,Curr.Cancer Drug Tar.,2004,4,
1-11)。因此,以水飞蓟宾为代表的黄酮木质素类化合物引起了越来越多的关注,如发明人于2006-2009年间制备并报道的多个系列水飞蓟宾类衍生物也具有显著的抗氧化活性(杨雷香、赵昱等,“Design,synthesis and examination of neuronprotective properties of alkenylated and amidated dehydro-silybinderivatives”,J.of Medicmal Chemistry,2009,52(23),7732-7752;汪峰、赵昱等,“Preparation of C-23 esterified silybin derivatives andevaluation of their lipid peroxidation inhibitory and DNA protectiveproperties”,Bioorganic and Medicinal Chemistry,2009,17(17),
6380-6389;杨雷香、赵昱等,“Synthesis and antioxidant propertiesevaluation of novel silybin analogues”,J.of Enzyme Inhibition andMedicmal Chemistry,2006,
21(4),399-404;等等)。在发明人报道的上述文章中,经发明人设计并合成出的多个系列之A环、B环、E环、和23位取代的黄酮木脂素类化合物都显示出强效捕获DPPH自由基和超氧阴离子自由基的活性、抗氧化活性、以及保护PC12细胞的活性。但是显而易见:上述研究仅集中于研究水飞蓟宾类黄酮木脂素的抗氧化作用和细胞保护作用。
[0007] 以水飞蓟宾及脱氢水飞蓟宾为代表的黄酮木脂素化合物虽然具有以上所述之抗氧化疗效,然而未见其用于抑制糖苷酶、治疗糖尿病方面的报道。黄酮木脂素类化合物治疗II型糖尿病,尤其是其用于抑制α-葡萄糖苷酶的新用途尚未得到有效开发,故此从黄酮木脂素中寻找抑制α-葡萄糖苷酶的活性化合物,也即将黄酮木脂素结构改造使其具有治疗II型糖尿病功效是一个崭新的领域。从其中发现高效抑制α-葡萄糖苷酶的先导化合物更是前人所未尝试过的挑战。为了探索这个领域,我们设计并制备了与水飞蓟宾结构有所差异的一种新的角型黄酮木脂素衍生物,也即在B环2,3位偶合成二氧六环,形成C环/B环/D环呈翻转角式环系空间结构,而水飞蓟宾因B环上为3,4位偶合成二氧六环方式,故其C环/B环/D环呈线性伸展环系空间结构。如此设计可以生成新型空间结构完全不同于水飞蓟宾的一类新型木质素二氢黄酮醇类化合物(也是一类新型黄酮木脂素化合物),以期发现能抑制α-葡萄糖苷酶的黄酮木脂素先导化合物,从而将其进一步开发成具有能抑制α-葡萄糖苷酶治疗NIDDM的创新性药物。据此完成本发明。

发明内容

[0008] 本发明的目的是提供式(1)所示结构的B环二氧六环的二氢黄酮醇木脂素或其可药用盐用于制备抑制α-葡萄糖苷酶、治疗NIDDM疾病药物之用途;
[0009]
[0010] 其中,式(1)化合物的名称为:(±)-2-[2,3-二氢-3-(3-苄氧基-4-羟基苯基)-2-羟甲基-1,4苯并二氧六环-5]-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮。
[0011] 本发明还提供了一种制备式(1)所示的B环二氧六环的二氢黄酮醇木脂素化合物的方法,其特征是:(±)-2-(2,3-二羟基苯基)-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮在银盐催化下,与3-苄氧基-4-羟基肉桂醇进行偶合反应而得;
[0012]
[0013] 其中银盐是指碳酸银、氧化银或硝酸银,本发明中实施例采用了碳酸银;无水试剂是指无水苯、无水丙酮、无水四氢呋喃等无水非质子溶剂或它们的一定比例的混合物,本发明中实施例采用了无水苯和无水丙酮的混合溶剂。
[0014] 本发明的另一个目的是提供了一种用于抑制α-葡萄糖苷酶、治疗NIDDM疾病的药物组合物,其特征为由含有治疗有效量的作为活性成分的式(1)化合物或者它的可药用盐和可药用辅料组成的混合物。其药物剂型可以是片剂、胶囊剂、注射剂、气雾剂、栓剂、膜剂、滴丸剂、贴片剂、皮下植埋剂、外用搽剂、口服液或软膏剂,还可以采用现代制药界所公知的控释或缓释剂型或纳米制剂。
[0015] 附图说明了本发明设计理念中角型黄酮木脂素与水飞蓟宾类线性伸展黄酮木脂素结构上的区别,即水飞蓟宾的C/B/D环系呈线性伸展方向,而化合物(1)的C/B/D环系呈角型伸展方向。
[0016] 发明人设计的B环二氧六环的二氢黄酮醇木脂素(1)与天然黄酮木脂素类化合物水飞蓟宾相比较,具有诸多结构和物化性质上差异化的特征,包括其疏水性、芳香性、吉布斯自由能、氢键受体、电性、分子间范德华力、以及3D构象、伸展方向、分子重心、电性分布中心等特质均与水飞蓟宾有着明显不同;且化合物(1)分子量比水飞蓟宾增大了76个质量单位。上述特征都决定了式(1)所示化合物之三维构象与α-葡萄糖苷酶之3D空间结构相结合之配体-受体结合复合物形态和结合方式都可能产生较大的差别,其结合位点和结合模式、其结合自由能等均会产生较大的改变,因而可能在抑制α-葡萄糖苷酶方面有着意想不到的效果。
[0017] 我们测试了该化合物对α-葡萄糖苷酶的生长抑制作用,试验结果发现:该黄酮木脂素具有极其显著的抑制α-葡萄糖苷酶的活性,其在40微克/毫升浓度时对α-葡萄糖苷酶的抑制活性强度已达到93%,通过测定其半数抑制浓度显示:该黄酮木脂素抑制α-葡萄糖苷酶的强度是阳性对照药物阿卡波糖的12倍,以上药效学结果说明式(1)化合物有着意想不到的抑制α-葡萄糖苷酶效果,从而可以预期该黄酮木脂素或其可药用盐可预期作为糖苷酶抑制剂药物尤其是防治II型糖尿病也即非胰岛素依赖型糖尿病药物之用途。综上所述,我们制备的该黄酮木脂素既有结构上的独特性,又有抑制糖苷酶作用方面研究的新颖性,并在降糖活性测试中发现了不寻常的抑制α-葡萄糖苷酶的活性,有望成为抑制α-葡萄糖苷酶及治疗NIDDM之先导化合物。到目前为止,尚无有关该化合物治疗NIDDM疾病和制备抑制α-葡萄糖苷酶药物的相关报道。黄酮木脂素式(1)化合物对于α-葡萄糖苷酶强效抑制均属于意想不到的发现,有着确切的原创性。
[0018] 本发明有益之处在于:首次发现式(1)所示之B环二氧六环的二氢黄酮醇木脂素具有极其强效抑制α-葡萄糖苷酶的功效、并在防治NIDDM疾病方面具有成药潜力,为开发成为治疗NIDDM疾病创新药物、开发抑制α-葡萄糖苷酶之创新型降糖药物提供了新的物质基础。具有潜在巨大的社会效益和经济效益。本发明再一特点为:本发明之合成起始物来源方便,其制备方法简单易行、成本低、污染小,利于节能减排条件下的大规模生产。产业化前景十分明确。

具体实施方式

[0019] 本发明人通过多步简单合成,并通过层析手段得到该能有效抑制α-葡萄糖苷酶活性的一个黄酮木脂素类活性化合物,又经质谱和核磁共振波谱等综合解析推导出其化学结构。本发明人发现,式(1)化合物对α-葡萄糖苷酶具有显著的抑制作用。因此,根据本发明人的研究,发明人所设计并合成的式(1)所示之B环二氧六环的二氢黄酮醇木脂素化合物可以用于制备抑制α-葡萄糖苷酶、防治NIDDM疾病的药物和用于治疗II型糖尿病。
[0020] 为了更好地理解本发明的实质,下面分别用式(1)化合物的制备及其对α-葡萄糖苷酶之抑制作用试验的结果,说明其在制药领域中的新用途。实施例给出了式(1)化合物的部分合成、结构鉴定、和活性数据。其中,OBn是指苄氧基,OM是指甲氧基,OMOM是指甲氧甲氧基,OEt是指乙氧基。必须说明,本发明的实施例是用于说明本发明而不是对本发明的限制。根据本发明的实质对本发明进行的简单改进都属于本发明要求保护的范围。
[0021] 实施例1:式(1)化合物(±)-2-[2,3-二氢-3-(3-苄氧基-4-羟基苯基)-2-羟甲基-1,4苯并二氧六环-5]-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮的制备[0022] 仪器与试剂:
[0023] 紫外光谱用Shimadzu UV-240紫外分光光度计测定;核磁共振氢谱1H-NMR由INOVA型超导核磁共振波谱仪(VARIAN INOVA-400MHz)测定(四甲基硅醚TMS为内标);电喷雾质谱ESI-MS由BrukerEsquire 3000+质谱仪测定,柱层析用硅胶(100-200,200-300和300-400目)以及薄层层析用硅胶GF254(10-40目)均由青岛海洋化工厂生产;所用试剂均为分析纯;薄层制备层析(PTLC)用Merck公司的铝箔硅胶板;柱色谱用葡聚糖凝胶Sephadex LH-20采用瑞典Amersham Pharmacia Biotech AB公司产品;反相硅胶RP-18采用日本Fuji Silysia Chemical公司的Chromatorex产品;MCI为日本三菱化工公司产品,薄板(TLC)检测用254和365nm的紫外灯;显色剂用碘蒸气、10%硫酸-乙醇以及磷钼酸溶液。
[0024] 1.1起始物A的制备:
[0025]
[0026] 2,3-二羟基苯甲醛4.8克溶于30毫升丙酮,搅拌10分钟后加入碳酸钾17.5克,再滴加氯甲醚6毫升,加热回流1小时,过滤,滤液浓缩得到黄色油状物7.0克,直接用于下一步反应。
[0027] 1.2起始物B的制备:
[0028]
[0029] 将2.6克的氢化钠的40毫升DMF溶液冰水浴冷却,于氮气保护状态下滴加5.6克2,4,6-三羟基苯乙酮的60毫升苯和7.0毫升DMF的混合溶液,冰浴冷却下滴加9.0毫升氯甲醚溶液,室温下搅拌24小时。倾入100毫升10%氢氧化钠水溶液中,乙醚提取3次,每次
50毫升,饱和碳酸氢钠洗涤,无水硫酸钠干燥,过滤,浓缩,40克200-300目硅胶柱层析,石油醚/醋酸乙酯4∶1洗脱,得到7.0克起始物B(2,4,6-三甲氧甲氧基苯乙酮)。黄色油状物;Rf(石油醚/醋酸乙酯=3∶1):0.30;核磁共振氢谱(400MHz,氘代氯仿):δ2.52(单峰,3H,CH3),3.50(单峰,9H,OCH3),5.17(单峰,6H,OCH2O),6.52(单峰,2H,H-3,5)。
[0030] 1.3中间体查耳酮的制备:
[0031]
[0032] 2.8克氢氧化钾溶入30毫升甲醇中,搅拌状态下滴加1.4克起始物A和1.3克起始物B的混合甲醇溶液10毫升,室温下搅拌8小时,减压蒸除溶剂,向残留物中加入20毫升水,醋酸乙酯提取(3次,每次20毫升),合并有机层,减压蒸除溶剂后,残余物经30克200-300目硅胶柱层析,石油醚/醋酸乙酯3∶1洗脱,得到1.76克中间体查耳酮。黄色油状物;Rf(石油醚/醋酸乙酯=2∶1):0.38;UV:(甲醇)λmax:209,300nm。用于下一步反应。
[0033] 1.4中间体环氧查耳酮的制备:
[0034]
[0035] 1.4克中间体查耳酮溶于25毫升甲醇中,加入1.6毫升2N氢氧化钾水溶液,再加入1.6毫升30%双氧水溶液,室温搅拌2小时。加入25毫升水,减压浓缩,用醋酸乙酯提取(3次,每次20毫升),合并有机层,无水硫酸钠干燥,过滤,减压蒸除溶剂后,残余物经20克200-300目硅胶柱层析,石油醚/醋酸乙酯3∶1洗脱,得到1.1克中间体环氧查耳酮。黄色油状物;Rf(石油醚/醋酸乙酯=2∶1):0.33;UV:(甲醇)λmax:210,285nm。用于下一步反应。
[0036] 1.5重要中间体(±)-2-(2,3-二羟基苯基)-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮的制备:
[0037]
[0038] 1.0克中间体环氧查耳酮溶解于15毫升甲醇中,搅拌状态下加至溶解有1.5毫升浓盐酸的10毫升甲醇溶液中,升温60℃反应半小时,撤去加热,冷却后减压蒸除溶剂,向残余物中加入50毫升水,用醋酸乙酯提取(3次,每次20毫升),合并有机层,饱和食盐水洗2次,无水硫酸钠干燥,过滤,减压蒸除溶剂后,残余物经20克200-300目硅胶柱层析,石油醚/醋酸乙酯3∶1洗脱,得到97毫克(±)-2-(2,3-二羟基苯基)2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃4-酮。黄色油状物:Rf(氯仿/甲醇=3∶1):0.23;电喷雾质谱ESI-MS +m/z:303[M-H]。
[0039] 1.6化合物(1)的制备
[0040]
[0041] 向干燥的反应瓶中投入碳酸银0.22克,加入20毫升无水苯和5毫升无水丙酮,室温下滴加90毫克(±)-2-(2,3-二羟基苯基)2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮的无水苯溶液5毫升和180毫克3-苄氧基-4-羟基肉桂醇的无水丙酮溶液3毫升,在55℃时保温反应12小时。冷至室温后静置,滤去不溶物,母液减压浓缩,得黄色油状物,经20克200-300目硅胶反复柱层析,氯仿/甲醇10∶1洗脱,经凝胶柱层析纯化,最终得到36毫克化合物1。Rf(氯仿/甲醇/醋酸乙酯/丙酮/乙酸=11∶0.5∶1∶1∶0.1):0.29;
1
核磁共振氢谱 H NMR(400MHz,氘代丙酮)δ:3.92(多重峰,1H,H-23a),4.18(多重峰,1H,H-23b),4.90(双峰,J=8.0Hz,1H,H-11),5.01(双峰,J=11.2Hz,1H,H-3),5.22(单峰,
2H,苄基CH2),5.50(多重峰,1H,H-12),5.61(双峰,J=11.2Hz,1H,H-2),5.84(双峰,J=
1.2Hz,1H,H-6),5.90(双峰,J=1.2Hz,1H,H-8),6.76~6.99(多重峰,3H,H-15,18,22),
7.02(双峰,J=8.0Hz,1H,H-16),7.10(双峰,J=8.0Hz,1H,H-14),7.36~7.50(多重峰,5H,OBn之Ar-H),10.13(宽单峰,1H,OH-20),10.57(宽单峰,1H,OH-7),12.28(单峰,+
1H,5-OH);电喷雾质谱ESI-MS m/z:557[M-H]。
[0042] 实施例2:化合物(1)即(±)-2-[2,3-二氢-3-(3-苄氧基-4-羟基苯基)-2-羟甲基-1,4苯并二氧六环-5]-2,3-二氢-3,5,7-三羟基-4H-1-苯并吡喃-4-酮对α-葡萄糖苷酶的抑制活性检测
[0043] 2.1仪器与试剂
[0044] 2.1.1实验仪器
[0045] 酶标仪:ELISA plate reader(Bio-Tek Instruments,USA)
[0046] 2.1.2试剂
[0047] α-葡萄糖苷酶(α-D-glucosidase,Sigma,500U/毫升);4-硝基酚-α-D-吡喃葡萄糖苷(PNPG,Merck),还原性谷胱甘肽(上海生工),阿卡波糖即拜糖平(拜耳医药保健有限公司,北京)。
[0048] 2.2测试方法
[0049] 化合物对α-葡萄糖苷酶的抑制作用测定采用比色法。样品孔中加入磷酸缓冲液(67毫摩尔/升,pH 6.8,170微升),还原型谷光甘肽(1毫克/毫升,5微升),α-D-glucosidase(用磷酸缓冲液稀释成0.2U/毫升,25微升),化合物(1)用二甲亚砜溶解,用磷酸缓冲液稀释,每孔25微升,使其终浓度为0.04毫克/毫升,0.004毫克/毫升,0.0004毫克/毫升,最后加入底物4-硝基酚-α-D-吡喃葡萄糖苷(23.2毫摩尔/升,25微升),37℃,水浴反应15分钟后,加入碳酸钠(1摩尔/升,50微升)终止反应,在405nm波长处比色测定。空白孔中用相同体积的Tris-HCl缓冲液代替底物。溶剂对照孔中加入与化合物等浓度的二甲亚砜。化合物抑制率由样品OD值对于空白和对照OD值计算。样品对α-葡萄糖苷酶的半数抑制浓度(IC50)由剂量效应曲线得到。
[0050] 2.3试验结果如下表1所示
[0051] 表1
[0052]
[0053] 2.4实验结论
[0054] α-葡萄糖苷酶是α-糖苷酶抑制剂药物筛选中的的指标性测试酶,许多药物是基于对α-葡萄糖苷酶竞争性抑制作用而成为降糖药物的。本实验表明式(1)所示结构之B环二氧六环的二氢黄酮醇木脂素具有强效抑制α-葡萄糖苷酶的作用,其在40微克/毫升浓度时对α-葡萄糖苷酶的抑制活性强度已达到93%。通过测定其半数抑制浓度显示:该黄酮木脂素抑制α-葡萄糖苷酶的强度是阳性对照药物阿卡波糖的12倍,因而具有非常强效的开发潜力,有可能进一步发展成为新的治疗II型糖尿病用药。
[0055] 在上述说明书阐述本发明时,同时提供了实施例的目的是举例说明本发明的实际操作过程和本发明的意义。在进入本发明权利要求和其等同物范围内时,本发明的实际应用包括所有一般变化、配合,或改进。