用于低温分离空气的方法和设备转让专利

申请号 : CN201010294031.4

文献号 : CN102022894B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : A·阿列克谢耶夫

申请人 : 林德股份公司

摘要 :

用于低温分离空气的方法和设备。主空气流被压缩到第一压力并被净化。第一空气流被再压缩到第二压力。分支出节流流和透平流。节流流被冷却并液化或伪液化并被供应给膨胀装置。经膨胀的节流流导入到蒸馏塔系统中。透平流被冷却并且在主换热器的中间温度下导入到膨胀机中并作功膨胀。将作功膨胀的透平流至少部分地导入到所述蒸馏塔系统中。液态产品流被取出、液态提升到增高的压力并且在该压力下蒸发或伪蒸发并作为气态产品流取走。透平流被这样冷却,使得当该透平流的压力处于亚临界时达到露点温度或更低。液化或伪液化的透平流膨胀到处于第一和第二压力之间的中间压力。膨胀到中间压力的透平流在引导至膨胀机之前在主换热器中加热到中间温度。

权利要求 :

1.一种用于借助蒸馏塔系统(50)低温分离空气的方法,该蒸馏塔系统具有至少一个分离塔(14,15),其中,-主空气流(1,5)在空气压缩机(2)中被压缩到第一压力并且接着在净化装置(4)中被净化,-由所述被净化的主空气流(5)的至少一部分构成的第一空气流(6)在再压缩机(7)中再压缩到第二压力,该第二压力高于所述第一压力,-从所述被再压缩的第一空气流(10)中分支出节流流(11)和透平流(18,70,21),-所述节流流(11)在主换热器中被冷却并且液化或伪液化并且被供应给膨胀装置(12),-将经膨胀的节流流(13)导入到所述蒸馏塔系统(50)中,

-所述透平流(70)在所述主换热器中被冷却并且在该主换热器(9)的中间温度下被导入到一膨胀机(19)中并且在那里作功地膨胀,-将所述作功地膨胀的透平流(21)至少部分地导入到所述蒸馏塔系统(50)中,-液态的产品流(47;55;105)被从所述蒸馏塔系统(50)中取出、在液态下提升到增高的压力(48;56;106)并且在该增高的压力下通过与所述节流流的间接热交换蒸发或伪蒸发并且最后作为气态的产品流(51;59;108)被取走,其特征在于:

-所述透平流在所述主换热器(9)中这样程度地冷却,使得当该透平流的压力处于亚临界时达到露点温度或一更低温度或者当该透平流的压力处于超临界时所述透平流伪液化,-所述至少冷却到露点温度或伪液化的透平流(17)在一节流阀(18)中膨胀到一中间压力,该中间压力低于所述第二压力,并且-将所述膨胀到所述中间压力的透平流在所述透平流(70)引导至所述膨胀机(19)之前在所述主换热器(9)中加热到所述中间温度。

2.如权利要求1所述的方法,其特征在于:所述再压缩机(7)被以外部能量驱动并且不仅所述节流流(11)而且所述透平流(17)当在主换热器(9)中冷却时处于所述第二压力下,其中,所述中间压力在所述第一压力与第二压力之间。

3.如权利要求1所述的方法,其特征在于:所述再压缩机(7)由一以该方法的过程流工作的膨胀机(19)驱动,由所述以所述透平流(70)工作的膨胀机(19)驱动,其中,空气压缩机是唯一被以外部能量驱动的、用于压缩空气的机器。

4.如权利要求1至3中任一项所述的方法,其特征在于:所述透平流(17)当在所述主换热器(9)中冷却时处于所述第二压力下并且所述节流流(11)当在所述主换热器(9)中冷却时处于一第三压力下,该第三压力等于所述第二压力或高于所述第二压力。

5.如权利要求1至3中任一项所述的方法,其特征在于:所述中间压力比所述第二压力低1.5至5bar。

6.如权利要求1至3中任一项所述的方法,其特征在于:所述蒸馏塔系统(50)具有高压塔(14)和低压塔(15),它们经由一塔顶冷凝器(16)形成热交换关系。

7.如权利要求6所述的方法,其特征在于:从所述低压塔(15)或所述塔顶冷凝器(16)中取出一液态的氧流(47)并且将其作为液态的产品流使用。

8.如权利要求7所述的方法,其特征在于:从所述高压塔(14)或所述塔顶冷凝器(16)中取出一液态的氮流(55)并且将其作为液态的产品流使用。

9.如权利要求1至3中任一项所述的方法,其特征在于:从所述蒸馏塔系统(50)中取出一液态的氩流(105)并且将其作为液态的产品流使用。

10.如权利要求1至3中任一项所述的方法,其特征在于:所述经净化的主空气流(5)的另一部分构成第二空气流(27)并且该第二空气流(27)在所述第一压力下在所述主换热器(9)中被冷却并且被引导至所述蒸馏塔系统(50)。

11.一种用于借助蒸馏塔系统(50)低温分离空气的设备,该蒸馏塔系统具有至少一个分离塔(14,15),该设备具有:-用于将主空气流(1)压缩到第一压力的空气压缩机(2),

-用于净化所述被压缩到第一压力的主空气流(1)的净化装置(4),

-用于将由所述经净化的主空气流(5)的至少一部分构成的第一空气流(6)压缩到第二压力的再压缩机(7),所述第二压力高于所述第一压力,-用于从被冷却的、被再压缩的第一空气流(10)中分支出节流流(11)和透平流(18,

70,21)的装置,

-用于冷却所述节流流(11)和所述透平流(18,70,21)的主换热器(9),-用于使所述节流流(11)在所述主换热器中液化或伪液化的装置,-用于使所述经液化或伪液化的节流流(11)膨胀的膨胀装置(12),-用于将经膨胀的节流流(13)导入到所述蒸馏塔系统(50)中的装置,-用于将所述透平流(70)在所述主换热器(9)的中间温度下导入到一用于使该透平流(70)作功地膨胀的膨胀机(19)中的装置,-用于将所述作功地膨胀的透平流(21)导入到所述蒸馏塔系统(50)中的装置,-用于从所述蒸馏塔系统(50)中取出一液态的产品流(47;55;105)、用于将该液态的产品流的压力在液态下提高到一增高的压力(48;56;106)和用于使其在该增高的压力下通过与所述节流流间接的热交换(9)而蒸发或伪蒸发的装置和用于将所述蒸发或伪蒸发的产品流作为气态的产品流(51;59;108)取走的装置,其特征在于:

所述设备还具有:

-用于将所述透平流在一部位上从所述主换热器(9)中取走的装置,在所述部位上,在该设备工作时当所述透平流的压力处于亚临界时大致达到所述透平流的露点温度或一更低温度或者当所述透平流的压力处于超临界时所述透平流伪液化,-用于将所述从所述主换热器(9)中取走的透平流(17)在一节流阀(18)中膨胀到一中间压力的装置,该中间压力低于所述第二压力,并且-用于将所述膨胀到所述中间压力的透平流在所述主换热器(9)中加热到中间温度的装置,其中,所述装置设置在所述膨胀机(19)的上游。

说明书 :

用于低温分离空气的方法和设备

技术领域

[0001] 本发明涉及一种如权利要求1的前序部分所述的方法。

背景技术

[0002] 这些将液态地提升压力的产品流逆着载热体蒸发并且最后作为气态压力产品获取的工艺也被称为内压缩方法。其特别是用于获取压力氧,但也可以用于获取压力氮或压力氩。在主换热器中对于超临界压力的情况并不在真正意义上进行相转移,因此产品流“伪蒸发”。
[0003] 在主换热器中,处于高压下的载热体、即空气的在此称为“节流流”的部分流逆着(伪)蒸发的产品流液化(或当其处于超临界压力时伪液化)。
[0004] 在此通常的是,所述节流流和透平流共同地在再压缩机或在主空气压缩机中被提升到比对于蒸馏所需的压力高的压力。该压力必须对于所述液态地提升压力的产品流的蒸发或伪蒸发足够高并且例如为20或60bar。所述透平流于是自然也被从该压力(“第二压力”)膨胀到大致高压塔的工作压力;替代地,节流流被再压缩到更高的压力(“第三压力”)。
[0005] 原来所述透平流用于产生冷。但是所述透平流在具有内压缩装置的设备中具有第二功能:其辅助节流流、即被内压缩的流(氮、氧和/或氩)蒸发(或伪蒸发)。透平流越高并且该流在主换热器中冷却的温度越低(入口与出口之间的温度差越大),则该流对于所述经内压缩的产品流的(伪)蒸发提供的热越多并且节流流的量越少。换热器中的平均温度差在此更小,温度曲线更有利,设备效率更高。也就是说,将透平流在换热器中尽可能地冷却总是有利的。通常这导致所述流不是气态地从透平出口排出,而是甚至部分地液化。
[0006] 但是,透平入口处温度的降低不能无限制的进行,而是在通常所使用的机器的情况下液体份额最大为大致6%至最多10%(设计标准)。更高的液体份额可导致透平损坏。通过该限制,在入口为60bar并且效率大致为85%的空气透平中例如入口温度限制为大致
169K。对于20bar的入口压力来说,最小的透平入口温度为大致125K。实现的是,在不破坏透平设计标准的情况下使透平入口温度更低,产生了一种更有效的方法。

发明内容

[0007] 因此本发明的任务是,给出一种高能效的方法和一种相应的装置,它们能够以比较少的器械耗费实现。
[0008] 该任务通过权利要求1的特征部分的特征解决。透平流不再在冷却过程中从主换热器的中间部位取出,而是进一步被引导通过主换热器,从而该透平流在亚临界压力时被冷却到大致露点温度或更低或者在超临界压力时伪液化。接着,该透平流优选在节流阀中膨胀到一个在作功膨胀和主换热器中的温度曲线方面最佳的中间压力并且在主换热器中又被加热到中间温度,该中间温度相应于作功膨胀的入口温度并且尽可能低,但是不破坏透平设计标准。该中间温度例如在60bar的透平流时低于169K或者对于20bar的透平流低于125K。
[0009] 透平流在主换热器中的冷却和(伪)液化可以当透平流的压力等于节流流时与该节流流共同地或分开地进行。透平流在其作功地膨胀之前膨胀到中间压力,所述中间压力等于或高于 也就是说,对于60bar的节流流来说,中间压力为18bar或更高,在20bar的节流流的情况下为10.5bar或(假设高压塔中的压力为5.5bar)。到所述中间压力的膨胀优选在节流阀中进行。所述作功地膨胀在一优选构造为透平的膨胀机中进行。
[0010] 在本发明的第一方案中,再压缩机被以外部能量驱动并且不仅节流流而且透平流当在主换热器中冷却时处于所述第二压力下。通过无中间取出地采用再压缩机可以使器械耗费保持小。
[0011] “被以外部能量驱动”是指,相应的压缩机不是借助于空气分离方法本身产生的能量驱动,而是例如借助于电动机、蒸汽透平或燃气透平驱动。
[0012] 在本发明的第二方案中,再压缩机由一以该方法的过程流工作的膨胀机驱动,特别是由以透平流70工作的膨胀机12驱动,其中,空气压缩机是唯一被以外部能量驱动的、用于压缩空气的机器。
[0013] 对于“唯一的机器”在此理解为单级的或多级的压缩机,其所有的级都与相同的驱动装置连接,其中,所有的级安装在同一壳体中或者与同一传动装置连接。在该第二方案中,所述“第一压力”显著高于蒸馏塔系统的最高压力,特别是显著高于高压塔的工作压力。压力差例如为至少4bar并且优选在6与16bar之间。在该方案中,在空气压缩机中压缩的总空气(除了可能较少份额的例如设备空气之外)优选完全被分为节流流和透平流。
[0014] 可以通过第三空气流或者通过来自通过蒸馏塔系统、特别是来自高压塔或低压塔的压力氮来代替所述透平流形成被用来驱动再压缩机的过程流,该第三空气流被膨胀到低压塔的工作压力(拉赫曼透平)。该压力氮可以在进入到相应的膨胀机中时几乎处于环境温度,或者该压力氮在进入膨胀机之前被加热到显著高于环境温度(“热空气膨胀机”)。
[0015] 在本发明的所述两个方案中,节流流可以处于比透平流高的压力下,也就是说,透平流当在主换热器中冷却时处于所述第二压力下并且节流流当在主换热器中冷却时处于一等于所述第二压力或高于所述第二压力的第三压力下。
[0016] 为了进一步从第二压力压缩到所述压力,在所述第二方案中采用第二再压缩机,该第二再压缩机由一以该方法的过程流工作的膨胀机驱动。优选控制到第二压力的再压缩机由所述以透平流工作的膨胀机驱动,并且被用来驱动该第二再压缩机的过程流通过一第三空气流或者通过来自蒸馏塔系统、特别是来自高压塔或低压塔的压力氮形成,该第三空气流被膨胀到低压塔的工作压力(拉赫曼透平)。替代地,这两个驱动可以互换。
[0017] 在本发明第一方案的变型方案中,取而代之的是,再压缩机具有至少两个级并且也可以被以外部能量驱动。于是,所述到所述第二压力的再压缩在该再压缩机的至少一个第一级中进行;透平流分支处下游的节流流至少在该再压缩机的最后一个级中被再压缩到一高于所述第二压力的第三压力。本发明的步骤:透平的冷却、膨胀和加热提供这样多的附加灵活性,使得该方法可实现高效率,即使再压缩机的由结构引起的中间取出压力本身是不利的。
[0018] 优选中间压力比所述第二压力低1.5至5bar,也就是说,透平流在进入到膨胀机之前以该压力差膨胀。该相对小的节流在低的温度时实际上不引起能量损失并且尽管如此允许膨胀机入口温度的期望的降低。
[0019] 优选该蒸馏塔系统具有高压塔和低压塔,它们通过一塔顶冷凝器形成热交换关系。该塔顶冷凝器构造为冷凝器-蒸发器。透平流在该膨胀机中优选膨胀到大致高压塔的工作压力并且至少部分地被供入到该高压塔中。
[0020] 可采用液态氧流、液态氮流和/或液态氩流作为来自该蒸馏塔系统的液态产品流。如果多于一个产品被内压缩,则当然必须设置相应多的用于提高压力的独立装置(通常为泵或泵对)和通过主换热器的独立通道。
[0021] 有利的是,第二空气流由经过净化的主空气流的另一部分构成并且该第二空气流在所述第一压力下在主换热器中冷却并且被供应给该蒸馏塔系统。该第二空气流也被称为直接空气流。优选主空气流——除必要时作为设备空气的小份额外——刚好被分为三个在此所述的部分、即直接空气流、透平流和节流流。
[0022] 此外,本发明还涉及一种如权利要求11所述的用于低温分离空气的设备。

附图说明

[0023] 下面借助于附图中示意性示出的实施例详细描述本发明以及本发明的其他细节。其中:
[0024] 图1是本发明第一方案的实施例,
[0025] 图2是本发明第二方案的第一实施例,具有一个唯一的透平,
[0026] 图3和4是本发明第二方案的两个另外的实施例,分别具有两个透平,[0027] 图5是现有技术的在不对透平流进行节流情况下的热交换图表(温度和传递的热焓),
[0028] 图6是图2中方法情况下的热交换图表。

具体实施方式

[0029] 在图1的实施例中,蒸馏塔系统50在用于氮氧分离的部分中具有高压塔14、低压塔15和构造为冷凝器-蒸发器的主冷凝器16,所述两个塔通过该主冷凝器形成热交换关系。
[0030] 大气空气作为主空气流经由管路1由空气压缩机2吸入、在那里被提升到基本上等于高压塔14的工作压力的第一压力、在预冷却装置3中被冷却到大致环境温度并且被供应给一个吸附式的空气净化装置4。经过净化的主空气流5的第一部分作为“第一空气流6”在一个再压缩机7中被再压缩到至少50bar、例如大致60bar的第二压力。高压空气8被引导至主换热器9的热端并且在该主换热器中被冷却并且伪液化。经过伪液化的空气经由管路10被从所述主换热器的冷端取走并且接着被分为节流流11和透平流17。反过来说,节流流和透平流在共同再压缩7后也共同地在主换热器中被冷却并且伪液化。替代地,透平流17可稍高于主换热器9的冷端地被取走(参见图2)。
[0031] 所述节流流(“JT-空气”)11在节流阀12中膨胀到大致高压塔的工作压力并且经由管路13至少部分地以液态被导入到高压塔14中。也可以使用液体透平来代替所述节流阀12。所述节流流的一部分43可被立即再从该高压塔取走并且在过冷却逆流换热器31中冷却之后经由管路44在一个中间部位处供应给低压塔15。
[0032] 与所述节流流一起伪液化的透平流17在一个节流阀18中膨胀到高压塔工作压力与所述第二压力之间的中间压力并且接着再被引导至所述主换热器9的冷端。在该主换热器中,该透平流又被加热到一个140与150K之间的中间温度。所述透平流在该中间温度下经由管路70被从所述主换热器9中取走并且被引导至一个透平19,该透平在该实施例中由发生器20制动。在该透平19中,所述空气作功地大致膨胀到高压塔的工作压力。经过膨胀的透平流21被导入到一个分离器(相分离器)22中,以便必要时分离液态份额。这种液态份额23经由管路24在适当的部位处被供入到低压塔15中。气态份额25经由管路26作为气态进料空气(“进料空气”)被导入到高压塔14中。
[0033] 经过净化的主空气流5的剩余部分在无压力改变措施的情况下作为直接空气流(“第二空气流”)27、28被引导经过所述主换热器9并且经由管路26进一步流到高压塔14中。
[0034] 在该实施例的第一版本中(不获取氩的系统“无氩系统”),液态的粗氧29从高压塔14的池底经由管路30、过冷却逆流换热器31并且进一步经由管路32流向低压塔的一个中间部位。高压塔14的气态的塔顶氮33的至少一部分34在主冷凝器16的液化室中冷凝。另一部分可经由管路35被引导经过所述主换热器9并且最后经由管路36作为气态的中间压力产品(PGAN)被取走。
[0035] 从主冷凝器16中冷凝出的氮37的第一部分38作为回流被输出给高压塔14。第二部分39在过冷却逆流换热器31中被冷却并且经由管路40作为回流被供应给低压塔15。
[0036] 此外,可将一富氮流41、42从高压塔14的一中间部位经由所述过冷却逆流换热器31引导至低压塔15的一中间部位。
[0037] 低压氧产品45(GOX)可被从低压塔的池底气态地直接取出、在主换热器9中被加热并且经由管路46作为低压产品被取走。
[0038] 期望作为气态的压力产品的氧被液态地(LOX)从低压塔或从主冷凝器16的蒸发室中取走并且作为第一“液态产品流”47供应给一内压缩(IC-LOX,IC=“内压缩”)。在此,它借助于氧泵48以液态被提升到期望的高压力(增高的第一压力)并且经由管路49引导至所述主换热器9的冷端。在主换热器9中,液态的氧流49在所述增高的压力下蒸发或伪蒸发并且被加热到大致环境温度。最后该氧流经由管路51作为气态的第一压力产品(HP-GOX)离开该设备。
[0039] 如果希望的话,可在一中间压力下获得一个另外的气态氧产品53、54(MP-GOX),该中间压力处于低压塔15的工作压力与泵48下游的所述增高的压力之间,其方式是,在泵48的下游将该部分分支出、相应地进行节流(52)并且最后在主换热器9中单独地蒸发和加热。
[0040] 对这个或这些被内压缩的氧流替代或附加地,也可以将氮供应给内压缩。为此将经冷凝的氮37的第三部分55作为来自主冷凝器16(HP-LIN)的第二“液态产品流”在一个氮泵56中被提升到增高的第二压力,该增高的第二压力相应于期望的产品压力并且不必等于所述增高的第一压力。高压氮经由管路57、58被引导至所述主换热器9的冷端。在该主换热器9中,液态的或超临界的氮流58在所述增高的压力下蒸发或伪蒸发并且被加热到大致环境温度。最后该氮流经由管路59作为第二气态的压力产品(HP-GAN)离开该设备。
[0041] 如果希望的话,可在一中间压力下获得一个另外的气态氮产品61、62(MP-GAN),该中间压力处于高压塔16的工作压力与泵56下游的所述增高的压力之间,其方式是,在泵56的下游将该部分分支出、相应地进行节流(60)并且最后在主换热器9中单独地蒸发和加热。
[0042] 不纯的氮63、64、65和不纯的氮66、67、68作为另外的回流被从低压塔15取走、在过冷却逆流换热器31中并且进一步在主换热器9中被加热并且作为低压产品(GAN,UN2)被取走。最后,也可以液态地获得所述产品的一部分、例如液态氮(LIN)69或从低压塔15的池底获得液态氧(LOX)的一部分。
[0043] 本实施例第一版本的方法例如也可以仅仅以一个液态产品流和一个气态产品流(例如要么氧要么氮)运行,或者替代地以所述液态地提升压力的流49、53、58和61的任意组合运行。
[0044] 在第二版本中,该实施例的蒸馏塔系统除了所述用于氮氧分离的装置之外还具有一个用于获取液态纯氩(LAR)105的氩部分100。该氩部分具有一个或多个用于氩氧分离的粗氩塔和一个用于氩氮分离的精氩塔,它们以公知的方式运行。粗氩塔的下端部经由管路101和102与低压塔15的一中间区域连通。来自高压塔11的粗氧29在这种情况下经由管路129(“有氩系统”)导入到所述氩部分中并且特别是至少部分地在粗氩塔的塔顶冷凝器中部分地蒸发(未示出)。所述至少部分地蒸发的粗氧经由管路103被供入到低压塔15中,保持液态的部分经由管路132。此外,从所述氩部分100中取出一气态的剩余流(废物)104。
[0045] 对在第一版本中描述的内压缩产品替代或附加地,可以将液态的精氩105供应给内压缩装置,其方式是,将其作为第三“液态产品流”在氩泵106中提升到第三高压力,该第三高压力相应于期望的产品压力并且不必等于所述第一和/或增高的第二压力。高压氩经由管路107被引导至主换热器9的冷端。在该主换热器9中,氩流107在所述增高的压力下蒸发或伪蒸发并且被加热到大致环境温度。最后该氩流经由管路108作为第三气态的压力产品(HP-GAR)离开该设备。
[0046] 所述主换热器可分别集成地或分开地构成,附图中仅仅示出交换器的基本功能——热流通过冷流来冷却。
[0047] 图2很大程度上相应于图1。因此对于上面已经解释过的方法步骤和设备部件采用相应的参考标号,并且在图2中没有示出空气压缩机、空气净化装置和蒸馏塔系统。
[0048] 与图1在主要区别是空气压缩机的较高的出口压力(“第一压力”),该出口压力在图2中显著高于高压塔的工作压力并且在该具体的实例中为17bar。出于该原因,也没有直接空气流(图1中的27)。相反,总空气8在再压缩机7下游在203处在大致22bar(“第二压力”)下被划分为透平流10和节流流11。(在图2中,透平流和节流流的冷却也可以共同进行,其中,所述划分可以在主换热器的内部在其冷端前不久进行)。透平流17的温度在该实例中为比所述冷端的温度高1K至50K,节流流11在该冷端温度下离开主换热器。(替代地,透平流也可以如图1所示地被一直引导至主换热器的冷端9)。
[0049] 此外,在图2中示出再压缩机7的再冷却器202,该再冷却器也在图1的方法中使用,但是在该图1中没有示出。参考标号201表示主空气流5在该再压缩机7上游在主换热器9中的选择性的冷却。
[0050] 图3与图2的区别在于第二膨胀机319,该第二膨胀机具有带再冷却器305的第二再压缩机304。在此,分支为透平流和节流流的分支行为在303的热处进行,其中,节流流在该第二再压缩机304中被从第二压力(这里例如是22bar)再压缩到第三压力(这里例如是25bar),当利用主空气流的预冷却201时,可以省去第一再压缩机7后面的再冷却器302。
[0051] 第二膨胀机以过程流270工作,该过程流可以通过下述流中的一个构成:
[0052] -透平流70的部分流(在该情况下经膨胀的流325与来自第一膨胀机的流25混合(两个膨胀机并联))。
[0053] -另外的空气流,所述另外的空气流在第一再压缩机7的入口压力下或在第一或第二再压缩机7、304的出口压力下在一个中间温度下被从主换热器取出并且在膨胀机319下游被供入到低压塔或高压塔(图1中的15及14)中(拉赫曼透平或第二克劳德透平)。
[0054] -来自高压塔或低压塔的压力氮流(图1中的35,64,67或它们的分别一个部分流)。
[0055] 替代地,透平19、319与再压缩机7、304之间的耦联也可以与图3中所示的相反。
[0056] 图4与图3的区别是,第二再压缩机403构造为冷压缩机,其仅仅再压缩节流流。
[0057] 在图5中(针对现有技术)并且在图6中(针对图2)可在主换热器的H-T图表上读出本发明的在膨胀机上游节流的作用。在图6中,透平入口温度(图2中的流70,图5和6中的点Tin)比图5中的低得多。待冷却的流(上面)和待加热的流(下面)的曲线彼此挨得更近;交换损失相应地低。