发光元件、发光装置和电子设备转让专利

申请号 : CN200980118331.2

文献号 : CN102027614B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 濑尾哲史大泽信晴

申请人 : 株式会社半导体能源研究所

摘要 :

所揭示的是一种具有良好载流子平衡的发光元件,及其不需要形成异质结构的制造方法。该发光元件包括在阳极和阴极之间含有作为主要成分(基材)的第一有机化合物的有机化合物膜,其中该有机化合物膜设置成与阳极和阴极接触。该有机化合物膜还包括添加发光物质的发光区域,包括添加空穴捕获物质的空穴传输区域、和/或添加电子捕获物质的电子传输区域。该空穴传输区域位于发光区域和阳极之间,而电子传输区域位于发光区域和阴极之间。

权利要求 :

1.一种发光元件,包括:

阳极与阴极之间的含有第一有机化合物的有机化合物膜,其中所述有机化合物膜被设置成与所述阳极和阴极接触,其中所述有机化合物膜包括:

在所述阳极上并且与所述阳极接触的空穴注入区域,该空穴注入区域包括所述第一有机化合物;

在所述空穴注入区域上并且与所述空穴注入区域接触的空穴传输区域,该空穴传输区域包括所述第一有机化合物以及空穴捕获物质;

在所述空穴传输区域上并且与所述空穴传输区域接触的发光区域,该发光区域包括所述第一有机化合物以及发光物质;以及在所述发光区域上并且与所述发光区域接触的电子传输区域,该电子传输区域包括所述第一有机化合物以及电子捕获物质,其中所述空穴捕获物质的HOMO能级比所述第一有机化合物的HOMO能级高0.2eV或以上,以及其中所述电子捕获物质的LUMO能级比所述第一有机化合物的LUMO能级低0.2eV或以上。

2.如权利要求1所述的发光元件,其特征在于,所述发光物质是磷光性化合物。

3.如权利要求1所述的发光元件,其特征在于,所述空穴注入区域还包括受电子物质。

4.如权利要求3所述的发光元件,其特征在于,所述受电子物质从氧化钒、氧化铌、氧化钽、氧化铬、氧化钼、氧化钨、氧化锰和氧化铼中选择。

5.如权利要求1所述的发光元件,其特征在于,所述发光元件还包括含有所述第一有机化合物以及供电子物质的电子注入区域,以及所述电子注入区域与所述阴极相接触。

6.如权利要求5所述的发光元件,其特征在于,所述供电子物质包括碱金属、碱土金属、以及稀有金属。

7.一种包括发光元件的照明设备,该发光元件包括:阳极与阴极之间的含有第一有机化合物的有机化合物膜,其中所述有机化合物膜被设置成与所述阳极和阴极接触,其中所述有机化合物膜包括:

在所述阳极上并且与所述阳极接触的空穴注入区域,该空穴注入区域包括所述第一有机化合物;

在所述空穴注入区域上并且与所述空穴注入区域接触的空穴传输区域,该空穴传输区域包括所述第一有机化合物以及空穴捕获物质;

在所述空穴传输区域上并且与所述空穴传输区域接触的发光区域,该发光区域包括所述第一有机化合物以及发光物质;以及在所述发光区域上并且与所述发光区域接触的电子传输区域,该电子传输区域包括所述第一有机化合物以及电子捕获物质,其中所述空穴捕获物质的HOMO能级比所述第一有机化合物的HOMO能级高0.2eV或以上,以及其中所述电子捕获物质的LUMO能级比所述第一有机化合物的LUMO能级低0.2eV或以上。

8.如权利要求7所述的照明设备,其特征在于,所述发光物质是磷光性化合物。

9.如权利要求7所述的照明设备,其特征在于,所述空穴注入区域还包括受电子物质。

10.如权利要求9所述的照明设备,其特征在于,所述受电子物质从氧化钒、氧化铌、氧化钽、氧化铬、氧化钼、氧化钨、氧化锰和氧化铼中选择。

11.如权利要求7所述的照明设备,其特征在于,所述发光元件还包括含有所述第一有机化合物以及供电子物质的电子注入区域,以及所述电子注入区域与所述阴极相接触。

12.如权利要求11所述的照明设备,其特征在于,所述供电子物质包括碱金属、碱土金属、以及稀有金属。

说明书 :

发光元件、发光装置和电子设备

技术领域

[0001] 本发明涉及采用电致发光的发光元件。本发明还涉及各自具有发光元件的发光装置和电子设备。

背景技术

[0002] 近年来,已经对利用电致发光(EL)的发光元件进行了广泛研究和开发。在这种发光元件的基本结构中,将发光物质夹在一对电极之间。通过向这种元件施加电压,可获得来自发光物质的发光。
[0003] 因为这种发光元件是自发光型,所以具有优于液晶显示器的优点:像素的可见性高且无需背光。因此,发光元件被认为适于用作平板显示元件。此外,此类发光元件还具有可被制造成厚度薄且重量轻的元件、并且还具有极高的响应速度的优点。
[0004] 另外,因为这种发光元件可以形成为膜状,所以能容易地获得面发光。该特征难以利用以白炽灯泡和LED为代表的点光源或以荧光灯为代表的线光源实现。因此,此类发光元件作为能够应用于照明装置等面光源的利用价值也很高。
[0005] 利用电致发光的发光元件是根据发光材料是有机化合物还是无机化合物来大致分类的。
[0006] 在发光物质是有机化合物的情况下,通过向发光元件施加电压,电子和空穴从一对电极注入到包含发光有机化合物的层,由此电流流过。然后载流子(电子和空穴)重新结合,从而将发光有机化合物置于激发态。发光有机化合物从激发态返回基态,从而发射光。使用发光有机化合物的这种发光元件被通称为有机EL元件。
[0007] 注意,有机化合物的激发态可具有两种类型:单重激发态和三重激发态,并且从单重激发态发射的光被称为荧光,而从三重激发态发射的光被称为磷光。
[0008] 提出其中堆叠多层不同有机化合物的异质结构已带来了此类发光元件的重大进展(参见非专利文献1)。那是因为采用异质结构增加了载流子重新结合效率并且改进了发射效率。然后,提出了其中发光层在空穴传输层和电子传输层之间形成的双异质结构。基于双异质结构的元件架构现在是主流。
[0009] 此外,通过增加堆叠层的数量,近来作了改善使用期限的尝试。?例如,在专利文献1中,通过提供除电子传输层之外使电子传输减速的层来尝试延长使用期限。
[0010] [专利文献1]日本已公开专利申请No.2006-66890。
[0011] [非专利文献1]C.W.Tang和S.A.Vanslyke,应用物理快报,第51卷,No.12,913-915,1987。
[0012] [非专利文献2]C.Adachi等人,日本应用物理杂志,第27卷,L269-L271,1988。

发明内容

[0013] 考虑有机EL元件的发射原理,载流子重新结合效率的提高能够改进发射效率。此外,因为重新结合平衡(载流子平衡)随时间的变化导致发射效率随时间变化,所以抑制载流子平衡随时间的变化导致使用期限延长。
[0014] 如背景技术中所述的需要异质结构的原因是使用单种物质难以制造具有高载流子重新结合效率(即空穴传输与电子传输之间有良好的载流子平衡)、或者具有不轻易随时间改变的载流子平衡的发光元件。因此,通过使异质结构复杂化,作出了改进发射效率和使用期限两者的尝试。
[0015] 然而,另一方面,异质结构复杂导致制造元件的工艺复杂化,并且不利地影响制造成本和产量。例如,在通过真空蒸镀方法制造具有复杂多层架构的有机EL元件时,衬底需要被转移穿过多个腔室来形成许多层,这抬高了制造成本(尤其是制造装置的成本)。此外,哪怕这些层之一有缺陷,整个元件也就有缺陷了,这使产量大大减少。
[0016] 如上所述,异质结构的复杂性不利地影响制造成本和产量,因此是目前妨碍有机EL元件的实际应用的主要因素。
[0017] 此外,从材料研发的观点看,明确的研发指南是模糊的,因为异质结构中材料可能组合的数量变得庞大。例如,即使研发了对改进具有红色发光层的发光元件的效率和使用期限高度有效的电子传输层,该电子传输层通过施加于其发光层的发射色彩不同于红色的发光元件(例如蓝色发光元件)也具有引起使用期限显著缩短的不利影响。
[0018] 也就是说,尽管通过采用异质结构可确保一定程度的发射效率,取决于所采用的异质结构,使用期限也可延长或急剧缩短。该现象的原因是极难阐明的。因此,目前这种现象倾向于简单地归因于材料的亲合性,并且阻碍了材料研发策略的构建。
[0019] 可以说,以上问题是因依赖于异质结构的设备研发属性的传统策略导致的不利影响。因此,在本发明一实施例中,具有好的载流子平衡的发光元件是在没有形成异质结构的情况下制造的。因此,提供了能容易地制造的具有高发射效率的发光元件。
[0020] 此外,在本发明的该实施例中,在不形成异质结构的情况下制造其中载流子平衡随时间的变化小的发光元件。因此,提供了能容易地制造的具有长使用期限的发光元件。
[0021] 此外,通过使用本发明一实施例的发光元件,提供具有低功耗和长使用期限的发光装置。另外,提供具有长使用期限的电子设备。发明概要
[0022] 许多有机化合物使空穴和电子能以薄膜状态在其中流动,且由此是固有双极的。换言之,在许多情形中,甚至称为空穴传输材料的材料能使电子流过,而甚至称为电子传输材料的材料能使空穴流过。然而,在有机化合物中,因为空穴传输能力和电子传输能力在不同水平上,所以空穴与电子之间的载流子平衡难以用单种材料达到。
[0023] 然而,作为密集研究的结果,发明人已经发现即使在包含单种物质的单个膜的情况下,通过将载流子捕获物质添加到该膜的适当位置也可改进载流子平衡。发明人还发现,在通过应用如下所述的元件结构而不形成异质结构的情况下,此发现可用来解决上述问题。
[0024] 本发明一实施例是一种包括在阳极和阴极之间含有第一有机化合物的有机化合物膜的发光元件。该有机化合物膜被设置成与阳极和阴极接触。该有机化合物膜包括添加了发光物质的发光区域和添加空穴捕获物质的空穴传输区域。该空穴传输区域位于发光区域与阳极之间。
[0025] 此外,本发明一实施例是一种包括在阳极和阴极之间含有第一有机化合物的有机化合物膜的发光元件。该有机化合物膜被设置成与阳极和阴极接触。该有机化合物膜包括添加发光物质的发光区域和添加电子捕获物质的电子传输区域。该电子传输区域位于发光区域与阴极之间。
[0026] 此外,本发明一实施例是一种包括在阳极和阴极之间含有第一有机化合物的有机化合物膜的发光元件。该有机化合物膜被设置成与阳极和阴极接触。该有机化合物膜包括添加发光物质的发光区域、添加空穴捕获物质的空穴传输区域、以及添加电子捕获物质的电子传输区域。该空穴传输区域位于发光区域与阳极之间。该电子传输区域位于发光区域与阴极之间。
[0027] 注意,在以上结构中,为了使空穴捕获物质可有效地捕获空穴,优选空穴捕获物质的HOMO(最高已占分子轨道)能级比第一有机化合物的HOMO能级高0.2eV或以上。此外,为了使电子捕获物质可有效地捕获电子,优选电子捕获物质的LUMO能级比第一有机化合物的LUMO能级低0.2eV或以上。
[0028] 在此,尽管上述发光元件具有其中包括第一有机化合物的有机化合物膜中的载流子平衡得到改进的结构,但载流子从电极向有机化合物膜的注入在使发光元件能更有效地发光中还是重要的。从电极的该注入的平衡就使用期限而言也是重要的,因为载流子平衡随时间的改变导致辉度衰变。
[0029] 因此,在上述发光元件中,优选将受电子物质添加到有机化合物膜与阳极接触的一个区域。此外,优选将给电子物质添加到有机化合物膜与阴极接触的一个区域。为了实现改进的载流子平衡,优选将受电子物质添加至有机化合物膜与阳极接触的区域,并且将供电子物质添加至有机化合物膜与阴极接触的区域。
[0030] 此外,将电荷发生机制应用于载流子从电极向有机化合物膜的注入是有效的。
[0031] 具体而言,本发明的优选实施例是根据上述发光元件的发光元件,其中电荷发生区域设置在其中有机化合物膜与阳极接触的区域中。电荷发生区域包括添加了给电子物质的N型区域和添加了受电子物质的P型区域。N型区域位于P型区域与阳极之间。
[0032] 本发明的另一优选实施例是根据上述发光元件的发光元件,其中电荷发生区域设置在其中有机化合物膜与阴极接触的区域中。电荷发生区域包括添加了给电子物质的N型区域和添加了受电子物质的P型区域。P型区域位于N型区域与阴极之间。
[0033] 为了实现改进的载流子平衡,电荷发生区域优选被设置在阳极侧和阴极侧两者之上。因此,本发明的又一优选实施例是根据上述发光元件的发光元件,其中第一电荷发生区域设置在其中有机化合物膜与阳极接触的区域中,而第二电荷发生区域设置在其中有机化合物膜与阴极接触的区域中。第一电荷发生区域包括添加了第一给电子物质的第一N型区域和添加了第一受电子物质的第一P型区域。第一N型区域位于第一P型区域与阳极之间。第二电荷发生区域包括添加了第二给电子物质的第二N型区域和添加了第二受电子物质的第二P型区域。第二P型区域位于第二N型区域与阴极之间。
[0034] 此外,本发明的应用了电荷发生机制的一优选实施例是根据上述发光元件的发光元件,其中第一受电子物质被添加到其中有机化合物膜与阳极接触的区域中,而电荷发生区域设置在其中有机化合物膜与阴极接触的区域中。电荷发生区域包括添加了给电子物质的N型区域和添加了第二受电子物质的P型区域。该P型区域位于N型区域与阴极之间。
[0035] 此外,本发明的应用电荷发生机制的一优选实施例是根据上述发光元件的发光元件,其中电荷发生区域被设置在其中有机化合物膜与阳极接触的区域中,而第一给电子物质被添加在其中有机化合物膜与阴极接触的区域中。电荷发生区域包括添加了第二给电子物质的N型区域和添加了受电子物质的P型区域。该N型区域位于P型区域与阳极之间。
[0036] 如上所述的本发明实施例的发光元件的结构对简化需要包括空穴阻挡层等的特定元件结构的常规磷光性发光元件特别有用。因此,本发明一实施例的发光元件的优选结构是其中发光物质是磷光性化合物的发光元件。
[0037] 近年来,提出了一种其中能通过提供具有滤色片的白色发光元件制造全色显示器的技术。这种技术的一个特征是可通过仅仅在衬底上形成白色发光元件就可制造全色显示器的简单性。由此,可容易地制造的本发明实施例的发光元件被应用于与滤色片组合的白色发光元件;相应地,同时能获得降低成本的效果。
[0038] 白色发光元件通常包括发射不同色彩光的多种发光物质。因此,本发明的发光元件的一优选实施例是具有上述发光元件的结构、并且发光物质是发射不同色彩光的多种发光物质的发光元件。具体地,这些发光物质优选包括发射红光的发光物质、发射绿光的发光物质、以及发射蓝光的发光物质。此外,为了改善发光效率,发光物质优选包括发射红光的发光物质、发射黄光的发光物质、发射绿光的发光物质、以及发射蓝光的发光物质。使用这种结构,可获得具有本发明一实施例的发光元件的元件结构、且展现白光发射的白色发光元件。
[0039] 注意,本发明一实施例包括具有上述发光元件的发光装置。由此,本发明一实施例是具有上述发光元件的发光装置。配置成控制发光元件的发光的控制电路可被结合到该发光装置中。
[0040] 注意,本说明书中的术语“发光装置”包括图像显示装置、发光装置、或光源(包括照明设备)。此外,“发光装置”包括以下所有:其中例如柔性印刷电路(FPC)、带式自动接合(TAB)带或带载封装(TCP)的连接器与设置有发光元件的板相连的模块;在TAB带或TCP的端部设置有印刷线路板的模块;以及其中集成电路(IC)通过玻璃上芯片(COG)法直接安装在发光元件上的模块。
[0041] 此外,其中本发明一实施例的发光元件用于显示部分的电子设备也被包括在本发明的范围内。由此,本发明一实施例的电子设备包括显示部分,其中该显示部分包括上述发光元件。配置成控制发光元件的发光的控制电路可被结合到发光装置中。
[0042] 通过应用本发明,可在不形成异质结构的情况下制造具有好的载流子平衡的发光元件。因此,可提供容易制造的具有高发射效率的发光元件。
[0043] 此外,通过应用本发明,可在不形成异质结构的情况下制造其中载流子平衡随时间的变化小的发光元件。因此,可提供具有长使用期限的发光元件。
[0044] 另外,通过使用本发明,可提供具有低功耗和长使用期限的发光装置。此外,可提供具有长使用期限的电子设备。
[0045] 附图简述
[0046] 图1A和1B示出根据本发明一实施例的发光元件。
[0047] 图2A和2B示出根据本发明一实施例的发光元件。
[0048] 图3A和3B示出根据本发明一实施例的发光元件。
[0049] 图4A和4B各自示出根据本发明一实施例的发光元件。
[0050] 图5示出根据本发明一实施例的发光元件。
[0051] 图6A和6B各自示出根据本发明一实施例的发光元件。
[0052] 图7示出根据本发明一实施例的发光元件。
[0053] 图8A和8B各自示出根据本发明一实施例的发光元件。
[0054] 图9示出根据本发明一实施例的发光元件。
[0055] 图10A和10B示出根据本发明一实施例的发光装置。
[0056] 图11A和11B示出根据本发明一实施例的发光装置。
[0057] 图12示出根据本发明一实施例的发光装置。
[0058] 图13示出根据本发明一实施例的发光装置。
[0059] 图14A-14D示出根据本发明一实施例的电子设备。
[0060] 图15示出根据本发明一实施例的电子设备。
[0061] 图16示出根据本发明一实施例的电子设备。
[0062] 图17示出根据本发明一实施例的电子设备。
[0063] 图18示出根据本发明一实施例的照明设备。
[0064] 图19示出根据本发明一实施例的照明设备和电子设备。
[0065] 图20A和20B示出示例1的发光元件的特性。
[0066] 图21A和21B示出示例1的发光元件的特性。
[0067] 图22A和22B示出示例1的发光元件的特性。
[0068] 图23A和23B示出示例2的发光元件的特性。
[0069] 图24A和24B示出示例2的发光元件的特性。
[0070] 图25示出示例2的发光元件的特性。
[0071] 图26A和26B示出示例3的发光元件的特性。
[0072] 图27A和27B示出示例3的发光元件的特性。
[0073] 图28示出示例3的发光元件的特性。
[0074] 图29A和29B示出BPAPQ的CV特性。
[0075] 图30A和30B示出Ir(Fdpq)2(acac)的CV特性。
[0076] 图31示出1′-TNATA的CV特性。
[0077] 图32示出DNTPD的CV特性。
[0078] 图33A和33B示出CzPA的CV特性。
[0079] 图34A和34B示出2PCAPA的CV特性。
[0080] 图35示出DPQd的CV特性。
[0081] 图36示出示例1的发光元件的特性。
[0082] 图37示出示例1的发光元件的特性。
[0083] 图38A和38B示出示例5的发光元件的特性。
[0084] 图39A和39B示出示例5的发光元件的特性。
[0085] 图40示出示例5的发光元件的特性。
[0086] 图41A和41B示出示例6的发光元件的特性。
[0087] 图42A和42B示出示例6的发光元件的特性。
[0088] 图43A和43B示出示例6的发光元件的特性。
[0089] 图44示出示例6的发光元件的特性。
[0090] 图45A和45B示出示例7的发光元件的特性。
[0091] 图46A和46B示出示例7的发光元件的特性。
[0092] 图47示出示例7的发光元件的特性。
[0093] 图48示出示例7的发光元件的特性。
[0094] 图49A和49B示出YGAO11的CV特性。
[0095] 图50A和50B示出Ir(Fdppr-Me)2(acac)的CV特性。

具体实施方式

[0096] 在下文中,将使用附图描述本发明诸实施例。注意,本发明并不限于以下说明,并且本发明的方式和细节可由本领域技术人员以各种方法容易地修改而不背离本发明的宗旨和范围。因此,本发明诸实施例不应当被解释为限于以下对实施方式和示例的描述。注意,在以下本发明诸实施例的描述中,相同的附图标记可用于在一些情形中指示不同附图中的相同组件。
[0097] (实施例1)
[0098] 在实施例1中,将参照所使用的材料和制作方法描述本发明实施例的概念和基本结构。
[0099] 首先,考虑其中设置在阳极和阴极之间的有机化合物膜包含单种有机化合物(在下文中称为第一有机化合物)、且其中发光物质被添加至有机化合物膜以便于控制发光区域和发射色彩的情形。添加了发光物质的该发光区域优选远离阳极和阴极以便于防止因电极引起的猝灭。
[0100] 许多有机化合物使空穴与电子两者能以薄膜状态流过。换言之,在许多情形中,甚至通称为空穴传输材料的材料使电子能流过,而甚至称为电子传输材料的材料使空穴能流过。因此,通过适当地确定阳极和阴极的功函(具体是选择具有高功函的阳极和具有低功函的阴极),甚至在上述结构的情况下也可呈现发光功能。
[0101] 然而,仅仅使用该结构是难以使发光元件能有效发光的。这是因为在有机化合物中,空穴传输能力和电子传输能力通常在不同水平上,因此即使有机化合物膜包括第一有机化合物作为主要成分(基材),也难以达到空穴与电子之间的载流子平衡。由此,即使发光物质被添加至有机化合物膜以形成发光区域,发光区域的位置也不可能与用于载流子重新结合的主区域中一致,因此难以改进发射效率。
[0102] 发明人期望能用添加剂调节载流子平衡以解决此问题。换言之,发明人期望,例如当第一有机化合物是其中空穴传输性质高于电子传输性质的物质时,通过不仅添加发光物质以形成发光区域而且在发光区域与阳极之间添加空穴捕获物质,空穴在阳极与发光区域之间的区域中的传输速率可降低,并且载流子重新结合效率可增加。发明人还期望,当第一有机化合物相反是其中电子传输性质高于空穴传输性质的物质时,通过不仅添加发光物质以形成发光区域而且在发光区域与阴极之间添加电子捕获物质,电子在阴极与发光区域之间的区域中的传输速率可降低,并且载流子重新结合效率可增加。自然,这些结构可组合以设计空穴与电子之间的最适当的载流子平衡。
[0103] 换言之,本发明的一个重要概念是载流子平衡不用不同物质的堆叠层之间的异质结来控制,而用其中单种特定物质用作其主要成分(基材)并在适当区域添加适当添加剂的堆叠区域之间的同质结来控制。
[0104] 在下文中,使用图1A和1B、图2A和2B、以及图3A和3B来具体描述基于以上概念的元件结构。
[0105] 首先,图1A和1B例示本发明一实施例的发光元件的示例,该发光元件具有包括阳极101与阴极102之间的第一有机化合物的有机化合物膜103。该有机化合物膜103被设置成与阳极101和阴极102接触。有机化合物膜103包括添加了发光物质的发光区域111和添加了空穴捕获物质的空穴传输区域112。空穴传输区域112位于发光区域111与阳极101之间。图1A是元件结构的示意图,而图1B是其能带图。
[0106] 注意,在图1B中,附图标记121表示阳极101的费米能级,附图标记122表示阴极102的费米能级,附图标记123表示第一有机化合物的HOMO能级,附图标记124表示第一有机化合物的LUMO(最低空分子轨道)能级,附图标记125表示发光物质的HOMO能级,附图标记126表示发光物质的LUMO能级,而附图标记127表示空穴捕获物质的HOMO能级。在此,为了有效地捕获空穴,空穴捕获物质的HOMO能级127优选比第一有机化合物的HOMO能级123高,具体地更优选高0.2eV或以上。
[0107] 注意,在本说明书中,“具有高HOMO能级或高LUMO能级”表示具有高能级,而“具有低HOMO能级或低LUMO能级”表示具有低能级。例如,可以说,具有-5.5eV HOMO能级的物质A的HOMO能级比具有-5.2eVHOMO能级的物质B的HOMO能级低0.3eV,且比具有-5.7eV HOMO能级的物质C的HOMO能级高0.2eV。
[0108] 当第一有机化合物具有高空穴传输性能时,图1A和1B所示的结构特别有效。换言之,通过在发光区域111和阳极101之间提供其中添加了空穴捕获物质的空穴传输区域112,空穴传输区域112中空穴的传输速率下降,并且可防止向发光区域111提供过量空穴。
因此,因为可抑制空穴通过发光区域111的现象,所以可提高载流子重新结合效率。
[0109] 另一方面,图2A和2B例示本发明一实施例的发光元件的示例,该发光元件包括包含阳极101与阴极102之间的第一有机化合物的有机化合物膜103。该有机化合物膜103被设置成与阳极101和阴极102接触。有机化合物膜103包括添加发光物质的发光区域111和添加电子捕获物质的电子传输区域113。电子传输区域113位于发光区域111与阴极102之间。图2A是元件结构的示意图,而图2B是其能带图。
[0110] 注意在图2B中,附图标记128表示电子捕获物质的LUMO能级,并且其它附图标记与图1A和1B中的相似。在此,为了有效地捕获电子,电子捕获物质的LUMO能级128优选比第一有机化合物的LUMO能级124低,具体地更优选低0.2eV或以上。
[0111] 当第一有机化合物具有高电子传输性能时,图2A和2B所示的结构特别有效。换言之,通过在发光区域111和阴极102之间提供其中添加了电子捕获物质的电子传输区域113,电子传输区域111中电子的传输速率下降,并且可防止向发光区域111提供过量电子。
因此,因为可抑制电子通过发光区域111的现象,所以可提高载流子重新结合效率。
[0112] 此外,其中空穴和电子两者的传输得到控制的结构(诸如图3A和3B所示的元件结构)是更为优选的。图3A和3B例示本发明一实施例的发光元件的示例,该发光元件包括包含阳极101与阴极102之间的第一有机化合物的有机化合物膜103。该有机化合物膜103被设置成与阳极101和阴极102接触。该有机化合物膜103包括添加发光物质的发光区域111、添加空穴捕获物质的空穴传输区域112、以及添加电子捕获物质的电子传输区域
113。空穴传输区域112位于发光区域111与阳极101之间。电子传输区域113位于发光区域111与阴极102之间。图3A是元件结构的示意图,而图3B是其能带图。此外,图3A和3B中的附图标记与图1A和图1B以及图2A和图2B中的相似。
[0113] 同样在此情形中,为了有效地捕获空穴,空穴捕获物质的HOMO能级127优选比第一有机化合物的HOMO能级123高,具体地更优选高0.2eV或以上。此外,为了有效地捕获电子,电子捕获物质的LUMO能级128优选比第一有机化合物的LUMO能级124低,具体地更优选低0.2eV或以上。
[0114] 使用如图3A和3B所示的结构,空穴和电子两者的传输得到控制,并且载流子重新结合效率能得到增加。
[0115] 注意在本发明诸实施例的发光元件中,如图1A和1B或图3A和3B所示,发光区域111和空穴传输区域112可彼此接触或者彼此远离。此外,空穴传输区域112和阳极101可彼此接触或者彼此远离。另外,可形成多个发光区域111和/或多个空穴传输区域112。此外,可添加多种发光物质和/或多种空穴捕获物质。
[0116] 同样,在本发明诸实施例的发光元件中,如图2A和2B或图3A和3B所示,发光区域111和电子传输区域113可彼此接触或者彼此远离。此外,电子传输区域113和阴极102可彼此接触或者彼此远离。另外,可形成多个发光区域111和/或多个电子传输区域113。此外,可添加多种发光物质和/或多种电子捕获物质。
[0117] 注意,包括第一有机化合物的有机化合物膜还可包括与发光物质、空穴捕获物质、以及电子捕获物质不同的物质。这些物质的示例包括用于禁止包括第一有机化合物膜的有机化合物膜以及用于从第一有机化合物膜到发光物质的有效能量传输的辅助掺杂剂的结晶化的添加剂。
[0118] 在图1A和1B、图2A和2B、以及图3A和3B中的任一结构中,通过添加捕获载流子的物质来控制空穴和/或电子的传输是重要的。通过改变诸如空穴捕获物质的HOMO能级127与第一有机化合物的HOMO能级123之间的能量差异、所添加的空穴捕获物质的量、添加了空穴捕获物质的空穴传输区域112的厚度等参数,可自由地和精确地执行如图1A和1B所示的对空穴传输的控制。同样,通过改变诸如电子捕获物质的LUMO能级128与第一有机化合物的LUMO能级124之间的能量差异、所添加的电子捕获物质的量、添加了电子俘获物质的电子传输区域113的厚度等参数,可自由地和精确地执行如图2A和2B所示的对电子传输的控制。
[0119] 换言之,在基于如本发明诸实施例中所述的同质结的元件结构中,可通过确定用作有机化合物膜的主要成分(基材)的第一有机化合物膜的材料、然后适当地添加具有已知HOMO或LUMO值的载流子捕获物质,能够容易地获取最适当的载流子平衡。不能用常规异质结实现材料或元件设计的这种高度自由。
[0120] 如上所述,本发明诸实施例的一个特征是通过利用高自由度的简单元件结构来提高载流子重新结合效率能容易地实现具有高发射效率的发光元件。从元件使用期限的观点看,该特征是高度有优势的。
[0121] 首先,在本发明实施例的发光元件中,因为第一有机化合物是整个有机化合物膜的主要成分(基材),所以在有机化合物膜中不存在界面。由此,本发明诸实施例的发光元件在检查退化时是有用的,因为在多层异质结的情形中标识提供不利效果的界面是极为困难的。即,在本发明诸实施例的发光元件中,不需要考虑在多个层之间的界面上产生的问题(材料的激态络合物形成或相互扩散)。因此,可仅集中于其绝缘属性实现材料的研发,这便于元件结构的设计策略的建立。
[0122] 此外,因为载流子的传输速率可以利用其量在给定区域中所包括成分中最少的成分(即载流子捕获物质)控制,所以可实现属性不容易随时间改变且具有较长使用期限的发光元件。换言之,与其中用单种物质控制载流子平衡的情形相比,不容易改变载流子平衡。例如,含有单种物质的层的载流子平衡可被表面形态的部分变化、部分结晶化等轻易地改变。然而,在本发明实施例的发光元件中,载流子的传输速率可以利用其量在给定区域中所包括成分中最少的成分(即载流子捕获物质)控制,并且在该成分(载流子捕获物质)中不可能产生表面形态、结晶化、聚集等变化。因此,有可能获得载流子平衡不轻易随时间改变且具有长使用期限(促使发射效率随时间降低)的发光元件。
[0123] 此外,从制造工艺的观点看,本发明实施例的发光元件也是有优势的。目前,进行实际应用的大多数发光元件通过诸如真空蒸镀的干法工艺制造。那是因为对于改进使用期限而言,能容易地消除氧气或水的影响的干法工艺是有利的。
[0124] 然而,在通过干法工艺制造具有异质结构的发光元件时,衬底需要通过多个腔室来形成多个层,这增加了制造成本(具体而言是制造设备的成本)。此外,哪怕这些层之一有缺陷,整个元件也就有缺陷了,这使产量大大减少。另外,因为考虑到即使在真空中也可能在形成多个层的步骤之间(例如在递送衬底期间)吸收残留的氧气、湿气之类,所以有必要小心以确保使用期限。
[0125] 另一方面,本发明实施例的发光元件可仅以在蒸镀第一有机化合物时通过共蒸镀添加添加剂的方式来通过干法工艺制造。因此,制造设备可简化以获取制造成本或产量的优点。此外,因为可在真空中进行有机化合物膜的连续形成,所以可防止吸收残余氧气或湿气;因此,可获得延长使用期限的效果。注意,共蒸镀方法指在一个处理室中同时从多个蒸镀源进行蒸镀的一种蒸镀方法。
[0126] 如上所述,通过应用本发明诸实施例,可在不形成异质结构的情况下制造具有好的载流子平衡的发光元件。因此,可提供容易制造的且具有高发射效率的发光元件。
[0127] 此外,通过应用本发明诸实施例,可在不形成异质结构的情况下制造其中载流子平衡随时间的变化可忽略的发光元件。因此,可提供容易制造的且具有长使用期限的发光元件。
[0128] 接着,以下将具体给出可用于本发明实施例的发光元件的材料的示例。
[0129] 首先,对于第一有机化合物,尽管只要其可传输载流子就没有限制,但是因为空穴和电子两者应当从电极处注入,所以使用具有极高电离势的物质或者具有极低电子亲合势的物质是困难的。因此,优选电离势应当是6.5eV或以下(即HOMO应当是-6.5eV或以上),而电子亲合势应当是2.0eV或以上(即LUMO是-2.0eV或以下)。此外,如果空穴-传输能力和电子-传输能力处于极为不同的水平,则即使通过添加载流子捕获物质,也难以控制载流子平衡;因此,第一有机化合物优选具有一定程度的空穴传输能力和一定程度的电子传输能力。
[0130] 因此,第一有机化合物优选是萘衍生物、蒽衍生物、菲衍生物、芘衍生物、并四苯衍生物、屈衍生物等稠合芳烃化合物。具体而言,有9,10-二苯基蒽(简称:DPAnth)、9,10-二(3,5-二苯基苯基)蒽(简称:DPPA)、9,10-二(2-萘基)蒽(简称:DNA)、2-叔丁基-9,10-二(2-萘基)蒽(简称:t-BuDNA)、9,9′-联蒽(简称:BANT)、9,9′-(芪-3,
3′-二基)二菲(简称:DPNS)、9,9′-(芪-4,4′-二基)二菲(简称:DPNS2)、3,3’,
3”-(苯-1,3,5-三基)三芘(简称:TPB3)、5,12-二苯基四联苯、红荧烯等。此外,在稠合芳烃化合物中,特别优选的是具有芳族胺骨架或诸如富电子杂芳环的富π电子骨架(例如吡咯、吲哚、咔唑、二苯呋喃、或二苯并噻吩)的稠合芳烃化合物,其可容易地接受空穴和电子两者。具体而言,有4,4-二[N-(1-萘基)-N-苯基氨基]联苯(简称:NPB或α-NPD)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]9H-咔唑-3-胺(简称:CzA1PA)、9-苯基-9′-[4-(10-苯基-9-蒽基)苯基]-3,3’-二(9H-咔唑)(简称:PCCPA)、、4-(10-苯基-9-蒽基)三苯基胺(简称:DPhPA)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯基胺(简称:YGAPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:PCAPA)、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(简称:PCAPBA)、N,9-二苯基-N-(9,10-苯基-2-蒽基)-9H-咔唑-3-胺(简称:2PCAPA)、6,
12-二甲氧基-5,11-二苯基屈、N,N,N′,N′,N″,N″,N″′,N″′-八苯基二苯并[g,p]屈-2,7,10,15-四胺(简称:DBC1)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:
CzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:DPCzPA)等。
[0131] 此外,考虑接受空穴和电子两者的属性,第一有机化合物更优选是双极化合物,该双极化合物是同时在分子内具有诸如芳族胺骨架或诸如富π电子杂芳环的富电子骨架(例如吡咯、吲哚、咔唑、二苯呋喃、或二苯并噻吩)、以及诸如缺π电子杂芳环的缺电子骨架(例如嘧啶、喹啉、喹喔啉、二唑、或多唑)。具体而言,有(4,4′-(喹喔啉-2,3-二基)双(N,N-二苯基苯胺)(简称:TPAQn)、N,N′-(喹喔啉-2,3-二基二-4,1-亚苯基)双(N-苯基-1,1′-联苯基-4-胺)(简称:BPAPQ)、N,N′-(喹喔啉-2,3-二基二-4,1-亚苯基)双[双(1,1′-联苯基-4-基)胺](简称:BBAPQ)、4,4′-(喹喔啉-2,3-二基)双{N-[4-(9H-咔唑-9-基)苯基]-N-苯基苯胺}(简称:YGAPQ)、N,N′-(喹喔啉-2,3-二基二-4,1-亚苯基)双(N,9-二苯基-9H-咔唑-3-胺)(简称:PCAPQ)、4-(9H-咔唑-9-基)-4′-(3-苯基喹喔啉-2-基)三苯胺(简称:YGA1PQ)、N,9-二苯基-N-[4-(3-苯基喹喔啉-2-基)苯基]-9H-咔唑-3-胺(简称:PCA1PQ)、N,N,N′-三苯基-N′-[4-(3-苯基喹喔啉-2-基)苯基]-1,4-苯二胺(简称:DPA1PQ)、
[0132] 9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、4-(9H-咔唑-9-基)-4′-(5-苯基-1,3,4-噁二唑-2-基)三苯胺(简称为YGAO11)、N,9-二苯基-N-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑-3-胺(简称:PCAO11)、N,N,N’-三苯基-N’-[4-5-苯基-1,3,4-噁二唑-2-基)苯基]-1,4-苯二胺(简称:DPAO11)、4-(9H-咔唑-9-基)-4′-(4,5-二苯基-4H-1,2,4-三唑-4-基)三苯胺(简称为YGATAZ1)、4-(9H-咔唑-9-基)-4’-(3,5-二苯基-4H-1,2,4-三唑-4-基)三苯胺(简称为YGATAZ2)等。
[0133] 另外,许多金属配合物各自具有电子传输属性且同时可接受空穴。因此,举例而言,以下物质的任一种可被用作第一有机化合物:三(8-羟基喹啉)铝(简称:Alq)、三(4-甲基-8-羟基喹啉)铝(III)(简称:Almq3)、双(10-羟基苯并[h]喹啉)铍(II)(简称:BeBq2)、双(8-羟基喹啉)锌(II)(简称:Znq)、二[2-(2-苯并噁唑基)酚酸(phenolato)]锌(II)(简称:ZnPBO)、二[2-(2-苯并噻唑基)酚酸]锌(II)(简称:ZnBTZ)等。
[0134] 注意,尽管第一有机化合物的以上示例是低分子化合物,但可使用以下高分子化合物的任一种:聚(9,9-二辛基芴-2,7-二基)(简称:PFO)、共聚[(9,9-二辛基芴-2,7-二基)-(2,5-二甲氧基苯-1,4-二基)](简称:PF-DMOP)、共聚{(9,9-二辛基芴-2,7-二基)-[N,N′-二-(对-丁基苯基)-1,4-二氨基苯]}(简称:TAB-PFH)、聚(对-亚苯基亚乙烯基)(简称:PPV)、交替共聚[(9,9-二己基芴-2,7-二基)-(苯并[2,1,3]噻二唑-4,7-二基)](简称:PFBT)、交替共聚[(9,9-二辛基芴-2,7-二亚乙烯基亚芴基(fluorenylene))-(2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基)]、聚[2-甲氧基-5-(2′-乙基己氧基)-1,4-亚苯基亚乙烯基](简称:MEH-PPV)、聚(3-丁基噻吩-2,
5-二基)(简称:R4-PAT)、交替共聚{[9,9-二己基-2,7-二(1-氰基亚乙烯基)亚芴基]-[2,5-二(N,N′-二苯基氨基)-1,4-亚苯基]},交替共聚{[2-甲氧基-5-(2-乙基己氧基)-1,4-二(1-氰基亚乙烯基亚苯基)]-[2,5-二(N,N′-二苯基氨基)-1,4-亚苯基]}(简称:CN-PPV-DPD)等。
[0135] 作为添加到发光区域的发光物质,例如,可以使用以下各种荧光化合物的任一种:N,N′-二[4-(9H-咔唑-9-基)苯基]-N,N′-二苯基芪芪-4,4′-二胺(简称:(YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯基胺(简称:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-苯基-2-蒽基)三苯基胺(简称:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:PCAPA)、二萘嵌苯、2,5,8,
11-四(叔丁基)二萘嵌苯(简称:TBP)、4-(10-苯基-9-蒽基)-4′-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBAPA)、N,N″-(2-叔丁基蒽-9,10-二基二-4,1-亚苯基)二[N,N′,N′-三苯基-1,4-苯二胺](简称:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(简称:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N,N’-三苯基-1,4-苯二胺(简称:2DPAPPA)、N,N,N′,N′,N″,N″,N″′,N″′-八苯基二苯并屈-2,7,10,15-四胺(简称:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(简称:2PCAPA)、N-[9,10-双(1,1′-联苯基-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(简称:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N′,N′-三苯-1,4-苯二胺(简称:2DPAPA)、N-[9,10-双(1,1′-联苯基-2-基)-2-蒽基]-N,N′,N′-三苯-1,4-苯二胺(简称:2DPABPhA)、9,10-双(1,
1′-联苯基-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(简称:2YGABPhA)、N,N,9-三苯蒽-9-胺(简称:DPhAPhA)、香豆素545T、N,N′-二苯基喹吖酮(简称:DPQd)、红荧烯、5,12-双(1,1′-联苯基-4-基)-6,11-二苯基并四苯(简称:BPT)、2-(2-{2-[4-(二甲基氨基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCM2)、N,N,N′,N′-四(4-甲基苯基)并四苯-5,11-二胺(简称:p-mPhTD)、
7,13-二苯基-N,N,N′,N′-四(4-甲基苯基)苊并[1,2-a]荧蒽-3,10-二胺(简称:
p-mPhAFD)、2-{2-异丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTI)、2-{2-叔丁基-6-[2-(1,1,
7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTB)、2-(2,6-二{2-[4-(二甲基氨基)苯基]乙烯基}-4H-吡喃-4-亚基)丙二腈(简称:BisDCM)、2-{2,6-二[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-压基}丙二腈(简称:BisDCJTM)等。
[0136] 此外,如上所述,磷光性化合物优选用作添加到发光区域的发光物质。这是因为常规磷光性发光元件需要包括空穴阻挡层等的特定元件结构,因此本发明诸实施例的发光元件对简化磷光性发光元件是有用的。
[0137] 此外,为了使磷光性化合物能在常规异质结构的情况下有效地发光,有必要不仅增加发光层的基质材料的三重激发能、而且增加与发光层相邻的空穴传输层和/或电子传输层的材料(即与发光层相邻的层的材料)的三重激发能。这对材料的研发施加了沉重的负担。相反,本发明诸实施例的发光元件的优点在于仅通过增加第一有机化合物的三重激发能使磷光性化合物有效发光。自然,同样在本发明诸实施例的发光元件中,空穴捕获物质和/或电子捕获物质被添加到与发光区域相邻的区域。然而,这些是添加物,并且不与添加至发光区域的磷光性物质直接接触。因为能量转移效率一般与距离的6次方成反比,所以在本发明诸实施例的器件结构中,能量不易于从磷光性物质转移至空穴捕获物质或电子传输物质。由此,本发明诸实施例能充分利用磷光性发光元件高发射效率的可能性。
[0138] 因上述原因,在本发明实施方式的发光元件的优选结构中,发光物质是磷光化合物。作为磷光化合物的具体例子有:四(1-吡唑基)硼酸二[2-(4′,6′-二氟苯基)吡2′
啶合-N,C ]铱(III)(简称:FIr6)、吡啶甲酸二[2-(4′,6′-二氟苯基)吡啶合-N,
2′ 2
C ]铱(III)(简称:FIrpic)、二[2-(3’,5’-二(三氟甲基)苯基)吡啶合-N,C′]铱
2′
(III)(简称:Ir(CF3ppy)2(pic))、乙酰丙酮化二[2-(4′,6′-二氟苯基)吡啶合-N,C ]
2′
铱(III)(简称:FIracac)、三(2-苯基吡啶合-N,C )铱(III)(简称:Ir(ppy)3)、乙酰丙酮化二(2-苯基吡啶合)铱(III)(简称:Ir(ppy)2(acac))、乙酰丙酮化二(苯并喹啉合)
2′
铱(III)(简称:Ir(bzq)2(acac))、乙酰丙酮化二(2,4-二苯基-1,3- 唑合-N,C )铱(III)(简称:Ir(dpo)2(acac))、乙酰丙酮化二[2-(4′-五氟苯基苯基)吡啶]铱(III)
2′
(简称:Ir(p-PF-ph)2(acac))、乙酰丙酮化二(2-苯基苯并噻唑合-N,C )铱(III)(简称:
3′
Ir(bt)2(acac))、乙酰丙酮化二噻吩基)吡啶合-N,C ]铱(III)(简称:Ir(btp)2(acac))、
2′
乙酰丙酮化二(1-苯基易喹啉合-N,C )铱(III)(简称:Ir(piq)2(acac))、(乙酰丙酮合)二[2,3-二(4-氟苯基)喹喔啉]铱(III)(简称:Ir(Fdpq)2(acac))、(乙酰丙酮合)二(2,3,5-三苯基吡嗪合)铱(III)(简称:Ir(tppr)2(acac))、2,3,7,8,12,13,17,18-八乙基-21H,23H-卟吩铂(II)(简称:PtOEP)、三(乙酰丙酮合)(单菲咯啉)铽(III)(简称:Tb(acac)3(Phen))、三(1,3-二苯基-1,3-丙二酸(propanedionato))(单菲咯啉)铕(III)(简称:Eu(DBM)3(Phen))、三[1-(2-噻吩甲酰基)-3,3,3-三氟乙酸](单菲咯啉)铕(III)(简称:Eu(TTA)3(Phen))等。
[0139] 应注意,当使用磷光化合物作为发光物质时,第一有机化合物应具有三重激发能。由这种观点,优选如上所述具有杂芳环的双极性化合物作为第一有机化合物。
[0140] 虽然对加入空穴传输区的空穴捕集物质没有限制,只要能够相对于第一有机化合物显示空穴传输性质,但是优选具有低电离电势(即,高HOMO能级)的物质。具体而言,有4,4′,4″-三[N-(1-萘基)-N-苯基氨基]三苯胺(简称:1′-TNATA)、3-[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA1)、4,4′,4″-三(N,N-二苯基氨基)三苯胺(简称:TDATA)、4,4′,4″-三[N-(3-甲基苯基)-N-苯基氨基]三苯胺(简称:MTDATA)、1,3,5-三[N-(4-二苯基氨基苯基)-N-苯基氨基]苯(简称:DPA3B)、N,N′-二(4-甲基苯基)-N,N′-二苯基-p-亚苯基二胺(简称:DTDPPA)、4,4′-二[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、4,4′-二(N-{4-[N′-(3-甲基苯基)-N′-苯基氨基]苯基}-N-苯基氨基)联苯(简称:DNTPD)等。
[0141] 虽然对加入电子传输区的电子捕获物质没有限制,只要能够相对于第一有机化合物显示电子传输性质,但是优选具有高电子亲合性(即,低LUMO能级)的物质。具体而言有:吖啶酮、香豆素102、香豆素6H、香豆素480D、香豆素30、N,N′-二甲基喹吖(二)酮(简称:DMQd)、N,N′-二苯基喹吖酮(简称:DPQd)、9,18-二羟基苯并苯并喹吖啶-7,16-二酮(简称:DMNQd-1)、9,18-二甲基-9,18-二羟基苯并苯并喹吖啶-7,16-二酮(简称:DMNQd-2)、香豆素6、香豆素545T、香豆素153、(2-{2-[4-(9H-卡唑-9-基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCMCz)、2-(2-{2-[4-(二甲基氨基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCM1)、2-{2-甲基-6-[2-(2,3,
6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:
DCM2)、{2-(1,1-二甲基乙基)-6-[2-(2,3,6,7-四氢-1,1,7,7-四甲基-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTB)、尼罗河红(Nile red)、2,
3-二丙基喹喔啉(简称:DPQ)、2,3-二(4-氟苯基)喹喔啉(简称:FDPQ)、2,3-二(4-三氟甲基苯基)喹喔啉(简称:CF3-DPQ)、2,3,5,8-四苯基喹喔啉(简称:TPQ)、2,3,2′,3′-四苯基-6,6′-二喹喔啉(简称:DPQ2)、2,3,2′,3′-四(4-氟苯基)-6,6′-二喹喔啉(简称:FDPQ2)等。
[0142] 对于阳极而言,优选使用具有高功函(具体为4.0eV或以上的功函)的金属、合金、导电化合物、其混合物等。具体地有氧化铟-氧化锡(ITO:氧化铟锡)、含硅或氧化硅的氧化铟-氧化锡、氧化铟-氧化锌(IZO)以及含氧化钨和氧化锌的氧化铟(IWZO)等。这种导电金属氧化物膜一般通过溅射形成,但也可通过应用溶胶-凝胶法等的喷墨法、旋涂法等形成。例如,通过使用其中将1-20wt%的氧化锌添加到氧化铟的靶的溅射法可形成氧化铟-氧化锌(IZO)膜。通过使用其中将0.5-5wt%的氧化钨和0.1-1wt%的氧化锌添加到氧化铟的靶的溅射法可形成含有含氧化钨和氧化锌的氧化铟(IWZO)的氧化铟膜。此外,存在金(Au)、铂(Pt)、镍(Ni)、钨(W)、铬(Cr)、钼(Mo)、铁(Fe)、钴(Co)、铜(Cu)、钯(Pd)、钛(Ti)、金属氮化物材料(例如氮化钛)、氧化钼、氧化钒、氧化钌、氧化钨、氧化锰、氧化钛等。或者,可以使用导电聚合物,例如,聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)或聚苯胺/聚(苯乙烯磺酸)(PAni/PSS)。
[0143] 对于阴极而言,可使用具有低功函(具体地,3.8eV或以下的功函是优选的)的金属、合金、导电化合物、其混合物等。这种阴极材料的具体示例包括属于周期表第1族或第2族的元素,即,碱金属如锂(Li)和铯(Cs),碱土金属如镁(Mg)、钙(Ca)和锶(Sr),含这些的合金(如,MgAg和AlLi),稀土元素如铕(Eu)和镱(Yb),含这些的合金等。或者,阴极可使用碱金属化合物、碱土金属化合物、或稀土金属化合物(例如氟化锂(LiF)、氧化锂(LiOx)、氟化铯(CsF)、氟化钙(CaF2)、或氟化铒(ErF3))的薄膜和诸如铝的金属膜的叠层形成。碱金属、碱土金属或者包括任一这些元素的合金的膜可通过真空蒸镀法形成。此外,包括碱金属、碱土金属的合金的膜可通过溅射法形成。此外,由银糊料等形成的金属膜可通过喷墨法形成。
[0144] 注意,在本发明实施例的发光元件中,阳极和阴极的至少之一应当具有透光性质。可通过使用具有透光性质的诸如ITO的电极材料、或通过使用减薄电极来确保透光性质。
[0145] 通过如上所述地组合材料,可制造本发明诸实施例的发光元件。尽管来自上述发光物质的发光可用本发明诸实施例的发光元件获得,但可通过改变发光物质来获得各种色彩的发光。具体地,通过将发射不同色彩光的多种发光物质用作发光物质,可获得具有宽频谱的发光或白光发射。
[0146] 使用白色发光元件,可通过提供滤色片来制造全色显示器。这种技术的一个特征是可通过在衬底上仅形成白色发光元件来制造全色显示器的简单性。因而,本发明实施例的能容易地制造的发光元件被应用于与滤色片相组合的白色发光元件;因此,能同时获得降低成本的效果。
[0147] 作为能够从发射不同颜色光的多种发光物质发光的本发明诸实施例的发光元件的元件结构,可形成含有添加了发射不同颜色光的全部多种发光物质的第一有机化合物的发光区域,或者可堆叠添加了各种发光物质的多个发光区域。例如,当三种物质A、B和C被用作发射不同色彩光的多种发光物质时,全部三种物质A、B和C可被添加至第一有机化合物以形成一个发光区域,同时对浓度加以调节从而可获得来自全部A、B和C的发光。或者,可依次堆叠含有添加了A的第一有机化合物的发光区域、含有添加了B的第一有机化合物的发光区域、以及含有添加了C的第一有机化合物膜的发光区域,从而可获得来自全部A、B和C的发光。
[0148] 可适当地从上述荧光性化合物和磷光性化合物中选择发射不同色彩光的多种发光物质。例如,通过将发射蓝光的PCBAPA与发射黄光的红荧烯组合,可获得白色发光。同样,通过将发射蓝光的Ir(CF3ppy)2(pic)与发射红光的Ir(btp)2(acac)组合,可获得白色发光。
[0149] 具体而言,发射不同色彩光的多种发光物质优选包括发射红光的发光物质、发射绿光的发光物质、以及发射蓝光的发光物质。发射红光的发光物质优选具有在580~700nm的发射峰。发射绿光的发光物质优选具有在500~540nm范围内的发射峰。发射蓝光的发光物质优选具有在400~480nm范围内的发射峰。例如,通过将发射红光的DCJTI与发射绿光的2PCAPA、以及发射蓝光的PCBAPA相组合,可获得白色发光。
[0150] 为了改善发光效率,发射不同色彩光的多种发光物质优选包括发射红光的发光物质、发射黄光的发光物质、发射绿光的发光物质、以及发射蓝光的发光物质。发射黄光的发光物质优选具有在550~570nm范围内的发射峰。例如,发射红光的DCJTI、发射黄光的红荧烯、发射绿光的2PCAPA、以及发射蓝光的PCBAPA的组合是可能的。
[0151] 如上所述,本发明实施例的发光元件可在各种衬底的任一种上形成。对于衬底,可使用例如玻璃、石英、塑料、金属板、金属箔等。当从衬底一侧提取发光元件的发光时,可使用具有发光属性的衬底。注意,对于衬底,可使用任何其它材料,只要该材料在发光元件的制造过程中作为支承体即可。
[0152] 此外,通过在衬底上形成多个这种发光元件,可制造无源矩阵发光器件。此外,例如可在衬底上形成薄膜晶体管(TFT)从而在电连接至TFT的电极上制造发光元件。因此,可制造通过TFT控制发光元件的驱动的有源矩阵发光器件。注意,对TFT的结构没有限制。TFT可以是交错型或者是反向交错型。此外,在TFT衬底上形成的驱动电路可利用N型和P型TFT两者,或者利用N型或P型TFT形成。此外,对用于TFT的半导体膜的结晶度没有限制。非晶半导体膜或晶体半导体膜可用于TFT。此外,可使用单晶半导体膜。该单晶半导体膜可通过智能切割法(注册商标Smart Cut)等形成。
[0153] 接着,描述制造本发明诸实施例的发光元件的方法。作为该制造方法,如上所述的以真空蒸镀法为典型的干法工艺是优选的。这是因为在本发明诸实施例的发光元件的有机化合物膜中,第一有机化合物是整个发光区域、空穴传输区域、以及电子传输区域等的主要成分(基材),而干法工艺使其更便于分别形成每个区域。从这一观点看,第一有机化合物优选为低分子化合物。
[0154] 然而,可采用各种方法的任一种来形成本发明诸实施例的发光元件,不管是干法工艺还是湿法工艺。湿法工艺的典型示例包括但不限于喷墨法、旋涂法等。
[0155] (实施方式2)
[0156] 在实施方式2中,通过形成实施方式1中所揭示的基本结构获得的本发明一实施例的另一结构将使用图4A和4B以及图5来描述。
[0157] 图4A和4B以及图5各自示出本发明一实施例的发光元件,其包括包含阳极101与阴极102之间的第一有机化合物的有机化合物膜103;有机化合物膜103被设置成与阳极101和阴极102接触。由此,该有机化合物膜103包括添加了发光物质的发光区域,还包括添加了空穴捕获物质的空穴传输区域、和/或添加了电子捕获物质的电子传输区域。这些发光区域、空穴传输区域以及电子传输区域的结构如实施方式1所揭示。
[0158] 在实施方式2的发光元件中,电极与有机化合物膜彼此接触的界面比实施方式1中所揭示的发光元件中的设计更为独到。在下文中,使用图4A和4B以及图5描述该发光元件。
[0159] 图4A示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中添加了受电子物质的区域114(下文中称为空穴注入区域114)被进一步设置在其中有机化合物膜103与阳极101相接触的区域中。通常,当包含在有机化合物膜103中的第一有机化合物具有高电离势(低HOMO能级)时,空穴难以从阳极101注入到有机化合物膜103中。然而,该问题能通过提供如图4A所示的空穴注入区域114以使在第一有机化合物中生成电荷转移配合物、从而减少空穴注入的障碍来解决。因而,当第一有机化合物的电离势为高(HOMO能级低)时图4A中的结构是有效的。
[0160] 另一方面,图4B示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中添加了供电子物质的区域115(下文中称为电子注入区域115)被设置在其中有机化合物膜103与阴极102相接触的区域中。通常,当包含在有机化合物膜103中的第一有机化合物具有低电子亲合势(高LUMO能级)时,电子难以从阴极102注入到有机化合物膜103中。然而,该问题能通过提供如图4B所示的电子注入区域115以使在第一有机化合物中生成电荷转移配合物、从而减少电子注入的障碍来解决。因而,当第一有机化合物的电子亲合势为低(LUMO能级高)时图4B中的结构是有效的。
[0161] 图5所示的元件结构是另一优选示例。图5示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中受电子物质被添加到其中有机化合物膜103与阳极101相接触的区域(即形成空穴注射区域114),而供电子物质被添加到其中有机化合物膜
103与阴极102相接触的区域中(即形成电子注射区域115)。根据以上描述,当包含在有机化合物膜103中的第一有机化合物的电离势高(HOMO能级低)且第一有机化合物的电子亲合势低(LUMO能级高)时,图5中的结构是有效的。即,当第一有机化合物的能隙大时,如图5所示的元件结构是极为有用的。
[0162] 因而,当发射具有高能量的诸如蓝色或白色的彩色光时,图5中的结构据称是有用的。此外,因为当发光物质是磷光性化合物时第一有机化合物应当具有大的能隙,所以图5中的元件结构是有用的。
[0163] 对于图4A和4B以及图5中所示的元件结构而言,受电子物质的示例包括诸如7,7,8,8-四氰基-2,3,5,6-四氟喹啉并二甲烷(简称:F4-TCNQ)和氯醌,以及过渡金属氧化物。其它示例是属于周期表第4-8族的金属的氧化物。具体而言,优选氧化钒、氧化铌、氧化钽、氧化铬、氧化钼、氧化钨、氧化锰和氧化铼,因为这些氧化物具有高的接受电子性质。其中,尤其优选氧化钼,因为氧化钼在空气中的稳定性以及其吸湿性低,因此容易进行处理。
[0164] 此外,供电子物质的示例包括:有机化合物,诸如四硫代萘并萘(简称:TTN)、二茂镍、十甲基二茂镍;诸如锂金属(Li)和铯(Cs)的碱金属,诸如锰(Mg)、钙(Ca)和锶(Sr)的碱土金属,及其合金(例如MgAg、AlLi)。或者,可使用碱金属化合物(例如氧化锂(LiOx))、碱土金属化合物、或稀土金属化合物中的任一种。
[0165] 注意,图4A和图5所示的空穴注入区域114能通过上述第一有机化合物和受电子物质的共蒸镀形成。此外,图4B和图5所示的电子注入区域115能通过上述第一有机化合物和供电子物质的共蒸镀形成。
[0166] 在此,图4A或图5所示的结构的一个特征是,不管功函如何都可将各种金属、合金、导电化合物、其混合物中的任一种用于阳极101。可使用在实施方式1中给出的用于阳极101的材料,并且可替代使用例如铝(Al)、银(Ag)、含铝的合金(例如AlSi)等。可使用以下具有低功函的材料的任一种:属于周期表第1族或第2族的元素,即,碱金属如锂(Li)和铯(Cs),碱土金属如镁(Mg)、钙(Ca)和锶(Sr),含这些的合金(如,MgAg和AlLi),稀土元素如铕(Eu)和镱(Yb),含这些的合金等。碱金属、碱土金属或者包括任一这些元素的合金的膜可通过真空蒸镀法形成。此外,包括碱金属、碱土金属的合金的膜可通过溅射法形成。此外,由银糊料等形成的膜可通过喷墨法形成。
[0167] 此外,在如图4B和图5所示的结构中,对于与阴极102接触的层,可使用诸如Al、Ag、ITO和含硅或氧化硅的氧化铟-氧化锡,而不考虑功函。可采用溅射法、喷墨法、旋涂法等形成这些导电材料的膜。
[0168] 注意,实施方式2可按需与任何其它实施方式组合。
[0169] (实施方式3)
[0170] 在实施方式3中,通过形成实施方式1中所揭示的基本结构获得的本发明一实施例的另一结构将使用图6A和6B以及图7来描述。
[0171] 图6A和6B以及图7各自示出本发明一实施例的发光元件,其包括包含阳极101与阴极102之间的第一有机化合物的有机化合物膜103,其中有机化合物膜103被设置成与阳极101和阴极102接触。由此,该有机化合物膜103包括添加了发光物质的发光区域,并且还包括添加了空穴捕获物质的空穴传输区域、和/或添加了电子捕获物质的电子传输区域。这些发光区域、空穴传输区域以及电子传输区域的结构与实施方式1所揭示的相似。
[0172] 在实施方式3的发光元件中,电极与有机化合物膜彼此接触的界面比实施方式1中所揭示的发光元件中的设计更为独到。在下文中,使用图6A和6B以及图7描述该发光元件。
[0173] 图6A示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中电荷生成区域116被设置在其中有机化合物膜103与阳极101相接触的区域中。电荷生成区域116包括其中供电子物质被添加到第一有机化合物的N型区域116b,以及其中受电子物质被添加到第一有机化合物的P型区域116a。N型区域116b位于P型区域116a与阳极101之间。
[0174] 通常,当包含在有机化合物膜103中的第一有机化合物具有高电离势(低HOMO能级)时,空穴难以从阳极101注入到有机化合物膜103中。然而,因为在电荷生成区域116如图6A中所设置的情况下,电子和空穴在电荷生成区域116中生成并且通过施加电压分别向阳极101和阴极102传输,所以可忽略从阳极101向有机化合物膜103进行的空穴注入的障碍。因而,当第一有机化合物的电离势为高(HOMO能级低)时图6A中的结构是有效的。
[0175] 另一方面,图6B示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中电荷生成区域117被设置在有机化合物膜103与阴极102相接触的区域中。电荷生成区域117包括其中供电子物质被添加到第一有机化合物的N型区域117b,以及其中受电子物质被添加到第一有机化合物的P型区域117a。P型区域117a位于N型区域117b与阴极102之间。
[0176] 通常,当包含在有机化合物膜103中的第一有机化合物具有低电子亲合势(高LUMO能级)时,电子难以从阴极102注入到有机化合物膜103中。然而,在电荷生成区域117如图6B中所设置的情况下,因为电子和空穴在电荷生成区域117中生成并且通过施加电压分别向阳极101和阴极102传输,所以可忽略从阴极102向有机化合物膜103进行的电子注入的障碍。因而,当第一有机化合物的电子亲合势为低(LUMO能级高)时图6B中的结构是有效的。
[0177] 图7所示的元件结构是另一优选示例。图7示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中第一电荷生成区域116被设置在其中有机化合物膜103与阳极101相接触的区域中,而第二电荷生成区域117被设置在其中有机化合物膜103与阴极102相接触的区域中。根据以上描述,当包含在有机化合物膜103中的第一有机化合物的电离势高(HOMO能级低)且第一有机化合物的电子亲合势低(LUMO能级高)时,图
7中的结构是有效的。即,当第一有机化合物膜的能隙大时,如图7所示的元件结构是极为有用的。
[0178] 因而,当发射具有高能量的诸如蓝色或白色的彩色光时,图7中的结构是有用的。此外,因为当发光物质是磷光性化合物时,第一有机化合物应当具有大的能隙,所以图7中的元件结构是有用的。
[0179] 此外,在如图7所示的结构中,具有相同结构的电荷生成区域可在其中有机化合物膜103与阳极101接触的区域和其中有机化合物膜103与阴极102接触的区域两者中形成。第一电荷生成区域116向发光元件的发光区域提供空穴,而第二电荷生成区域117向该发光区域提供电子。当该第一电荷生成区域和第二电荷生成区域具有相同结构时,载流子供应的平衡不随时间改变。即使第一电荷生成区域逐步退化,例如第二电荷生成区域也相同程度地退化;因而,不容易失去发光区域的空穴和电子之间的供应平衡。因此,该结构使得元件的使用期限得以延长。
[0180] 注意,受电子物质、供电子物质、阳极以及阴极的具体结构可与实施方式2中所揭示的相似。
[0181] 注意,实施方式3可按需与任何其它实施方式组合。
[0182] (实施方式4)
[0183] 在实施方式4中,通过形成实施方式1中所揭示的基本结构获得的本发明一实施例的另一结构将使用图8A和8B来描述。
[0184] 图8A和8B各自示出本发明一实施例的发光元件,其包括包含阳极101与阴极102之间的第一有机化合物的有机化合物膜103,且有机化合物膜103被设置成与阳极101和阴极102接触。由此,该有机化合物膜103包括添加了发光物质的发光区域,还包括添加了空穴捕获物质的空穴传输区域、和/或添加了电子捕获物质的电子传输区域。这些发光区域、空穴传输区域以及电子传输区域的结构与实施方式1所揭示的相似。
[0185] 在实施方式4的发光元件中,其中电极与有机化合物膜彼此接触的界面比实施方式1中所揭示的发光元件中的设计更为独到。在下文中,使用图8A和8B描述该发光元件。
[0186] 图8A示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中添加了受电子物质的空穴注入区域114被设置在其中有机化合物膜103与阳极101相接触的区域中,而电荷生成区域117被设置在其中有机化合物膜103与阴极102相接触的区域中。电荷生成区域117包括其中供电子物质被添加到第一有机化合物的N型区域117b,以及其中受电子物质被添加到第一有机化合物的P型区域117a。P型区域117a位于N型区域117b与阴极102之间。
[0187] 空穴注入区域114的特征如实施方式2中所述。此外,电荷生成区域117的特征如实施方式3中所述。因此,可以说,当包含在有机化合物膜103中的第一有机化合物的电离势高(HOMO能级低)且第一有机化合物的电子亲合势低(LUMO能级高)时,如图8A中所述的结构是有效的。即,当第一有机化合物膜的能隙大时,如图8A所示的元件结构是极为有效的。
[0188] 因而,当发射具有高能量的诸如蓝色或白色的彩色光时,图8A中的结构是有用的。此外,因为当发光物质是磷光性化合物时,第一有机化合物应当具有大的能隙,所以图8A中的元件结构是有用的。
[0189] 另一方面,图8B示出根据实施方式1中所揭示的本发明实施例的发光元件的发光元件,其中电荷生成区域116被设置在其中有机化合物膜103与阳极101相接触的区域中,而添加了供电子物质的电子注入区域115被设置在其中有机化合物膜103与阴极102相接触的区域中。电荷生成区域116包括其中供电子物质被添加到第一有机化合物的N型区域116b,以及其中受电子物质被添加到第一有机化合物的P型区域116a。N型区域116b位于P型区域116a与阳极101之间。
[0190] 电荷生成区域116的特征如实施方式3中所述。此外,电子注入区域115的特征如实施方式2中所述。因此,可以说,当包含在有机化合物膜103中的第一有机化合物的电离势高(HOMO能级低)且第一有机化合物的电子亲合势低(LUMO能级高)时,如图8B中所述的结构是有效的。即,当第一有机化合物膜的能隙大时,如图8B所示的元件结构是极为有效的。
[0191] 因而,当发射具有高能量的诸如蓝色或白色的彩色光时,图8B中的结构是有用的。此外,因为当发光物质是磷光性化合物时第一有机化合物应当具有大的能隙,所以图8B中的元件结构是有用的。
[0192] 在此,如图8A和8B中各自所示的元件结构的特征是,相同的结构可应用于其中有机化合物膜103与阳极101接触的界面以及其中有机化合物膜103与阴极102接触的界面。例如,在图8A中,其中有机化合物膜103与阳极101接触的界面是空穴注入区域114,而其中有机化合物膜103与阴极102接触的界面是P型区域117a。两个界面都具有其中受电子物质被添加到第一有机化合物中的结构。同样,在图8B中,其中有机化合物膜103与阳极
101接触的界面是N型区域116b,而其中有机化合物膜103与阴极102接触的界面是电子注入区域115。两个界面都具有其中供电子物质被添加到第一有机化合物中的结构。
[0193] 换言之,有机化合物膜103的两端(两个膜面)可包含相同材料。因此,实施方式4的元件的另一特征是有机化合物膜103与阳极之间的应力和有机化合物膜103与阴极之间的应力可被调节成相同或基本处于相同状态。这可增加有机化合物膜的可靠性。
[0194] 注意,受电子物质、供电子物质、阳极以及阴极的具体结构可与实施方式2中所揭示的相似。
[0195] 注意,实施方式4可按需与任何其它实施方式组合。
[0196] (实施方式5)
[0197] 在实施方式5中,将参照图9描述其中堆叠如实施方式1-4中所述的本发明实施例的多个有机化合物膜以使发射效率和使用期限得到进一步改善的串联发光元件。
[0198] 图9示出应用串联结构的本发明一实施例的发光元件的示例。在阳极101和阴极102之间,堆叠两个如实施方式2的图5中所示的有机化合物膜(即第一有机化合物膜103-1和第二有机化合物膜103-2)。从与图5的比较中显而易见,第一有机化合物膜103-1包括添加了受电子物质的空穴注入区域114-1和添加了供电子物质的电子注入区域
115-1。类似地,第二有机化合物膜103-2包括添加了受电子物质的空穴注入区域114-2和添加了供电子物质的电子注入区域115-2。注意,有机化合物膜103-1和103-2各自包括添加了发光物质的发光区域,还包括添加了空穴捕获物质的空穴传输区域、和/或添加电子捕获物质的电子传输区域。发光区域、空穴传输区域以及电子传输区域的结构如实施方式
1所述。
[0199] 在图9的结构中,在其中第一有机化合物膜103-1和第二有机化合物膜103-2彼此接触的部分中,添加了供电子物质的电子注入区域115-1和添加了受电子物质的空穴注入区域114-2按该顺序在从阳极101向阴极102的方向上堆叠。该堆叠结构用作电荷生成区域,如图9中所示。因而,载流子在第一有机化合物膜的发光区域和第二有机化合物膜的发光区域两者中重新结合。换言之,在相同量的电流流动的情况下,大体上可获得实施方式1-4的任一实施方式中所述的发光元件的两倍的辉度。
[0200] 此外,重要的是,通过使用本发明实施例的结构,甚至这种串联元件也能极为简单地制造。如图9中所示,因为两个有机化合物膜(103-1和103-2)各自可使用第一有机化合物作为主要成分(基材)形成并且进行堆叠,所以该元件可仅通过控制添加物来制造。
[0201] 注意,尽管在实施方式5中描述了具有两个有机化合物膜的串联元件,但可简单地采用其中堆叠三个或更多个有机化合物膜的发光元件。通过应用实施方式5,可简单地制造能够进行高辉度发光同时保持低电流密度以具有长使用期限的串联发光元件。此外,可实现具有低功耗的发光装置。该特征在应用于照明设备时是有利的。
[0202] 此外,形成多个有机化合物膜以便于发射不同色彩的光是可能的。例如,通过形成如图9所示的发光元件以使第一有机化合物膜103-1的发射色彩和第二有机化合物膜103-2的发射色彩彼此互补,发光元件能提供白色发光。注意,“互补色彩”指在混合时能产生非彩色光的色彩。换言之,当混合从发射互补色彩的物质发射的光时,可获得白色发光。
此外,这同样适用于具有三个有机化合物膜的发光元件。例如,当第一有机化合物膜的发射色彩为红色、第二有机化合物膜的发射色彩为绿色、且第三有机化合物膜的发射色彩为蓝色时,发光元件能提供白色发光。
[0203] 注意,实施方式5可按需与任一个其它实施方式组合。
[0204] (实施方式6)
[0205] 在实施方式6中,将描述具有本发明实施例的发光元件的发光装置。
[0206] 在实施方式6中,参照图10A和10B描述在像素部分中包括本发明诸实施例的发光元件的发光装置。注意,图10A是示出该发光装置的俯视图,而图10B是沿着线A-A′和B-B′取得的图10A的横截面图。该发光装置包括由虚线示出用于控制发光元件发光的驱动电路部分(源极侧驱动电路)601、像素部分602、以及驱动电路部分(栅极侧驱动电路)603。此外,附图标记604表示密封衬底、附图标记605表示密封剂、而附图标记607表示密封剂605所包围的空间。
[0207] 注意,引线608是用于发送输入至源极侧驱动电路601和栅极侧驱动电路603的信号的布线。引线608从用作外部输入终端的柔性印刷电路(FPC)609处接收视频信号、时钟信号、起始信号、重置信号等。注意,尽管在此仅示出一FPC,但该FPC可被设置有印刷线路板(PWB)。本说明书中的发光装置不仅包括发光装置本身而且包括附连有FPC或PWB的发光装置。
[0208] 然后,使用图10B描述横截面结构。驱动电路部分和像素部分设置在元件衬底610之上,但是在图10B中仅示出作为驱动电路部分的源极侧驱动电路601和像素部分602的一个像素。
[0209] 注意,在源极侧驱动电路601中形成了作为n沟道TFT 623和p沟道TFT 624的组合的CMOS电路。然而,该驱动电路可使用诸如CMOS电路、PMOS电路或NMOS电路的各种电路来形成。此外,尽管在实施方式6中描述了其中驱动器电路在设置有像素部分的衬底之上形成的驱动器集成类型,但本发明实施例不限于该类型,并且驱动电路可在衬底外形成。
[0210] 像素部分602包括多个像素,每个像素具有开关TFT 611、电流控制TFT612、以及电连接至电流控制TFT 612的漏极的第一电极613。注意,绝缘体614被形成为覆盖第一电极613的端部。在此,正型感光性丙烯酸树脂膜被用来形成绝缘体614。
[0211] 为了改进覆盖率,绝缘体614被设置成使该绝缘体614的上端部或下端部具有带曲率的曲面。例如,当正型感光性丙烯酸树脂被用作绝缘体614的材料时,优选只有绝缘体614的上端部具有带曲率半径(0.2-3μm)的曲面。或者,绝缘体614可使用通过光辐射在蚀刻剂中变得不可溶的负型或通过光辐射在蚀刻剂中变得可溶的正型来形成。
[0212] 在第一电极613之上,形成有机化合物膜616和第二电极617。在此,对于用于第一电极613的材料,可使用各种金属、合金、导电化合物的任一种、或其混合物。在这些材料中,当第一电极用作阳极时,优选使用具有高功函(优选为4.0eV或以上的功函)的金属、合金、导电化合物、其混合物等。例如,有可能使用含硅的氧化铟-氧化锡膜、氧化铟-氧化锌膜、氮化钛膜、铬膜、钨膜、锌膜、铂膜等的单个层,或者氮化钛膜和含铝作为主要成分的膜的叠层;或者氮化钛膜、含铝作为主要成分的膜、以及氮化钛膜的三层结构。注意,在使用叠层结构的情况下,第一电极613具有与布线一样的低电阻,形成有利的欧姆接触、且可用作阳极。
[0213] 此外,有机化合物膜616通过诸如使用蒸镀掩模的蒸镀法、喷墨法、旋涂法等的各种方法形成。有机化合物膜616具有实施方式1-5中所述的结构的任一种。此外,作为有机化合物膜616中所含的材料,可使用低分子化合物、高分子化合物、高分子化合物、低聚物或树形大分子(dendrimer)的任一种。用于有机化合物膜的材料不限于有机化合物并且可以是无机化合物。
[0214] 作为用于第二电极617的材料,可使用各种金属、合金、导电化合物的任一种、或其混合物。在这些材料中,当第二电极用作阴极时,优选使用具有低功函(优选为3.8eV或以下的功函)的金属、合金、导电化合物、其混合物等。例如,存在属于周期表第1族或第2族的元素,即,碱金属如锂(Li)和铯(Cs),碱土金属如镁(Mg)、钙(Ca)和锶(Sr),含这些的合金(如,MgAg和AlLi)等。注意,当来自有机化合物膜616的光透过第二电极617时,该第二电极617可使用厚度小的薄金属膜和透明导电膜(氧化铟-氧化锡(ITO)、含硅或氧化硅的氧化铟-氧化锡、氧化铟-氧化锌(IZO)以及含氧化钨和氧化锌的氧化铟(IWZO)等)的叠层形成。
[0215] 通过用密封剂605将密封衬底604和元件衬底610彼此粘合,发光元件618被设置在被元件衬底610、密封衬底604和密封剂605包围的空间607中。注意,可用填料填充空间607。还存在其中用惰性气体(诸如氮或氩)填充空间607的情形和用密封剂605填充空间607的情形。
[0216] 注意,作为密封剂605,优选使用基于环氧基树脂。此外,优选这种材料允许尽可能少的湿气或氧气渗透。此外,作为密封衬底604,可使用利用玻璃纤维增强的塑料(FRP)、聚氟乙烯(PVF)、聚酯、丙烯酸类材料等构成的塑料衬底来代替玻璃衬底或石英衬底。
[0217] 如上所述,可获得包括本发明实施例的发光元件的发光装置。
[0218] 本发明实施例的发光装置包括实施方式1-5中所述的任一种发光元件。因为这些发光元件具有高发射效率并且可通过简单过程获得,所以可容易地获得具有低功耗的发光装置。
[0219] 此外,实施方式1-5中所述的发光元件具有长的使用期限。因此,可获得具有长使用期限的发光元件。
[0220] 尽管如上所述在实施方式6中描述了用晶体管控制发光元件的驱动的有源矩阵发光装置,但本发明实施例的发光装置可以是无源矩阵发光装置。图11A和11B示出根据本发明实施例制造的无源矩阵发光装置。注意,图11A是示出该发光装置的俯视图,而图11B是沿着线X-Y取得的图11A的横截面图。在图11A和11B中,有机化合物膜955被设置在衬底951之上电极952与电极956之间。电极952的端部用绝缘层953来覆盖。此外,分隔层954被设置在绝缘层953上。分隔层954的侧壁倾斜以使一个侧壁与另一个侧壁之间的距离向着衬底表面逐渐减小。换言之,沿分隔层954的短边的方向上取得的横截面是梯形,且下面的边(作为梯形横截面的一对平行边之一的与绝缘层953接触的边)比上面的边(作为该对平行边的另一条边的不与绝缘层953接触的边)短。以此方式设置分隔层
954实现阴极的图案化。此外,同样在无源矩阵发光装置的情况下,通过包括根据本发明实施例的具有高发射效率的发光元件,能获得具有低功耗和长使用期限的发光装置。
[0221] 注意,实施方式6可按需与任一个其它实施方式组合。
[0222] (实施方式7)
[0223] 在此,将使用图12描述制造有源矩阵显示设备的过程的示例。
[0224] 首先,在衬底1001上形成绝缘基膜1002。为了描述其中使用衬底1001侧作为显示表面来提取发光的示例,在此,将具有透光性的玻璃衬底或石英衬底用作衬底1001。或者,可使用对加工温度有耐热性的具有透光性的塑料衬底。
[0225] 作为绝缘基膜1002,形成包括诸如氧化硅膜、氮化硅膜或氧氮化硅膜的绝缘膜的基膜。尽管在此描述其中双层结构用作基膜的示例,但该基膜可具有单层结构或堆叠有两个或多个层的结构。注意,并非必然要形成绝缘基膜。
[0226] 接着,在绝缘基膜上形成半导体层。半导体层如下地形成:具有非晶结构的半导体膜通过已知手段(溅射法、LPCVD法、等离子体CVD法等)形成,随后是通过已知结晶工艺(激光结晶法、热结晶法、使用诸如镍的催化剂的热结晶法等)的结晶化以获得结晶化半导体膜。该非晶或结晶化半导体膜使用第一光掩模来图案化成所需形状。该半导体层被形成为25-80nm(优选30-70nm)的厚度。尽管在此实施例中执行了半导体膜的结晶化,但结晶化并非是必须进行的。尽管对半导体膜的材料没有限制,但优选使用硅或硅锗(SiGe)合金。
[0227] 或者,对于具有非晶结构的半导体膜的结晶工艺,可使用连续波激光器。为便于在非晶半导体膜的结晶化时获取具有大晶粒尺寸的晶体,优选使用从连续波固态激光器发出的基波的二次至四次谐波中的任一种。通常,可使用Nd:YVO4激光器(基波1064nm)的二次谐波(532nm)或三次谐波(355nm)。在使用连续波激光器时,从其输出为10W的连续波YVO4激光器发出的激光束通过非线性光学元件被转换成谐波。或者,存在一种将YVO4晶体和非线性光学元件置入谐振器并发出谐波的方法。优选地,激光束然后通过一光学系统被成形为被照射表面上的矩形或椭圆形激光束,并被递送至对象上。此时激光束的能量密度必需2 2
在从约0.01至100MW/cm(优选0.1至10MW/cm)的范围内。然后,半导体膜在照射期间可相对于激光束以约为10-2000cm/s的速率移动。
[0228] 可选地,激光结晶化可通过使用重复频率为0.5MHz或以上的脉冲激光束执行,该重复频率比通常使用的重复频率为数十至数百赫兹的的激光器高得多。据说,在半导体膜被用脉冲激光束的照射融化之后,花数十至数百纳秒即可完全固化该半导体膜。因此,通过使用具有上述重复频率的脉冲激光器,在固化被先前激光束融化的半导体膜之前可用该激光束照射半导体膜。因此,液固界面可在半导体膜中连续移动,从而形成其晶粒在扫描方向上连续生长的半导体膜。具体而言,有可能在扫描方向上形成各自具有约10-30μm宽度的晶粒的集聚,而在垂直于扫描方向的方向上形成各自具有约1-5μm宽度的晶粒的集聚。还有可能通过形成沿扫描方向延伸的单晶晶粒,形成至少在薄膜晶体管的沟道方向上几乎没有晶粒晶界的半导体膜。
[0229] 通过热处理和激光束照射的组合可使非晶半导体膜结晶化,或者可多次执行热处理和激光束照射之一。
[0230] 接着,在去除抗蚀剂掩模之后,形成覆盖半导体层的栅绝缘膜1003。通过等离子体CVD法或溅射法将该栅绝缘膜1003形成为1-200nm的厚度。
[0231] 接着,在栅绝缘膜1003上,导电膜被形成为具有厚度100-600nm。在此,通过溅射法使用氮化钛膜和钨膜的叠层形成导电膜。注意,在此描述了其中导电膜是氮化钛膜和钨膜的叠层的示例,对该示例没有限制。导电膜可以是使用从Ta、W、Ti、Mo、Al和Cu的一元素、或合金、或含有这些元素的任一种作为主要成分的化合物形成的单层,或者是这些层的叠层。可选地,可使用以掺杂有诸如磷的杂质元素的多晶硅膜为代表的半导体膜。
[0232] 接着,使用第二光掩模形成抗蚀剂掩模。然后通过干法蚀刻法或湿法蚀刻法进行蚀刻。通过该蚀刻步骤,导电膜被蚀刻以形成导电层1006-1008。注意,这些导电层各自用作TFT的栅电极。
[0233] 接着,在去除抗蚀剂掩模后,使用第三光掩模新形成抗蚀剂掩模。为了形成驱动电路的n沟道TFT,执行用赋予n型导电性的杂质元素(通常为磷或砷)以低浓度掺杂晶体管的第一掺杂步骤。用抗蚀剂掩模覆盖用作p沟道TFT的区域和邻近的导电层。该第一掺杂步骤通过栅绝缘膜1003进行以形成低浓度杂质区1009。尽管单个发光元件是用多个TFT驱动的,但是当发光元件仅用p沟道TFT驱动时、或者当像素和驱动电路没有在同一衬底上形成时,以上掺杂步骤并非必然要进行。
[0234] 接着,在去除抗蚀剂掩模后,使用第四光掩模新形成抗蚀剂掩模。执行用高浓度的赋予p型导电性的杂质元素(通常为硼)掺杂半导体的第二掺杂步骤。该第二掺杂步骤通过栅绝缘膜1003进行以形成p型高浓度杂质区1014和1015。
[0235] 接着,使用第五光掩模新形成抗蚀剂掩模。为了形成驱动电路的n沟道TFT,执行用高浓度的赋予n型导电性的杂质元素(通常为磷或砷)掺杂晶体管的第三掺杂步13 15 2
骤。第三掺杂步骤中的离子掺杂法的条件是:剂量为1×10 -5×10 /cm,且加速电压为
60-100keV。用抗蚀剂掩模覆盖用作p沟道TFT的区域和邻近的导电层。该第三掺杂步骤通过栅绝缘膜1003进行以形成n型高浓度杂质区1018。
[0236] 然后,去除抗蚀剂掩模,并且形成含氢的第一层间绝缘膜1020。然后,添加至半导体层的杂质元素被激活和氢化。作为含氢的第一层间绝缘膜1020,使用通过PCVD法获得的氮氧化硅膜(SiNO膜)。此外,当半导体膜使用促进结晶化的诸如镍的金属元素来结晶化时,可在激活的同时执行用于降低沟道形成区域中的镍浓度的吸杂。
[0237] 然后,形成用于平坦化处理的第二层间绝缘膜1021以获得TFT之上的平坦表面。作为第二层间绝缘膜1021,使用通过涂敷法获得的其中骨架结构由硅(Si)和氧(O)的键合构成的绝缘膜。可选地,作为第二层间绝缘膜1021,可使用具有透光性的有机树脂膜。进一步可选地,作为第二层间绝缘膜1021,可使用含有机材料、无机材料等的绝缘膜。
[0238] 接着,使用第六掩模蚀刻第二层间绝缘膜1021以形成接触孔。同时,去除周边部分1042中的第二层间绝缘膜1021。
[0239] 接着,通过将第六掩模用作掩模连续进行蚀刻,去除所暴露的栅绝缘膜1003和第一层间绝缘膜1020。
[0240] 接着,去除第六掩模,然后形成在接触孔内与半导体层接触的具有三层结构的导电膜。注意,优选在同一溅射装置中连续形成这三个层以使每个层的表面不被氧化。然而,不限于三层结构,导电膜可具有两层或单层,并且可使用从Ta、W、Ti、Mo、Al和Cu中选择的元素、或包括这些元素的任一种作为主要成分的合金材料或化合物材料形成。
[0241] 然后,使用第七掩模来蚀刻导电膜以形成布线或电极。作为布线或电极,例示了像素部分1040中的与TFT和发光元件的阳极相连的连接电极1022,并且例示了驱动电路部分1041中的使n沟道TFT和p沟道TFT电连接的连接电极1023。
[0242] 接着,透明导电膜形成为与以上布线或电极接触且具有三层结构。然后,使用第八掩模来蚀刻该透明导电膜以形成发光元件的第一电极1024W、1024R、1024G和1024B,即有机发光元件或无机发光元件的阳极(或阴极)。
[0243] 作为在实施方式1和2中详细描述的发光元件阳极的材料,使用ITO(氧化铟锡)或ITSO(使用其中向ITO添加2-10wt%(重量百分比)的氧化硅的靶通过溅射法获得的含氧化硅的氧化铟锡)。作为ITSO的替代物,可使用诸如其中2-20wt%的氧化锌(ZnO)被混合到氧化铟中的含氧化硅的氧化铟锌(IZO)的透光氧化物导电膜的透明导电膜。可选地,可使用氧化锡锑(ATO)的透明导电膜。
[0244] 注意,当ITO被用于第一电极1024W、1024R、1024G和1024B时,执行焙烤以便结晶,以降低电阻率。相反,与ITO不同,ITSO和IZO不结晶化,并且甚至在执行焙烤之后仍保持非晶状态。
[0245] 接着,使用第八掩模,形成覆盖第一电极1024W、1024R、1024G和1024B的边缘部分的绝缘体1025(称为岸、分隔、阻挡层、堤等)。对于绝缘体1025而言,使用通过溅射法获得的氧化钽或氧化钛(TiO2)膜,或者通过涂敷法获得的有机树脂膜。
[0246] 接着,在第一电极1024W、1024R、1024G和1024B与绝缘体1025之上形成有机化合物膜1028。尽管有机化合物膜1028可作为如实施方式1-5中所述的结构和通过其中所述的方法形成,但在实施方式7中采用用于白光发射的结构(参见实施方式1-5)。注意,为了改进发光元件的可靠性,优选在形成有机化合物膜1028之前执行真空加热以供脱气。例如,在蒸镀有机化合物材料时,优选在降压气氛或惰性气体气氛下执行200-300℃的热处理,以便于去除衬底中所含气体。
[0247] 接着,在像素部分1040的整个表面上形成发光元件的第二电极1029。第二电极1029用作阴极。在此,作为在实施方式1和2中详细描述的发光元件的阴极的材料,通过真空蒸镀法形成200nm厚的铝膜作为第二电极1029。在实施方式7中,为了从衬底1001侧提取发光,作为发光元件的阳极的第一电极1024是透明电极。在发光元件的电极对中,当TFT侧上的电极用作阴极时,直接连接至发光元件的TFT被形成为n沟道TFT。
[0248] 接着,将密封衬底1031用于密封。作为密封衬底1031的材料,可使用金属材料、陶瓷材料、玻璃衬底等。密封衬底1031用密封剂1032粘合在衬底1001的周边部分1042上。注意,可使用垫料或填料来保持衬底之间的恒定间隙。此外,优选用惰性气体填充该对衬底之间的间隙1030。
[0249] 此外,对于全彩显示器,彩色层(红色层1034R、绿色层1034G和蓝色层1034B)被设置在透明基材1033上,以便于与用于将来自发光元件的发光提取到发光装置外面的光程重叠。此外,可设置黑色层(黑色基底)1035。设置有彩色层的透明基材1033与黑色层对齐并固定至衬底1001。注意,彩色层和黑色层被保护层1036覆盖。此外,实施方式7中的有源矩阵显示设备具有光从中提取出来而不透过任何彩色层的发光层、以及光透过彩色层并从中提取出来的多个发光层。不透过任何彩色层的光是白光1044W,而透过彩色层的光变成红光1044R、蓝光1044B、以及绿光1044G。因此,图像可用四种色彩的像素来表达。
[0250] 上述发光装置是具有其中从形成有TFT的衬底1001侧提取的结构(底部发射结构)的发光装置,但可以是具有其中光从密封衬底1031侧提取的结构(顶部发射结构)的发光装置。图13是示出具有顶部发射结构的发光装置的横截面视图。在该情形中,作为衬底1001,可使用不透光的衬底。以与底部发射结构的发光装置相似的方式来执行直到形成连接TFT和发光元件阳极的连接电极1022的步骤的过程。然后,形成第三层间绝缘膜1037以覆盖连接电极1022。该绝缘膜可用于平坦化处理。该第三层间绝缘膜1037可使用与第二层间绝缘膜相似的材料形成,并且可选择地使用任何其它已知材料形成。
[0251] 接着,形成发光元件的第一电极1024W、1024R、1024G和1024B。在此第一电极1024W、1024R、1024G和1024B各自用作阳极,但也可用作阴极。此外,在顶部发射结构的发光装置的情形中,第一电极优选是反射电极。
[0252] 然后,形成有机化合物膜1028以覆盖第一电极1024W、1024R、1024G和1024B以及第三层间绝缘膜的暴露部分。尽管有机化合物膜1028可被形成为如实施方式1-5中所述的结构,但在实施方式7中采用用于白光发射的结构(参见实施方式1-5)。接着,形成发光元件的第二电极1029以便透射从发光元件发出的光。
[0253] 然后,在通过其提取出来自发光元件的光的光程中,用设置有彩色层(红色层1034R、绿色层1034G和蓝色层1034B)的密封衬底1031执行密封;由此可制造顶部发射结构的发光装置。黑色层(黑色基底)1035可被设置在密封衬底1031上以便于定位在像素之间。彩色层(红色层1034R、绿色层1034G和蓝色层1034B)和黑色层(黑色基底)1035可用保护层1036(未示出)覆盖。注意,作为密封衬底1031,使用具有透光性的衬底。
[0254] 通过在由此获得的发光元件的电极对之间施加电压,可获得白光发射区域1044W。此外,通过组合使用彩色层,可获得红色发光区域1044R、蓝色发光区域1044B和绿色发光区域1044G。因为在实施方式7中使用白色发光元件,所以不必形成与像素的发射色彩相对应的不同色彩的发光元件;因此,可以低成本简单地获得全彩发光装置。
[0255] 尽管在此使用具有作为活性层的多晶硅的顶栅TFT,但是对TFT没有限制,只要其能用作开关元件即可,并且可使用底栅(倒交错)TFT或交错TFT。或者,可使用具有作为活性层的非晶硅膜或ZnO膜的TFT。此外,本发明实施例不限于具有单栅结构或双栅结构的TFT,并且可采用具有三个或更多个沟道形成区的多栅TFT。
[0256] 另外,尽管在此描述了其中通过用红、绿、蓝、白四种色彩驱动来执行全彩显示的示例,但对此不作限制。全彩显示可通过用红、绿、蓝三种色彩驱动来执行。
[0257] 注意,实施方式7可按需与任何其它实施方式组合。
[0258] (实施方式8)
[0259] 在实施方式8中,将描述包括在实施方式6中所述发光装置的本发明实施例的电子设备。本发明实施例的电子设备各自包括具有实施方式1-5中所述的任一个发光元件的显示部分,并且具有低功耗和长使用期限。
[0260] 作为使用本发明实施例的发光装置制造的电子设备的示例,有摄像机如摄影机和数码相机;眼镜式显示器、导航系统、音频重放装置(例如车载音频系统和音频系统)、计算机、游戏机、便携式信息终端(如,移动计算机、蜂窝电话、便携式游戏机、电子书阅读器等)、装有记录介质的图像重放装置(具体地,能够对数字多功能盘(DVD)之类的记录介质进行重放、并装配有能显示图像的显示装置的装置)等。这些电子设备的具体例子在图14A至14D中示出。
[0261] 图14A示出实施方式8的电视接收机,其包括外壳9101、支承基座9102、显示部分9103、扬声器部分9104、视频输入终端9105等。在该电视接收机的显示部分9103中,与实施方式1-5中所述相似的发光元件排列成矩阵。这些发光元件的特征是高发射效率、低功耗以及长使用期限。包括发光元件的显示部分9103还具有与发光元件相似的特征。因此,在该电视接收机中,图象显示退化的量小且功耗降低。有了这些特征,电视接收机中用于退化补偿的功能电路或电源电路可大大减少或缩小尺寸;因此,可实现外壳9101和支承基座
9102尺寸和重量的减小。在实施方式8的电视接收机中,实现了低功耗、高质量图像以及尺寸和重量的减小;由此,可提供适用于生活环境的产品。
[0262] 图14B示出实施方式8的计算机,其包括机身9201、外壳9202、显示部分9203、键盘9204、外接端口9205、定点装置9206等。在该计算机的显示部分9203中,与实施方式1-5中所述相似的发光元件排列成矩阵。这些发光元件的特征是高发射效率、低功耗以及长使用期限。包括发光元件的显示部分9203还具有与发光元件相似的特征。因此,在该计算机中,图象显示退化的量小且功耗降低。有了这些特征,计算机中用于退化补偿的功能电路或电源电路可大大减少或缩小尺寸;因此,可实现主体9201和外壳9202尺寸和重量的减小。在实施方式8的计算机中,实现了低功耗、高质量图像以及尺寸和重量的减小;由此,可提供适用于环境的产品。
[0263] 图14C显示了实施方式8的摄像机,其包括机身9301、显示部分9302、外壳9303、外接端口9304、遥控接收部分9305、图像接收部分9306、电池9307、音频输入部分9308、操作键9309、目镜部分9310等。在该摄像机的显示部分9302中,与实施方式1-5中所述相似的发光元件排列成矩阵。这些发光元件的特征是长使用期限。包括这些发光元件的显示部分9302还具有与这些发光元件相似的特征。因此,在该摄像机中,图象显示退化的量小且功耗降低。有了这些特征,摄像机中用于退化补偿的功能电路或电源电路可大大减少或缩小尺寸;因此,可实现主体9301尺寸和重量的减小。在实施方式8的摄像机中,实现了低功耗、高质量图像以及尺寸和重量的减小;由此,可提供适于携带的产品。
[0264] 图14D显示了实施方式8的蜂窝电话,其包括机身9401、外壳9402、显示部分9403、音频输入部分9404、音频输出部分9405、操作键9406、外接端口9407、天线9408等。
在该蜂窝电话的显示部分9403中,与实施方式1-5中所述相似的发光元件排列成矩阵。这些发光元件的特征是高发射效率、低功耗以及长使用期限。包括这些发光元件的显示部分
9403还具有与发光元件相似的特征。因此,在该蜂窝电话中,图象显示退化的量小且功耗降低。有了这些特征,蜂窝电话中用于退化补偿的功能电路或电源电路可大大减少或缩小尺寸;因此,可实现主体9401和外壳9402尺寸和重量的减小。在实施方式8的蜂窝电话中,实现了低功耗、高质量图像以及尺寸和重量的减小;由此,可提供适于携带的产品。
[0265] 图15示出音频重放装置,具体是包括主体701、显示部分702以及操作开关703和704的车载音频系统。该显示部分702可通过使用实施方式6中所述的发光装置(无源矩阵型或有源矩阵型)形成。此外,该显示部分702可使用分段型发光装置形成。在任何情形中,通过使用根据本发明实施例的发光元件,可形成使用车辆电源(12-42V)的具有低功耗和高亮度的显示部分。此外,尽管实施方式8描述车内音频系统,根据本发明实施例的发光装置还可用于便携式音频系统或家用音频系统。
[0266] 图16示出作为音频重放系统的示例的数字播放器。图16所示的数字播放器包括主体710、显示部分711、存储器部分712、操作部分713、一对耳机714等等。注意,可使用一对头戴式耳机或无线耳机来代替该对耳机714。该显示部分711可通过使用实施方式6中所述的发光装置(无源矩阵型或有源矩阵型)形成。此外,该显示部分711可使用分段型发光装置形成。在任何情形中,使用本发明实施例的发光元件使得有可能形成具有低功耗和高亮度的显示部分,该显示部分甚至在使用蓄电池(例如镍氢电池)时也能显示图像。作为存储器部分712,使用硬盘或非易失性存储器。例如,通过使用具有20-200GB的记录容量的NAND型非易失性存储器且通过操作操作部分713,可记录和重放图像或声音(音乐)。
注意,在显示部分702和显示部分711中,在黑色背景上显示了白色字符,因此能降低功耗。
这对便携式音频系统尤其有效。
[0267] 如上所述,通过应用本发明实施例制造的发光装置的应用范围极广,从而该发光装置可应用于各种领域的电子设备。通过应用本发明的实施例,可制造具有低功耗和长使用期限的显示部分的电子设备。
[0268] 应用了本发明的实施例的发光装置具有高发射效率,且还可用作照明装置。使用图17描述使用应用了本发明实施例的发光元件作为照明装置的一种实施方式。
[0269] 图17示出将应用了本发明实施例的发光装置用作背光的液晶显示设备,作为将根据本发明实施例的发光装置用作照明装置的电子设备的示例。图17所示的液晶显示设备包括外壳901、液晶层902、背光903、以及外壳904,并且液晶层902连接至驱动器IC905。此外,应用了本发明实施例的发光装置被用作背光903,且提供通过端子906的电流。
[0270] 因为根据本发明实施例的发光装置较薄且具有低功耗,所以通过使用根据本发明实施例的发光装置作为液晶显示设备的背光,液晶显示设备的厚度和功耗能得以降低。此外,根据本发明实施例的发光装置是平面发射型照明装置并且可具有大面积。由此,背光可具有大面积,且可获得具有大面积的液晶显示设备。
[0271] 图18示出其中根据本发明实施例的发光装置被用作作为照明装置之一的台灯的示例。图18所示的台灯包括外壳2001和光源2002,并且根据本发明实施例的发光装置被用作光源2002。因为本发明实施例的发光装置具有低功耗,所以该台灯也具有低功耗。
[0272] 图19示出其中根据本发明实施例的发光装置被用作室内照明装置3001的示例。因为根据本发明实施例的发光装置可具有大面积,所以根据本发明实施例的发光装置可被用作具有大面积的照明装置。此外,因为根据本发明实施例的发光装置具有低功耗,所以根据本发明实施例的发光装置可被用作具有低功耗的照明装置。在应用了本发明实施例的发光装置由此被用作室内照明装置3001的房间内,可如图14A所示放置根据本发明实施例的电视接收机3002,由此可在那里观看公共广播或电影。在这种情形中,因为两个设备都具有低功耗,所以可降低环境载荷。
[0273] 注意,实施方式8可按需与任一个其它实施方式组合。
[0274] [示例1]
[0275] 在示例1中,将具体描述制造本发明实施例的发光元件的示例。示例1中所使用材料的结构分子式如下所示。
[0276]
[0277] 在下文中,描述制造示例1的发光元件的具体方法。
[0278] (发光元件1)
[0279] 首先,制备其上形成有110nm厚的含氧化硅的氧化铟锡(ITSO)膜作为阳极的玻璃衬底。用聚酰亚胺膜覆盖ITSO膜表面的周边以使该表面的2mm见方部分暴露。电极面积被设置成2mm×2mm。作为用于在该衬底上形成发光元件的预处理,用水清洗该衬底的表面并在200℃下烘焙一小时,然后执行UV臭氧处理达370秒。然后,衬底被传递到其中压力降-5至约10 Pa的真空蒸镀装置。在真空蒸镀装置的加热室内,在真空170℃下进行烘焙达30分钟。然后,将衬底冷却达约30分钟。
[0280] 接着,设置有阳极的玻璃衬底被固定到设置在真空蒸镀装置的薄膜形成室内的衬底支架,以使其上形成有阳极的表面朝下。
[0281] 然后,首先,N,N′-(喹喔啉-2,3-二基二-4,1-亚苯基)双(N-苯基-1,1′-联苯基-4-胺)(简称:BPAPQ)和氧化钼(VI)被共蒸镀到阳极上,由此形成添加了作为受电子物质的氧化钼的空穴注入区域。使用电阻加热来进行蒸镀。空穴注入区域的厚度被设置成50nm,且蒸镀速率被调节成使BPAPQ与氧化钼的重量比为1∶0.5(=BPAPQ∶氧化钼)。
注意,共蒸镀方法指在一个处理室中同时从多个蒸镀源进行多种材料的蒸镀的一种蒸镀方法。
[0282] 接着,通过使用电阻加热的蒸镀方法,仅使用BPAPQ形成10nm膜,然后共蒸镀BPAPQ和4,4′,4″-三[N-(1-萘基)-N-苯基氨基]三苯胺(简称:1′-TNATA),由此形成添加了作为空穴捕获物质的1′-TNATA的空穴传输区域。空穴传输区域的厚度被设置成10nm,且蒸镀速率被调节成使BPAPQ与1′-TNATA的重量比为1∶0.01(=BPAPQ∶1′-TNATA)。
[0283] 然后,共蒸镀BPAPQ和(乙酰丙酮)二[2,3-2(4-氟苯基)喹喔啉合]铱(III)(简称:Ir(Fdpq)2(acac)),由此形成添加了作为发光物质的Ir(Fdpq)2(acac)的发光区域。发光区域的厚度被设置成30nm,且蒸镀速率被调节成使BPAPQ与Ir(Fdpq)2(acac)的重量比为1∶0.08(=BPAPQ∶Ir(Fdpq)2(acac))。
[0284] 此外,仅使用BPAPQ形成10nm膜,然后共蒸镀BPAPQ和锂(Li),由此形成添加了作为供电子物质的锂的电子注入区域。电子注入区域的厚度被设置成50nm,且蒸镀速率被调节成使BPAPQ与锂的重量比为1∶0.01(=BPAPQ∶锂)。
[0285] 最后,使用电阻加热通过蒸镀法在电子注入区域上形成200nm厚的铝膜,由此形成阴极。由此,制造发光元件1。
[0286] (比较发光元件2)
[0287] 对于比较发光元件2,使用与发光元件1相同类型的衬底,并且不设置添加了空穴捕获物质的空穴传输区域。即,该比较发光元件2以与发光元件1相似的方式制造,其不同之处在于不添加1′-TNATA。
[0288] 由此获得的发光元件1和比较发光元件2被密封在含氮气的手套箱中,以便于不暴露于空气。然后,测量这些发光元件的工作特性。注意,该测量是在室温下(保持在25℃的空气中)进行的。
[0289] 图20A示出发光元件1和比较发光元件2的电压与电流密度特性关系曲线,而图20B示出其电流密度与辉度特性关系曲线。图21A示出发光元件1和比较发光元件2的辉度与电流效率特性关系曲线,而图21B示出其辉度与功率效率特性关系曲线。图22A示出
2
当发光元件1和比较发光元件2通过电流密度为25mA/cm 的电流发光的发射光谱。图22B是图22A的放大视图。从图22A和22B显而易见,每个发光元件展现来自作为发光物质的Ir(Fdpq)2(acac)的红色发光(发射峰波长为650nm)。
[0290] 然而,如从图20A和20B显而易见地,尽管大量电流流过比较发光元件2,但其辉度比发光元件1低。因而,如还从图21A可见,在电流效率上存在极为显著的差异。本发明实施例的发光元件1可实现高电流效率,而比较发光元件2的电流效率显著较低。例如,在2
500cd/m 的辉度上,发光元件1的电流效率为2.2cd/A,而比较发光元件2的电流效率约为
0.05cd/A。换言之,仅仅通过添加少量的空穴捕获物质,本发明实施例的发光元件1的电
2
流效率就改进约50倍。结果发现,在500cd/m 的辉度上,功率效率从约0.021m/W改进至
0.661m/W,由此功耗降至1/30或更低。
[0291] 下面将给出其解释。以下表1示出BPAPQ和Ir(Fdpq)2(acac)的HOMO能级和LUMO能级以及1′-TNATA的HOMO能级。注意,HOMO能级和LUMO能级是通过循环伏安法(CV)测量而计算的(参见示例4)。
[0292] 表1
[0293]
[0294] 如从表1可以看到,在通过添加Ir(Fdpq)2(acac)或BPAPQ获得的发光区域中,Ir(Fdpq)2(acac)强烈倾向于捕获电子,而很少捕获空穴。由此,该发光区域倾向于允许空穴被传输到阴极,而不会给予进行重新结合的足够机会。实际上,在图22B中,在约500nm处观察到来自比较发光元件2的不必要的发光。这有可能是因为其中穿过发光区域的空穴与发光区域和电子注入区域之间仅含BPAPQ的层中的电子重新结合以允许BPAPQ发光。此外,在示例1中的发光元件中,容易穿过发光区域的空穴被所添加的1′-TNATA捕获,以使重新结合效率提高是可行的;由此,发射效率在没有来自BPAPQ的发光的情况下得到显著提高。
[0295] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一种简单的元件结构,但发射效率得到显著的提高。
[0296] 此外,进行了其中发光元件1和比较发光元件2被恒定电流持续点亮且其初始辉2
度被设定为500cd/m 的测试。图36示出发光元件1的结果,而图37示出比较发光元件2的结果。纵轴表示在初始辉度为100%的状况下的标准化辉度而横轴表示驱动时间。
[0297] 如从图36和图37的比较可以看出,使用期限的差异比电流效率的差异大得多。如图37所示,在比较发光元件2的情况下,辉度在驱动开始时增加2.5倍,然后立即减小;在75小时后减至一半。另一方面,如图36中所示,在本发明实施例的发光元件1的情况下,在驱动开始时辉度几可忽略地增加约1%,并且在之后显示出极为轻微的退化;甚至在900小时后,其被发现几乎仍然保持其初始辉度的100%。由此,可获得几乎不退化并且其使用期限长到难以估计其一半使用期限的发光元件。
[0298] 发光元件1和比较发光元件2的不同之处仅在于是否向空穴传输区域添加仅约1wt%的空穴捕获物质(1′-TNATA)。然而,这种大大延长使用期限的效果是出人意料并且是不可根据常规公知常识预测的,从而显示了本发明实施例提供了显著效果。
[0299] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但可制造具有极长使用期限的发光元件。
[0300] [示例2]
[0301] 在示例2中,将具体描述制造本发明实施例的发光元件的示例。?示例2中所使用材料的结构分子式如下所示。注意,略去了示例1中所使用材料的结构分子式。
[0302]
[0303] (发光元件3)
[0304] 发光元件3以与发光元件1相似的方式制造,其不同之处在于使用4,4′-二(N-{4-[N′-(3-甲基苯基)-N′-苯基氨基]苯基}-N-苯基氨基)联苯(简称:DNTPD)而非1′-TNATA作为空穴捕获物质。注意在发光元件3中,在BPAPQ与DNTPD的重量比为1∶0.1的情况下添加DNTPD。
[0305] 由此获得的发光元件3被密封在含氮气的手套箱中,以便于不暴露于空气。然后,测量这些发光元件的工作特性。注意,该测量是在室温下(保持在25℃的空气中)进行的。
[0306] 图23A示出发光元件3的电压与电流密度特性关系曲线,而图23B示出其电流密度与辉度特性关系曲线。?图24A示出发光元件3的辉度与电流效率特性关系曲线,而图24B示出其辉度与功率效率特性关系曲线。图25示出当发光元件3通过电流密度为25mA/cm2的电流发光的发射光谱。从图25显而易见,发光元件3展现来自作为发光物质的Ir(Fdpq)2(acac)的红色发光(发射峰波长为650nm)。
[0307] 在500cd/m2的辉度上,发光元件3的电流效率为0.69cd/A,其低于示例1的发光元件1的电流效率,但大于或等于示例1的比较发光元件2的10倍。此外,在500cd/m2的辉度上,功率效率约为0.17lm/W,而功耗是比较发光元件2的约1/10。
[0308] 以下表2示出BPAPQ和Ir(Fdpq)2(acac)的HOMO能级和LUMO能级,以及DNTPD的HOMO能级。注意,HOMO能级和LUMO能级是通过循环伏安法(CV)测量计算的(参见示例4)。
[0309] 表2
[0310]
[0311] 根据表2的结果,与示例1中一样,容易穿过发光区域的空穴被所添加的DNTPD捕获,以使重新结合效率提高是可行的;由此,发射效率在没有来自BPAPQ的发光的情况下得到显著提高。
[0312] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但发射效率得到显著的提高。
[0313] [示例3]
[0314] 在示例3中,将具体描述制造本发明实施例的发光元件的示例。示例3中所使用材料的结构分子式如下所示。
[0315]
[0316] 在下文中,描述制造示例3的发光元件的具体方法。
[0317] (发光元件4)
[0318] 首先,制备其上形成了110nm厚的含氧化硅的氧化铟锡(ITSO)膜作为阳极的玻璃衬底。用聚酰亚胺膜覆盖ITSO膜表面的周边以使表面的2mm见方部分暴露。电极区域被设置成2mm×2mm。作为在该衬底上形成发光元件的预处理,用水清洗该衬底的表面并在200℃下烘焙一小时,然后执行UV臭氧处理达370秒。然后,衬底被传递到其中压力降至约-5
10 Pa的真空蒸镀装置。在真空蒸镀装置的加热室内,在真空170℃下进行烘焙达30分钟。
然后,将衬底冷却达约30分钟。
[0319] 接着,设置有阳极的玻璃衬底被固定到设置在真空蒸镀装置的薄膜形成室内的衬底支架,以使其上形成有阳极的表面朝下。
[0320] 然后,首先,9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:CzPA)和氧化钼被共蒸镀到阳极上,由此形成添加了作为受电子物质的氧化钼的空穴注入区域。
[0321] 使用电阻加热来进行蒸镀。空穴注入区域的厚度被设置成50nm,且蒸镀速率被调节成使CzPA与氧化钼的重量比为1∶0.5(=CzPA∶氧化钼)。注意,共蒸镀方法指在一个处理室中同时从多个蒸镀源进行多种材料的蒸镀的一种蒸镀方法。
[0322] 接着,通过使用电阻加热的蒸镀方法,仅使用CzPA形成10nm膜,然后共蒸镀CzPA和N,9-二苯基-N-(9,10-二苯基-2-蒽基)-9H-咔唑-3-胺(简称:2PCAPA),由此形成添加了作为发光物质的2PCAPA的发光区域。发光区域的厚度被设置成40nm,且蒸镀速率被调节成使CzPA与2PCAPA的重量比为1∶0.05(=CzPA∶2PCAPA)。
[0323] 然后,共蒸镀CzPA和N,N′-二苯基喹吖酮(简称:DPQd),?由此形成添加了作为电子捕获物质的DPQd的电子传输区域。电子传输区域的厚度被设置成10nm,且蒸镀速率被调节成使CzPA与DPQd的重量比为1∶0.005(=CzPA∶DPQd)。
[0324] 此外,共蒸镀CzPA和锂(Li),由此形成添加了作为供电子物质的锂的电子注入区域。电子注入区域的厚度被设置成20nm,且蒸镀速率被调节成使CzPA与锂的重量比为1∶0.01(=CzPA∶锂)。
[0325] 最后,使用电阻加热通过蒸镀法在电子注入区域上形成200nm厚的铝膜,由此形成阴极。由此,制造发光元件4。
[0326] 由此获得的发光元件4被密封在含氮气的手套箱中,以便于不暴露于空气。然后,测量该发光元件的工作特性。注意,该测量是在室温下(保持在25℃的空气中)进行的。
[0327] 图26A示出发光元件4的电压与电流密度特性关系曲线,而图26B示出其电流密度与辉度特性关系曲线。图27A示出发光元件4的辉度与电流效率特性关系曲线,而图27B2
示出其辉度与功率效率特性关系曲线。图28示出当发光元件4通过电流密度为25mA/cm的电流发光的发射光谱。从图28显而易见,发光元件4展现来自作为发光物质的2PCAPA的绿色发光(发射峰波长为520nm)。
[0328] 在1000cd/m2的辉度上,发光元件4的电流效率为6.6cd/A,且由此能实现良好的2
电流效率。此外,在1000cd/m 的辉度上,功率效率约为3.2lm/W,其可提供足够低的功耗。
[0329] 以下表3示出CzPA和2PCAPA的HOMO能级和LUMO能级,以及DPQd的LUMO能级。注意,HOMO能级和LUMO能级是通过循环伏安法(CV)测量计算的(参见示例4)。
[0330] 表3
[0331]
[0332] 如从表3可以看到,在通过将CzPA添加到2PCAPA获得的发光区域中,2PCAPA强烈倾向于捕获空穴,而很少捕获电子。由此,该发光区域倾向于允许电子被传输到阳极,而不会给与进行重新结合的足够机会。此外,在示例3中的发光元件4中,容易穿过发光区域的电子被所添加的DPQd捕获,以使重新结合效率提高是可行的;由此,获得高发射效率。
[0333] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但可获得高发射效率。
[0334] [示例4]
[0335] 在示例4中,通过循环伏安法(CV)测量来检查在示例1-3中制造的用于发光元件1-4的材料的氧化特性和还原特性。此外,根据该测量,确定每种材料的HOMO能级和LUMO能级。注意,电化学分析仪(由BAS公司制造的ALS模型600A或600C)被用于测量。
[0336] 对于用于CV测量的溶液,使用脱水的二甲基甲酰胺(DMF,西格玛-奥尔德里奇公司(Sigma-Aldrich Inc.)产品,99.8%,目录编号22705-6)作为溶剂,并将作为负载电解质(supporting electrolyte)的高氯酸四正丁基铵(n-Bu4NClO4,东京化学工业公司,目录编号T0836)溶解于该溶剂使高氯酸四正丁基铵的浓度为100毫摩尔/升。将要测量的目标物溶解于溶剂中,使其浓度为2毫摩尔/升。注意,对于具有低溶解度的在2毫摩尔/升的浓度下不能溶解的物质,该物质的不可溶解部分被滤除,然后滤出液被用于测量。使用铂电极(由BAS公司制造,PTE铂电极)作为工作电极,使用铂电极(由BAS公司制造,VC-3+的Pt反电极,(5cm))作为辅助电极,和Ag/Ag 电极(由BAS公司制造,RE-7参比电极,用于非水性溶剂)作为参比电极。应注意,在室温下进行测量(20-25℃)。此外,在所有测量中,CV测量中的扫描速度设定为0.1V/s。
[0337] (计算参比电极的相对于真空能级的势能)+
[0338] 首先,计算在示例4中使用的参比电极(Ag/Ag 电极)相对于真空能级的势能(单+位为eV)。即,计算Ag/Ag 电极的费米能级。已知二茂铁在甲醇中的氧化还原电位相对于标准氢电极为+0.610[V vs.SHE](参考文献:Christian R.Goldsmith等人,J.Am.Chem.Soc.,第124卷,第1期,83-96页,2002)。另一方面,使用在示例4中所用的参比电极,计算二茂铁在甲醇中的氧化还原电位为+0.11V。因此,发现在示例4中使用的参比电极的势能比标准氢电极低0.50[eV]。
[0339] 在此,已知标准氢电极相对真空能级的势能为-4.44eV(参考文献:Toshihiro Ohnishi和Tamami Koyama,高分子EL材料,Kyoritsu shuppan,第64-67页)。因此,计算在示例4中使用的参比电极相对于真空能级的势能为
[0340] -4.44-0.50=-4.94[eV]。
[0341] (测量示例1:BPAPQ)
[0342] 在测量示例1中,BPAPQ的氧化特性和还原特性通过循环伏安法(CV)测量来检查。图29A和29B示出测量结果。图29A示出氧化特性,而图29B示出还原特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从0.15V扫描至1.00V,然后从1.00V扫描至0.15V。此外,为了测量还原反应特性,工作电极相对于参比电极的电位从-0.75V扫描至-2.40V,然后从-2.40V扫描至-0.75V。
[0343] 如图29A所示,氧化峰电势Epa为0.53V,而还原峰电势Epc为0.75V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.64V。这显示BPAPQ可以通过0.64的电能氧化,并且此能量对应于HOMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此BPAPQ的HOMO能级计算如下:
[0344] -4.94-(0.64)=-5.58[eV]。
[0345] 此外,如图29B所示,还原峰电势Epc为-2.00V,而氧化峰电势Epa为-1.93V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为-1.97V。这显示BPAPQ可以通过-1.97的电能还原,并且此能量对应于LUMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此BPAPQ的LUMO能级计算如下:
[0346] -4.94-(-1.97)=-2.97[eV]。
[0347] (测量示例2:Ir(Fdpq)2(acac))
[0348] 在测量示例2中,Ir(Fdpq)2(acac)的氧化特性和还原特性通过循环伏安法(CV)测量来检查。图30A和30B示出测量结果。图30A示出氧化特性,而图30B示出还原特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从0.10V扫描至1.00V,然后从
1.00V扫描至0.10V。此外,为了测量还原特性,工作电极相对于参比电极的电位从-1.20V扫描至-2.05V,然后从-2.05V扫描至-1.20V。
[0349] 如图30A所示,氧化峰电势Epa为0.92V,而还原峰电势Epc为0.79V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.86V。这显示Ir(Fdpq)2(acac)可以通过0.86的电能氧化[V对于Ag/Ag+],并且此能量对应于HOMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此Ir(Fdpq)2(acac)的HOMO能级计算如下:
[0350] -4.94-(0.86)=-5.80[eV]。
[0351] 此外,如图30B所示,还原峰电势Epc为-1.56V,而氧化峰电势Epa为-1.49V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为-1.53V。这显示Ir(Fdpq)2(acac)可以通过-1.53的电能还原[V对于Ag/Ag+],并且此能量对应于LUMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此,Ir(Fdpq)2(acac)的LUMO能级计算如下:
[0352] -4.94-(-1.53)=-3.41[eV]。
[0353] (测量示例3:1′-TNATA)
[0354] 在测量示例3中,1′-TNATA的氧化特性通过循环伏安法(CV)测量来检查。图31示出测量结果。图31示出氧化特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从-0.35V扫描至0.60V,然后从0.60V扫描至-0.35V。
[0355] 如图31所示,氧化峰电势Epa为0.08V,而还原峰电势Epc为0.01V。因此,波电势(Epc和Epa之间的中间电势)可被计算为0.04V。这显示1′-TNATA可以通过0.04的电能+氧化[V对于Ag/Ag],并且此能量对应于HOMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此1’-TNATA的HOMO能级计算如下:
[0356] -4.94-(0.04)=-4.98[eV].
[0357] (测量示例4:DNTPD)
[0358] 在测量示例4中,DNTPD的氧化特性通过循环伏安法(CV)测量来检查。图32示出测量结果。图32示出氧化特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从-0.43V扫描至0.50V,然后从0.50V扫描至-0.43V。
[0359] 如图32所示,氧化峰电势Epa为0.28V,而还原峰电势Epc为0.16V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.22V。这显示DNTPD可以通过0.22的电能氧+化[V对于Ag/Ag],并且此能量对应于HOMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此DNTPD的HOMO能级计算如下:
[0360] -4.94-(0.22)=-5.16[eV]。
[0361] (测量示例5:CzPA)
[0362] 在测量示例1中,CzPA的氧化特性和还原特性通过循环伏安法(CV)测量来检查。图33A和33B示出测量结果。图33A示出氧化特性,而图33B示出还原特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从0.50V扫描至1.50V,然后从1.50V扫描至0.50V。此外,为了测量还原特性,工作电极相对于参比电极的电位从-0.36V扫描至-2.50V,然后从-2.50V扫描至-0.36V。
[0363] 如图33A所示,氧化峰电势Epa为0.92V,而还原峰电势Epc为0.79V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.85V。这显示CzPA可以通过0.85的电能氧化,并且此能量对应于HOMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此CzPA的HOMO能级计算如下:
[0364] -4.94-(0.85)=-5.79[eV]。
[0365] 此外,如图33B所示,还原峰电势Epc为-2.26V,而氧化峰电势Epa为-2.17V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为-2.21V。这显示CzPA可以通过-2.73的电能还原[V对于Ag/Ag+],并且此能量对应于LUMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此CzPA的LUMO能级计算如下:
[0366] -4.94-(-2.21)=-2.73[eV]。
[0367] (测量示例6:2PCAPA)
[0368] 在测量示例6中,2PCAPA的氧化特性和还原特性通过循环伏安法(CV)测量来检查。图34A和34B示出测量结果。图34A示出氧化特性,而图34B示出还原特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从0.34V扫描至0.60V,然后从0.60V扫描至0.34V。此外,为了测量还原特性,工作电极相对于参比电极的电位从-0.43V扫描至-3.00V,然后从-3.00V扫描至-0.43V。
[0369] 如图34A所示,氧化峰电势Epa为0.39V,而还原峰电势Epc为0.31V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.35V。这显示2PCAPA可以通过0.35的电能氧化[V对于Ag/Ag+],并且此能量对应于HOMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此2PCAPA的HOMO能级计算如下:
[0370] -4.94-(0.35)=-5.34[eV]。
[0371] 此外,如图34B所示,还原峰电势Epc为-2.29V,而氧化峰电势Epa为-2.20V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为-2.24V。这显示2PCAPA可以通过-2.24的电能还原[V对于Ag/Ag+],并且此能量对应于LUMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此2PCAPA的LUMO能级计算如下:
[0372] -4.94-(-2.24)=-2.70[eV]。
[0373] (测量示例7:DPQd)
[0374] 在测量示例7中,DNTPD的还原特性通过循环伏安法(CV)测量来检查。图35示出测量结果。图35示出还原特性。此外,为了测量还原特性,工作电极相对于参比电极的电位从-0.94V扫描至-2.40V,然后从-2.40V扫描至-0.94V。
[0375] 此外,如图35所示,还原峰电势Epc为-1.70V,而氧化峰电势Epa为-1.62V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为-1.66V。这显示DPQd可以通过-1.66的电能还原[V对于Ag/Ag+],并且此能量对应于LUMO能级。因此,如上上述,示例4中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此DPQd的LUMO能级计算如下:
[0376] -4.94-(-1.66)=-3.28[eV]。
[0377] [示例5]
[0378] 在示例5中,将具体描述制造本发明实施例的发光元件的示例。示例5中所使用材料的结构分子式如下所示。注意,略去了已在其它示例中例示的材料的结构分子式。
[0379]
[0380] 在下文中,描述制造示例5的发光元件的具体方法。
[0381] (发光元件5)
[0382] 首先,制备其上形成110nm厚的含氧化硅的氧化铟锡(ITSO)膜作为阳极的玻璃衬底。用聚酰亚胺膜覆盖ITSO膜表面的周边以使表面的2mm见方部分暴露。电极区域被设置成2mm×2mm。作为在该衬底上形成发光元件的预处理,用水清洗该衬底的表面并在200℃-5下烘焙一小时,然后执行UV臭氧处理达370秒。然后,衬底被传递到其中压力降至约10 Pa的真空蒸镀装置。在真空蒸镀装置的加热室内,在真空170℃下进行烘焙达30分钟。然后,将衬底冷却达约30分钟。
[0383] 接着,设置有阳极的玻璃衬底被固定到设置在真空蒸镀装置的薄膜形成室内的衬底支架,以使其上形成有阳极的表面朝下。
[0384] 然后,首先,4-(9H-咔唑-9-基)-4′-(5-苯基-1,3,4-噁二唑-2-基)三苯胺(简称为YGAO11)和氧化钼被共蒸镀到阳极上,?由此形成添加了作为受电子物质的氧化钼的空穴注入区域。使用电阻加热来进行蒸镀。空穴注入区域的厚度被设置成50nm,且蒸镀速率被调节成使YGAO11与氧化钼的重量比为1∶0.5(=YGAO11∶氧化钼)。注意,共蒸镀方法指在一个处理室中同时从多个蒸镀源进行多种材料的蒸镀的一种蒸镀方法。
[0385] 接着,通过使用电阻加热的蒸镀方法,仅使用YGAO11形成10nm膜,然后共蒸镀YGAO11和4,4′,4″-三[N-(1-萘基)-N-苯基氨基]三苯胺(简称:1′-TNATA),由此形成添加了作为空穴捕获物质的1′-TNATA的空穴传输区域。空穴传输区域的厚度被设置成10nm,且蒸镀速率被调节成使YGAO11与1′-TNATA的重量比为1∶0.005(=YGAO11∶1′-TNATA)。
[0386] 然后,共蒸镀YGAO11和(乙酰丙酮化)二[2,3-二(4-氟苯基)-5-甲基吡嗪合]铱(III)(简称:Ir(Fdppr-Me)2(acac)),由此形成添加了作为发光物质的Ir(Fdppr-Me)2(acac)的发光区域。发光区域的厚度被设置成30nm,且蒸镀速率被调节成使YGAO11与Ir(Fdppr-Me)2(acac)的重量比为1∶0.005(=YGAO
11∶Ir(Fdppr-Me)2(acac))。
[0387] 此外,共蒸镀YGAO11和锂(Li),由此形成添加了作为供电子物质的锂的电子注入区域。电子注入区域的厚度被设置成40nm,且蒸镀速率被调节成使YGAO11与锂的重量比为1∶0.02(=YGAO11∶锂)。
[0388] 最后,使用电阻加热通过蒸镀法在电子注入区域上形成200nm厚的铝膜,由此形成阴极。由此,制造发光元件5。
[0389] (发光元件6)
[0390] 发光元件6使用与发光元件6相同类型的衬底在添加了空穴传输物质的空穴传输区中以YGAO11与1′-TNATA的重量比为1∶0.01(=YGAO11∶1′-TNATA)制造。发光元件6以与发光元件5相似的方式制造,其不同之处在于添加了空穴捕获物质的空穴传输区域。
[0391] (比较发光元件7)
[0392] 对于比较发光元件7,使用与发光元件5相同类型的衬底,并且不提供添加了空穴捕获物质的空穴传输区域。即,该比较发光元件7以与发光元件5相似的方式制造,其不同之处在于不添加1′-TNATA。
[0393] 由此获得的发光元件5和6以及比较发光元件7被密封在含氮气的手套箱中,以便于不暴露于空气。然后,测量这些发光元件的工作特性。注意,该测量是在室温下(保持在25℃的空气中)进行的。
[0394] 图38A示出发光元件5和6以及比较发光元件7的电压与电流密度特性关系曲线,而图38B示出其电流密度与辉度特性关系曲线。
[0395] 图39A示出发光元件5和6以及比较发光元件7的辉度与电流效率特性关系曲线,而图39B示出其辉度与功率效率特性关系曲线。
[0396] 在图38A至图39B中,空心三角形(△)、空心正方形(□)以及实心圆(●)分别对应于发光元件5、发光元件6以及比较发光元件7。图40示出当发光元件5和6以及2
比较发光元件7通过电流密度为25mA/cm 的电流发光的发射光谱。从图40显而易见,每个发光元件展现来自作为发光物质的Ir(Fdppr-Me)2(acac)的黄色发光(发射峰波长为
560nm)。
[0397] 然而,如从图38A和38B显而易见地,尽管大量电流流过比较发光元件7,但其辉度比发光元件5和6低。因此,如还从图39A中所见的,存在大的电流效率差异。本发明实施例的发光元件5和6各自可实现高电流效率,而比较发光元件7的电流效率较低。例如,在2
500cd/m 的辉度上,发光元件5和6各自的电流效率为约为20cd/A,而比较发光元件7的电流效率约为10cd/A。换言之,仅仅通过添加微量的空穴捕获物质,本发明实施例的发光元
2
件5和6的电流效率就各自改进约2倍。结果发现,在500cd/m 的辉度上,功率效率从约
3.0lm/W改进至5.0lm/W,由此功耗降了约一半。
[0398] 下面将给出其解释。以下表4示出YGAO11和Ir(Fdppr-Me)2(acac)的HOMO能级和LUMO能级,以及1′-TNATA的HOMO能级。注意,HOMO能级和LUMO能级是通过循环伏安法(CV)测量计算的(参见示例8)。
[0399] 表4
[0400]
[0401] 如从表4可以看到,在通过将YGAO11添加到Ir(Fdppr-Me)2(acac)获得的发光区域中,Ir(Fdppr-Me)2(acac)强烈倾向于捕获电子,而很少捕获空穴。因此,发光区域倾向于允许空穴被传输至阴极。此外,在本发明实施例的发光元件5和6的每一个中,容易穿过发光区域的空穴被所添加的1′-TNATA捕获,以使重新结合效率提高是可行的,这使得发射效率得到了改进。
[0402] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但可获得高发射效率。
[0403] [示例6]
[0404] 在示例6中,将具体描述制造本发明实施例的发光元件的示例。在下文中,描述制造示例6的发光元件的具体方法。
[0405] (发光元件8)
[0406] 首先,制备其上形成110nm厚的含氧化硅的氧化铟锡(ITSO)膜作为阳极的玻璃衬底(与用于制造示例1的发光元件1和比较发光元件2的衬底相同类型的衬底)。用聚酰亚胺膜覆盖ITSO膜表面的周边以使表面的2mm见方部分暴露。电极区域被设置成2mm×2mm。作为在该衬底上形成发光元件的预处理,用水清洗该衬底的表面并在200℃下烘焙一小时,-5
然后执行UV臭氧处理达370秒。然后,衬底被传递到其中压力降至约10 Pa的真空蒸镀装置。在真空蒸镀装置的加热室内,在真空170℃下进行烘焙达30分钟。然后,将衬底冷却达约30分钟。
[0407] 接着,设置有阳极的玻璃衬底被固定到设置在真空蒸镀装置的薄膜形成室内的衬底支架,以使其上形成有阳极的表面朝下。
[0408] 然后,首先,N,N′-(喹喔啉-2,3-二基二-4,1-亚苯基)双(N-苯基-1,1′-联苯基-4-胺)(简称:BPAPQ)和氧化钼被共蒸镀到阳极上,由此形成添加了作为受电子物质的氧化钼的空穴注入区域。使用电阻加热来进行蒸镀。空穴注入区域的厚度被设置成50nm,且蒸镀速率被调节成使BPAPQ与氧化钼的重量比为1∶0.5(=BPAPQ∶氧化钼)。注意,共蒸镀方法指在一个处理室中同时从多个蒸镀源进行多种材料的蒸镀的一种蒸镀方法。
[0409] 接着,通过使用电阻加热的蒸镀方法,仅使用BPAPQ形成10nm膜,然后共蒸镀BPAPQ和4,4′,4″-三[N-(1-萘基)-N-苯基氨基]三苯胺(简称:1′-TNATA),?由此形成添加了作为空穴捕获物质的1′-TNATA的空穴传输区域。空穴传输区域的厚度被设置成10nm,且蒸镀速率被调节成使BPAPQ与1′-TNATA的重量比为1∶0.05(=BPAPQ∶1′-TNATA)。
[0410] 然后,共蒸镀BPAPQ和(乙酰丙酮化)二[2,3-二(4-氟苯基)喹喔啉]铱(III)(简称:Ir(Fdpq)2(acac)),由此形成添加了作为发光物质的Ir(Fdpq)2(acac)的发光区域。发光区域的厚度被设置成30nm,且蒸镀速率被调节成使BPAPQ与Ir(Fdpq)2(acac)的重量比为1∶0.08(=BPAPQ∶Ir(Fdpq)2(acac))。
[0411] 此外,仅使用BPAPQ形成10nm膜,然后共蒸镀BPAPQ和锂(Li),由此形成添加了作为供电子物质的锂的电子注入区域。电子注入区域的厚度被设置成50nm,且蒸镀速率被调节成使BPAPQ与锂的重量比为1∶0.01(=BPAPQ∶锂)。
[0412] 最后,使用电阻加热通过蒸镀法在电子注入区域上形成200nm厚的铝膜,由此形成阴极。由此,制造发光元件8。
[0413] 由此获得的发光元件8被密封在含氮气的手套箱中,以便于不暴露于空气。然后,测量该发光元件的工作特性。注意,该测量是在室温下(保持在25℃的空气中)进行的。
[0414] 图41A示出发光元件8的电压与电流密度特性关系曲线,而图41B示出其电流密度与辉度特性关系曲线。图42A示出发光元件8的辉度与电流效率特性关系曲线,而图42B示出其辉度与功率效率特性关系曲线。在图41A至42B中,空心菱形(◇)和实心圆(●)分别对应于发光元件8和比较发光元件2。图43A和43B示出当发光元件8被驱动为通过2
电流密度为25mA/cm 的电流发光的发射光谱。图43B是图43A的放大图。图41A和41B、图42A和42B、图43A和43B还示出示例1中制造的比较发光元件2的特性以供比较。从图43A和43B显而易见,发光元件8展现来自作为发光物质的Ir(Fdpq)2(acac)的红色发光(发射峰波长为650nm)。
[0415] 然而,如从图41A和41B显而易见地,尽管大量电流流过比较发光元件2,但其辉度比发光元件8低。因而,如还从图42A可可见,在电流效率上存在极为显著的差异。本发明的发光元件8可实现高电流效率,而比较发光元件2的电流效率显著较低。例如,在500cd/2
m 的辉度上,发光元件8的电流效率为2.4cd/A,而比较发光元件2的电流效率约为0.05cd/A。换言之,仅仅通过添加少量的空穴捕获物质,本发明实施例的发光元件8的电流效率就
2
改进约50倍。结果发现,在500cd/m 的辉度上,功率效率从约0.02lm/W改进至0.60lm/W,由此功耗降至1/30或更低。
[0416] 如示例1所述,在通过将BPAPQ添加到Ir(Fdpq)2(acac)中获得的发光区域中,Ir(Fdpq)2(acac)强烈倾向于捕获电子,而很少捕获空穴。因此,发光区域倾向于允许空穴被传输至阴极。
[0417] 实际上,在图43B中,在约500nm处观察到来自比较发光元件2的不必要的发光。这有可能是因为其中穿过发光区域的空穴与发光区域和电子注入区域之间仅含BPAPQ的层中的电子重新结合以允许BPAPQ发光。此外,在本发明的发光元件8中,容易穿过发光区域的空穴被所添加的1′-TNATA捕获,以使重新结合效率提高是可行的;由此,发射效率在没有来自BPAPQ的发光的情况下得到显著提高。
[0418] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但发射效率得到显著的提高。
[0419] 此外,进行了其中发光元件8被恒定电流驱动持续点亮的测试。首先,发光元件82
在0.8mA的电流(20mA/cm 的电流密度)下发光达48小时并进行时效处理。尽管初始辉
2
度约为500cd/m,但电流效率通过时效处理提高3.6倍。因此,在48小时后,辉度增至约
2
1800cd/m。此时,电流效率为9.0cd/A而外部量子效率为21%。这说明,为了驱动本发明的发光元件,时效处理对稳定电流效率是有效的。
[0420] 在时效处理之后,1800cd/m2的辉度被设置为初始辉度,且发光元件8被恒定电流驱动持续点亮。图44示出结果。竖轴表示在初始辉度为100%的状况下的标准化辉度而横轴表示驱动时间。
[0421] 如图44所示,本发明实施例的发光元件8显示出轻微的退化;甚至在4000小时后,其被发现保持初始辉度的89%;由此,该元件被发现具有极长使用期限。此外,在时效处理之后实现极高效率。即,通过时效处理,本发明发光元件的电流效率稳定,且在后续驱动中可实现长使用期限。
[0422] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但可制造具有极长使用期限的发光元件。
[0423] 发光元件8和比较发光元件2的不同之处仅在于是否向空穴传输区域添加仅约5wt%的空穴捕获物质(1′-TNATA)。然而,这种大大改进发射效率并延长使用期限的效果是出人意料并且是不可根据常规公知常识预测的,从而显示了本发明实施例提供了显著效果。
[0424] [示例7]
[0425] 在示例7中,将具体描述本发明的发光元件的示例。在下文中,描述了制造示例7的发光元件的特定方法。
[0426] (发光元件9)
[0427] 首先,制备其上形成110nm厚的含氧化硅的氧化铟锡(ITSO)膜作为阳极的玻璃衬底。用聚酰亚胺膜覆盖ITSO膜表面的周边以使表面的2mm见方部分暴露。电极区域被设置成2mm×2mm。作为在该衬底上形成发光元件的预处理,用水清洗该衬底的表面并在200℃-5下烘焙一小时,然后执行UV臭氧处理达370秒。然后,衬底被传递到其中压力降至约10 Pa的真空蒸镀装置。在真空蒸镀装置的加热室内,在真空170℃下进行烘焙达30分钟。然后,将衬底冷却达约30分钟。
[0428] 接着,设置有阳极的玻璃衬底被固定到设置在真空蒸镀装置的薄膜形成室内的衬底支架,以使其上形成有阳极的表面朝下。
[0429] 然后,首先,9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:CzPA)和氧化钼被共蒸镀到阳极上,由此形成添加了作为受电子物质的氧化钼的空穴注入区域。
[0430] 使用电阻加热来进行蒸镀。空穴注入区域的厚度被设置成50nm,且蒸镀速率被调节成使CzPA与氧化钼的重量比为1∶0.5(=CzPA∶氧化钼)。注意,共蒸镀方法指在一个处理室中同时从多个蒸镀源进行多种材料的蒸镀的一种蒸镀方法。
[0431] 接着,通过使用电阻加热的蒸镀方法共蒸镀CzPA和N,9-二苯基-N-(9,10-二苯基-2-蒽基)-9H-咔唑-3-胺(简称:2PCAPA),以形成10nm厚的膜。?蒸镀速率被调节成使CzPA与2PCAPA的重量比为1∶0.5(=CzPA∶2PCAPA)。
[0432] 接着,仅使用CzPA形成10nm膜,然后共蒸镀CzPA和2PCAPA,?由此形成添加了作为发光物质的2PCAPA的发光区域。发光区域的厚度被设置成40nm,且蒸镀速率被调节成使CzPA与2PCAPA的重量比为1∶0.05(=CzPA∶2PCAPA)。
[0433] 然后,共蒸镀CzPA和N,N′-二苯基喹吖酮(简称:DPQd),?由此形成添加了作为电子捕获物质的DPQd的电子传输区域。电子传输区域的厚度被设置成10nm,且蒸镀速率被调节成使CzPA与DPQd的重量比为1∶0.005(=CzPA∶DPQd)。
[0434] 此外,共蒸镀CzPA和锂(Li),由此形成添加了作为供电子物质的锂的电子注入区域。电子注入区域的厚度被设置成20nm,且蒸镀速率被调节成使CzPA与锂的重量比为1∶0.02(=CzPA∶锂)。
[0435] 最后,使用电阻加热通过蒸镀法在电子注入区域上形成200nm厚的铝膜,由此形成阴极。由此,制造发光元件9。
[0436] 由此获得的发光元件9被密封在含氮气的手套箱中,以便于不暴露于空气。然后,测量该发光元件的工作特性。注意,该测量是在室温下(保持在25℃的空气中)进行的。
[0437] 图45A示出发光元件9的电压与电流密度特性关系曲线,而图45B示出其电流密度与辉度特性关系曲线。图46A示出发光元件9的辉度与电流效率特性关系曲线,而图46B2
示出其辉度与功率效率特性关系曲线。图47示出当发光元件9通过电流密度为25mA/cm的电流发光的发射光谱。从图47显而易见,每个发光元件展现来自作为发光物质的2PCAPA的绿色发光(发射峰波长为520nm)。
[0438] 在1000cd/m2的辉度上,发光元件9的电流效率为8.2cd/A,且由此能实现良好的2
电流效率。此外,在1000cd/m 的辉度上,功率效率约为3.3lm/W,其可提供足够低的功耗。
[0439] 如示例3所示,在通过将CzPA添加到2PCAPA获得的发光区域中,2PCAPA强烈倾向于捕获空穴,而很少捕获电子。由此,该发光区域倾向于允许电子被传输到阳极,而不会给与进行重新结合的足够机会。此外,在本发明的发光元件9中,容易穿过发光区域的电子被所添加的DPQd捕获,因此重新结合效率提高;由此,获得高发射效率。
[0440] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但可获得高发射效率。
[0441] 此外,进行了其中发光元件9被恒定电流驱动持续点亮的测试。首先,发光元件2
9在0.8mA的电流(20mA/cm 的电流密度)下发光达48小时并进行时效处理。尽管初始
2
辉度约为1000cd/m,但电流效率通过时效处理降低22%。因此,在48小时后,辉度减至约
2
780cd/m。这说明,为了驱动本发明的实施例的发光元件,时效处理对稳定电流效率是有效的。
[0442] 在时效处理之后,780cd/m2的辉度被保持并设置为初始辉度,且发光元件9被恒定电流驱动持续点亮。图48示出结果。竖轴表示在初始辉度为100%的状况下的标准化辉度而横轴表示驱动时间。
[0443] 如图48所示,本发明实施例的发光元件9显示出轻微的退化;甚至在2000小时后,其被发现保持初始辉度的97%;由此,该元件被发现具有极长使用期限。通过时效处理,本发明发光元件的电流效率稳定,且在后续驱动中可实现长使用期限。
[0444] 根据上述结果,可以理解,通过应用本发明实施例的发光元件的元件结构,尽管它是一简单的元件结构,但可制造具有极长使用期限的发光元件。
[0445] [示例8]
[0446] 在示例8中,以与示例4中相似的方式,通过循环伏安法(CV)测量来检查在示例5中制造的用于发光元件5-7的材料的氧化特性和还原特性。此外,根据该材料,确定每种材料的HOMO能级和LUMO能级。注意,电化学分析仪(由BAS公司制造的ALS模型600A或
600C)被用于测量。
[0447] 对于用于CV测量的溶液,使用脱水的N,N-二甲基甲酰胺(DMF,西格玛-奥尔德里奇公司(Sigma-Aldrich Inc.)产品,99.8%,目录编号22705-6)作为溶剂,将作为负载电解质的高氯酸四正丁基铵(n-Bu4NClO4,东京化学工业公司,目录编号T0836)溶解于该溶剂使高氯酸四正丁基铵的浓度为100毫摩尔/升。将要测量的目标物溶解于溶剂中,使其浓度为2毫摩尔/升。注意,对于具有低溶解度的在2毫摩尔/升的浓度下不能溶解的物质,该物质的不可溶解部分被滤除,然后滤出液被用于测量。使用铂电极(由BAS公司制造,PTE铂电极)作为工作电极,使用铂电极(由BAS公司制造,VC-3的Pt反电极,(5cm))作+为辅助电极,和Ag/Ag 电极(由BAS公司制造,RE-5参比电极,用于非水性溶剂)作为参比电极。应注意,在室温下进行测量(20-25℃)。此外,在所有测量中,CV测量中的扫描速度设定为0.1V/s。
[0448] (计算参比电极的相对于真空能级的势能)
[0449] 首先,计算在示例8中使用的参比电极(Ag/Ag+电极)的势能(单位为eV)。即,+计算Ag/Ag 电极的费米能级。已知二茂铁在甲醇中的氧化还原电位相对于标准氢电极为+0.610[V对于SHE](参考文献:Christian R.Goldsmith等人,J.Am.Chem.Soc.,第124卷,第1期,83-96页,2002)。另一方面,使用在示例8中所用的参比电极,计算二茂铁在甲醇中+
的氧化还原电位为+0.20[V对于Ag/Ag]。因此,发现在示例8中使用的参比电极的电位比标准氢电极低0.41[eV]。
[0450] 在此,已知标准氢电极相对真空能级的势能为-4.44eV(参考文献:T.oshihiro Ohnishi和Tamami Koyama,高分子EL材料,Kyoritsu shuppan,第64-67页)。因此,计算在示例8中使用的参比电极相对于真空能级的势能为
[0451] -4.44-0.41=-4.85[eV]。
[0452] (测量示例1:YGAO11)
[0453] 在测量示例1中,YGAO11的氧化特性和还原特性通过循环伏安法(CV)测量来检查。图49A和49B示出测量结果。图49A示出氧化特性,而图49B示出还原特性。注意,为了测量氧化特性,工作电极相对于参比电极的电位从-0.11V扫描至0.90V,然后从0.90V扫描至-0.11V。此外,为了测量还原反应特性,工作电极相对于参比电极的电位从-0.07V扫描至-2.60V,然后从-2.60V扫描至-0.07V。
[0454] 如图49A所示,氧化峰电势Epa为0.68V,而还原峰电势Epc为0.78V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.73V。这显示YGAO11可以通过0.73[V对Ag/+Ag]的电能氧化,并且此能量对应于HOMO能级。因此,如上上述,示例8中使用的参比电极相对于真空能级的势能为-4.85[eV]。因此YGAO11的HOMO能级计算如下:
[0455] -4.85-(0.73)=-5.58[eV]。
[0456] 此外,如图49B所示,还原峰电势Epc为-2.40V,而氧化峰电势Epa为-2.31V。因此,半波电势(Epa和Epc之间的中间电势)可被计算为-2.36V。这显示YGAO11可以通过-2.36[V+对Ag/Ag]的电能还原,并且此能量对应于LUMO能级。因此,如上上述,示例8中使用的参比电极相对于真空能级的势能为-4.94[eV]。因此YGAO11的LUMO能级计算如下:
[0457] -4.85-(-2.36)=-2.49[eV]。
[0458] (测量示例2:Ir(Fdppr-Me)2(acac))
[0459] 在测量示例2中,Ir(Fdppr-Me)2(acac)的氧化特性和还原特性通过循环伏安法(CV)测量来检查。图50A和50B示出测量结果。图50A示出氧化特性,而图50B示出还原特性。注意,为了测量氧化还原特性,工作电极相对于参比电极的电位从0.03V扫描至1.00V,然后从1.00V扫描至0.03V。此外,为了测量还原特性,工作电极相对于参比电极的电位从-0.27V扫描至-2.30V,然后从-2.30V扫描至-0.27V。
[0460] 如图50A所示,氧化峰电势Epa为0.80V,而还原峰电势Epc为0.67V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为0.74V。这显示Ir(Fdppr-Me)2(acac)可以通过+0.74[V对Ag/Ag]的电能氧化,并且此能量对应于HOMO能级。因此,如上上述,示例8中使用的参比电极相对于真空能级的势能为-4.85[eV]。因此Ir(Fdppr-Me)2(acac)的HOMO能级计算如下:
[0461] -4.85-(0.74)=-5.59[eV]。
[0462] 此外,如图50B所示,还原峰电势Epc为-2.03V,而氧化峰电势Epa为-1.96V。因此,半波电势(Epc和Epa之间的中间电势)可被计算为-2.00V。这显示Ir(Fdppr-Me)2(acac)+可以通过-2.00[V对Ag/Ag]的电能还原,并且此能量对应于LUMO能级。因此,如上上述,示例8中使用的参比电极相对于真空能级的势能为-4.85[eV]。因此(Fdppr-Me)2(acac)的LUMO能级计算如下:
[0463] -4.85-(-2.00)=-2.85[eV]。
[0464] 本申请基于2008年5月16日提交给日本专利特许厅的日本专利申请S/N.2008-130215以及2008年7月31日提交给日本专利特许厅的日本专利申请S/N.2008-198721,其全部内容通过引用结合于此。