减少高频多单元电力供应设备中的开关损耗的方法和系统转让专利

申请号 : CN200980119423.2

文献号 : CN102047547B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : P·W·哈蒙M·拉斯托基

申请人 : 西门子工业公司

摘要 :

一种减少电力供应设备中的开关损耗的方法包括以下步骤:使功率单元的第一极的输出电压提前第一角度;使功率单元的第二极的输出电压延迟第二角度;并且产生功率单元的组合输出电压,该功率单元的组合输出电压在功率单元的开关周期的前一半内等于持续角与第一角度和第二角度之和相等的正脉冲而在功率单元的开关周期的后一半内等于持续角与第一角度和第二角度之和相等的负脉冲。

权利要求 :

1.一种减少电力供应设备中的开关损耗的方法,其包括:

使功率单元的第一极的输出电压提前第一角度;

使所述功率单元的第二极的输出电压延迟第二角度;并且

产生所述功率单元的组合输出电压,所述功率单元的组合输出电压在所述功率单元的开关周期的前一半内等于持续角与所述第一角度和所述第二角度之和相等的正脉冲而在所述功率单元的所述开关周期的后一半内等于持续角与所述第一角度和所述第二角度之和相等的负脉冲。

2.根据权利要求1所述的方法,还包括:

针对多个功率单元执行提前、延迟和产生,以致用于每个功率单元的第一角度具有不同值。

3.根据权利要求1所述的方法,其中,所述第一角度和所述第二角度中的至少一个是负角度。

4.根据权利要求1所述的方法,其中,执行提前和延迟来使得所述第一角度和所述第二角度在大小上相等。

5.根据权利要求1所述的方法,其中,所述产生包括:

所述功率单元的第一极产生第一对称方波电压;并且

所述功率单元的第二极产生第二对称方波电压;

其中所述第一对称方波电压和所述第二对称方波电压在极性和相位中的至少一个方面不同。

6.根据权利要求5所述的方法,其中,所述第一对称方波电压和所述第二对称方波电压在相位上偏移。

7.根据权利要求1所述的方法,还包括在所述开关周期的前一半期间施加持续时间为第三角度的缺口和持续时间为第四角度的脉冲,以致所述功率单元在所述开关周期的前一半期间具有三个自由度。

8.根据权利要求7所述的方法,还包括在所述开关周期的后一半期间施加持续时间为第三角度的缺口和持续时间为第四角度的脉冲,以致所述功率单元在所述开关周期的后一半期间具有三个自由度。

9.一种减少多单元电力供应设备中的开关损耗的方法,其包括:向多单元电力供应设备的第一串联连接功率单元组的第一功率单元施加选择性谐波消除控制模式的第一角度命令以便针对所述第一功率单元实施根据权利要求1所述的方法;

向所述电力供应设备的所述第一串联连接功率单元组的第二功率单元施加所述选择性谐波消除控制模式的第二角度命令以便针对所述第二功率单元实施根据权利要求1所述的方法,其中所述第一角度命令和所述第二角度命令中的至少一个是负角度命令;

在所述电力供应设备的开关周期的第一部分之后向除了所述第二功率单元之外的功率单元施加所述第二角度命令;并且向所述第二功率单元施加所述第一角度命令。

10.根据权利要求9所述的方法,其中,同时地执行向所述电力供应设备的第一串联连接功率单元组的第一功率单元施加选择性谐波消除控制模式的第一角度命令和向所述电力供应设备的第一串联连接功率单元组的第二功率单元施加选择性谐波消除控制模式的第二角度命令。

11.根据权利要求9所述的方法,其中,同时地执行在所述电力供应设备的开关周期的第一部分之后向所述第一功率单元施加所述第二角度命令和向所述第二功率单元施加所述第一角度命令。

12.根据权利要求9所述的方法,其中,所述第一功率单元和所述第二功率单元在操作间隔期间生成相等部分的总负载功率。

13.根据权利要求9所述的方法,其中,选择所述第一角度命令、所述第二角度命令和任何其它角度命令,以致所述电力供应设备生成的一次谐波等于预期输出电压。

14.一种多单元电力供应设备,其包括:

多个功率单元,所述多个功率单元被布置成至少第一串联连接功率单元组;以及与所述功率单元进行通信的控制系统,其中所述控制系统被配置来:向所述第一串联连接功率单元组的第一功率单元施加选择性谐波消除控制模式的第一角度命令以便针对所述第一功率单元实施根据权利要求1所述的方法;

向所述第一串联连接功率单元组的第二功率单元施加所述选择性谐波消除控制模式的第二角度命令以便针对所述第二功率单元实施根据权利要求1所述的方法,其中所述第一角度命令和所述第二角度命令中的至少一个是负角度命令;

在所述电力供应设备的开关周期的第一部分之后向除了所述第二功率单元之外的功率单元施加所述第二角度命令;并且向所述第二功率单元施加所述第一角度命令。

15.根据权利要求14所述的电力供应设备,其中,所述控制系统还被配置来同时地向所述第一串联连接功率单元组的所述第一功率单元施加所述选择性谐波消除控制模式的所述第一角度命令并且向所述第一串联连接功率单元组的所述第二功率单元施加所述选择性谐波消除控制模式的所述第二角度命令。

16.根据权利要求14所述的电力供应设备,其中,所述控制系统还被配置来同时地向所述第一功率单元施加所述第二角度命令并且向所述第二功率单元施加所述第一角度命令。

17.根据权利要求14所述的电力供应设备,其中,所述第一功率单元和所述第二功率单元被配置来在操作间隔期间生成相等部分的总负载功率。

18.根据权利要求14所述的电力供应设备,其中,选择所述第一角度命令、所述第二角度命令和任何其它角度命令,以致所述电力供应设备生成的一次谐波等于预期输出电压。

19.根据权利要求14所述的电力供应设备,其中,所述控制系统包括:转矩信号产生部件,其接收来自速度调节器的输出和q轴电流估计以生成转矩信号;

磁通信号产生部件,其接收来自磁通调节器的输出和d轴电流估计以生成磁通信号;

以及

电流调节器,其将所述转矩信号和磁通信号调整成要被用来命令所述多个功率单元的值。

说明书 :

减少高频多单元电力供应设备中的开关损耗的方法和系统

[0001] 相关申请的交叉引用
[0002] 本申请要求各自于2008年5月30日提交的第61/057,341号美国临时申请和第61/057,397号美国临时申请的优先权权益。

技术领域

[0003] 本申请公开了通常并且在各种实施例中涉及一种用于减少高频多单元电力供应设备(power supply)中的开关损耗的系统和方法的发明。

背景技术

[0004] 在某些应用中,多单元电力供应设备利用模块化功率单元(power cell)来处理在源与负载之间的功率。例如,图1图示了具有九个这样的功率单元的电力供应设备(例如AC电机驱动)的各种实施例。图1中的功率单元由具有输入端子A、B和C以及输出端子T1和T2的块表示。在图1中,变压器或者其它多绕组装置110在其初级绕组112处接收三相中压功率并且经由单相逆变器(也称为功率单元)的阵列向诸如三相AC电机的负载130递送功率。电力供应设备输出的每相都由在此称为“相组”的串联连接功率单元组来馈送。
[0005] 变压器110包括激励多个次级绕组114-122的初级绕组112。虽然初级绕组112被图示为具有星形配置,但是网状配置也是可能的。另外,虽然次级绕组114-122被图示为具有三角形配置或者扩展的三角形配置,但是如在通过全文引用将公开内容结合于此的Hammond的第5,625,545号美国专利中所描述的那样可以使用其它绕组配置。
[0006] 任何数目的成排的功率单元被连接在变压器110与负载130之间。在图1的背景中的“排”被视为三相集或者在功率递送系统的三相中的每相两端建立的成组的三个功率单元。参照图1,排150包括功率单元151-153,排160包括功率单元161-163,而排170包括功率单元171-173。主控系统195通过光纤或者另一有线或者无线通信介质190向每个单元中的本地控制发送命令信号。应当注意,图1中所描绘的每相的单元数目为示例性的并且多于或者少于三排在各种实施例中都是可能的。
[0007] 在图1的例子中,有针对每个功率单元的分离的次级绕组。然而,图1中所图示的功率单元和/或次级绕组的数目仅仅是示例性的,并且其它数目是可能的。每排中的次级绕组可以具有相同的相角,其不同于所有其它排的相角。对于所有单元承载相等份额的负载功率的应用,这种布局引起单元输入电流中的许多谐波在变压器110中消失,使得这些谐波未被传递到初级电流。
[0008] 图2图示了功率单元210的各种实施例,该功率单元210代表图1的功率单元的各种实施例。功率单元210包括三相二极管桥式整流器212、一个或者更多直流(DC)电容器214和H桥式逆变器216。整流器212将在单元输入218(即在输入端子A、B和C)接收到的交流(AC)电压转换成如下的基本上恒定的DC电压:该基本上恒定的DC电压由连接在整流器212的输出两端的每个电容器214支持。功率单元210的输出级包括H桥式逆变器216,该H桥式逆变器216包括左极和右极这两极,其中每极都具有在这个例子中为绝缘栅双极型晶体管(IGBT)的两个开关装置217。逆变器216经常通过使用H桥式逆变器216中的半导体器件的脉宽调制(PWM)在单元输出220(即在输出端子T1和T2两端)将DC电容器214两端的DC电压变换成AC电压。
[0009] 如图2中所示,功率单元210也可以包括连接在单元输入218与整流器212之间的熔断器230。熔断器230可以工作来有助于在短路故障的情况下保护功率单元210。根据其它实施例,功率单元210可以与通过全文引用将公开内容结合于此的Hammond和Aiello的第5,986,909或者第6,222,284号美国专利中描述的功率单元相同或者类似。
[0010] 图3图示了与通过PWM控制的电力供应设备的各种实施例相关联的示例性波形。该电力供应设备对于每相包括六个功率单元,但是其它方面类似于图1的电力供应设备。
波形示出了参考信号302、载波信号304、为来自A相中的六个功率单元的电压之和的电压
306和从A相到零相的负载电压308。
[0011] 参照图2和图3,参考信号302表示针对功率单元中的H桥式逆变器216的一极的预期输出电压。载波信号304是在预期开关频率振荡的对称三角波形。参考信号302可以与载波信号304相比较来控制H桥式逆变器216的一极的切换。当参考信号302大于载波信号304时,该极被切换到来自电容器214的正DC电压,否则该极被切换到来自电容器214的负DC电压。对于H桥式逆变器216的其它极,预期电压是相同参考信号的逆。因此,参考信号的逆可以与相同载波信号相比较(或者反之亦然),以控制所述其它极。相同相组中的其它单元可以使用相同参考信号以及使用载波信号的时移复制信号(time-displaced replica)。在图3中示出了相组中的所有单元的输出电压之和306。其它两个相组使用相同载波集,而参考波形的复制波形在相位上移位±120°。因此,其它两个相组产生在相位上也移位±120°的类似总和电压。这三个总和电压在负载上产生三个相电压,在图3中示出了其中之一308。这种PWM方法造成所有单元承载相等份额的负载功率,因此允许单元输入电流中的许多谐波在变压器中消失。例如可以在第5,625,545号美国专利中发现这种PWM方法的附加细节。
[0012] 图3的例子示出了在如下预期开关频率振荡的载波信号304:该预期开关频率是参考信号的频率的十倍。在许多电机驱动应用中,最大预期输出频率是60赫兹。因此,关于图3,如果最大预期输出频率是60赫兹,则图3中的开关频率是600赫兹。诸如IGBT的现代开关装置可以在600赫兹容易地切换,而无过多的开关损耗。
[0013] 图4图示了图3中的负载电压的频谱绘图。纵轴被按比例绘制来使得基波(所需)分量402配准零dB。图4示出了超过-40dB(基波的1%)的最低谐波(非所需)分量404是89次谐波。如果基波(所需)频率在60赫兹,则89次谐波将在5340赫兹。当开关频率明显大于所需频率时,这种大的在所需分量与非所需分量之间的频率分离是PWM的特征。负载130经常包括有效串联电感(例如AC电机),并且非所需电压分量的高频允许这个电感抑制最终得到的非所需电流。
[0014] 然而,有所需频率比60赫兹大得多的诸多应用。例如,有将高速电机直接连接到高速压缩机或者泵而没有居间的升压变速箱的新兴趋势。对于这样的应用,电机可以由高频功率源驱动,以便以5000RPM或者更高的转数自旋。对于具有多于两极的电机,所要求的频率甚至更高。
[0015] 当所需频率增加到数百赫兹时,变得更难以扩展图3的PWM方法,与此同时仍然维持比所需频率高得多的开关频率。在数千赫兹的开关频率的情况下,开关损耗可能成为电力供应设备中的主导损耗,IGBT可能不得不在其标称电流额定值以下工作,并且每千瓦的成本会成比例地增加。从主控195向单元传输数据的速率也可能不得不增加到与开关频率相同的倍数。
[0016] 图5图示了与通过PWM控制的电力供应设备的各种实施例相关联的示例性波形。图5类似于图3,但是不同之处在于载波信号504在仅是参考信号502的所需频率的四倍的开关频率振荡。与图3相比较,清楚的是在图5中每个周期有更少阶跃。图5也示出了相组中的所有单元的输出电压之和506连同相电压508。
[0017] 图6图示了图5中的负载电压的频谱绘图。纵轴被按比例绘制来使得基波(所需)分量602配准零dB。图6示出了超过-40dB(基波的1%)的最低谐波(非所需)分量604是17次谐波。通过将开关与参考频率之比减小到1/2.5(从图3中的十减小到图5中的四),已经将非所需与所需频率之比减小到1/5.24(从图4中的89减小到图6中的17)。图6的非所需电流的幅度在图4的非所需电流的幅度上被增加到类似倍数。
[0018] 即使开关频率仅是数百赫兹的所需频率的四倍,IGBT的一些额定值降低和数据传输速率的一些增加在现有技术中仍然可能是必需的。

发明内容

[0019] 在描述本方法之前将理解本发明并不限于所描述的特定系统、方法论或者协议,因为这些特定系统、方法论或者协议可以变化。也将理解在此使用的术语仅为了描述特定实施例而并非意图限制本公开内容的范围,本公开内容的范围将仅受所附权利要求书限制。
[0020] 必需注意,如在此和在所附权利要求书中所使用的那样,除非上下文另有清楚地规定,单数形式“一”、“一个/一种”和“该/所述”包括复数引用。除非另有限定,在此使用的所有技术和科学术语具有与本领域普通技术人员通常理解的含义相同的含义。如在此使用的那样,术语“包含”意味着“包括但不限于”。
[0021] 在一个通常的方面中,实施例公开了一种减少电力供应设备中的开关损耗的方法。该方法包括以下步骤:使功率单元的第一极的输出电压提前第一角度;使功率单元的第二极的输出电压延迟第二角度;并且产生功率单元的组合输出电压,该功率单元的组合输出电压在功率单元的开关周期(switching cycle)的前一半内等于持续角与第一角度和第二角度之和相等的正脉冲而在功率单元的开关周期的后一半内等于持续角与第一角度和第二角度之和相等的负脉冲。
[0022] 在另一通常的方面中,实施例公开了一种减少多单元电力供应设备中的开关损耗的方法。该方法包括以下步骤:向多单元电力供应设备的第一相组的第一功率单元施加选择性谐波消除控制模式的第一角度命令;向电力供应设备的第一相组的第二功率单元施加选择性谐波消除控制模式的第二角度命令,其中第一角度命令和第二角度命令中的至少一个是负角度命令;在电力供应设备的开关周期的第一部分之后向除了第二功率单元之外的功率单元施加第二角度命令;并且向第二功率单元施加第一角度命令。
[0023] 在另一通常的方面中,实施例公开了一种多单元电力供应设备。该电力供应设备包括:被布置成至少第一相组的多个功率单元和与功率单元进行通信的控制系统。该控制系统被配置来:向第一相组的第一功率单元施加选择性谐波消除控制模式的第一角度命令;向第一相组的第二功率单元施加选择性谐波消除控制模式的第二角度命令,其中第一角度命令和第二角度命令中的至少一个是负角度命令;在电力供应设备的开关周期的第一部分之后向除了第二功率单元之外的功率单元施加第二角度命令;并且向第二功率单元施加第一角度命令。

附图说明

[0024] 图1图示了现有技术的电力供应设备的各种实施例;
[0025] 图2图示了图1的现有技术的电力供应设备的功率单元的各种实施例;
[0026] 图3图示了与通过脉宽调制来控制的现有技术的电力供应设备的各种实施例相关联的示例性波形;
[0027] 图4图示了图3中的负载电压的频谱绘图;
[0028] 图5图示了与通过脉宽调制来控制的现有技术的电力供应设备的各种实施例相关联的示例性波形;
[0029] 图6图示了图5中的负载电压的频谱绘图;
[0030] 图7图示了根据各种实施例的选择性谐波消除(SHE)控制模式;
[0031] 图8图示了根据各种实施例的电力供应设备的相组中的六个单元的输出电压;
[0032] 图9图示了被配置来给出预期基波同时消除某些谐波的两次收敛搜索(converging search)的结果;
[0033] 图10-14图示了根据各种实施例的电力供应设备的相组中的六个单元的输出电压;
[0034] 图15图示了根据各种实施例的选择性谐波消除(SHE)控制模式;
[0035] 图16图示了使用无角度工作旋转(angle duty rotation)的SHE控制的来自一个单元组的示例性波形;
[0036] 图17图示了使用有角度工作旋转的SHE控制的来自一个单元组的示例性波形;
[0037] 图18图示了使用有角度工作旋转的SHE控制的来自一个单元组的示例性波形;
[0038] 图19图示了使用有角度工作旋转的SHE控制的来自一个单元组的示例性波形;
[0039] 图20图示了根据各种实施例的选择性谐波消除(SHE)控制模式;
[0040] 图21图示了根据各种实施例的选择性谐波消除(SHE)控制模式;
[0041] 图22图示了被配置来给出预期基波同时消除某些谐波的两次收敛搜索的结果;
[0042] 图23图示了使用无角度工作旋转的SHE控制的示例性波形;
[0043] 图24图示了使用有角度工作旋转的SHE控制的示例性波形;
[0044] 图25图示了使用无角度工作旋转的SHE控制的示例性波形;
[0045] 图26图示了使用有角度工作旋转的SHE控制的示例性波形;
[0046] 图27图示了根据各种实施例的选择性谐波消除(SHE)控制模式;并且[0047] 图28图示了根据各种实施例的选择性谐波消除(SHE)控制模式。
[0048] 图29图示了示例性控制系统。

具体实施方式

[0049] 将理解,已经简化本发明的至少一些附图和描述,以着重于对于清楚理解本发明而言相关的要素,与此同时为了清晰起见消除本领域普通技术人员将理解也可以包括本发明的部分的其它要素。然而,因为这样的要素在本领域是众所周知的,并且因为这样的要素未必有助于更好地理解本发明,所以在此未提供对这样的要素的描述。
[0050] 图7图示了根据各种实施例的选择性谐波消除(SHE)控制模式。当SHE方法被用于控制每相具有六个单元的电力供应设备并且其它方面类似于图1的具有诸如图2中的单元的单元的电力供应设备时,SHE方法可以实现非所需与所需频率之比为17,其与利用如参照图5和图6描述的PWM方法而实现的比值一样好。应当注意,其它比值是可能的。然而,尽管所述PWM方法可以用为所需频率四倍的开关频率实现这一比值,但是SHE方法可以用等于所需频率的开关频率实现这一结果。换言之,利用SHE方法的这个实施例,每个开关装置每周期仅接通和关断一次。此外,可以在不增加从主控向单元传输数据的速率的情况下实现该比值。在第6,075,350号美国专利(Peng)中和在Chiasson 等人的IEEE论文“Eliminating Harmonics in a Multilevel Converter using Resultant Theory”中描述了SHE方法的各种实施例。
[0051] 针对诸如图2中所示的功率单元的功率单元示出了图7的SHE控制模式,其中T1在相位上超前T2并且开关频率等于所需频率。功率单元的H桥式逆变器中的每个开关装置(图2的元件216之内的元件217)在一半周期内接通而在另一半周期内关断。因此,H桥式逆变器的每极在所需频率产生对称方波电压701、702。来自该单元的输出电压710是两个极电压之差。如果T1和T2上的两个方波电压恰好同相,则来自该单元的输出电压会总是为零。然而,如图7中所示,左极(T1)输出701可以被提前任意角度A,而右极(T2)输出702可以被延迟相同角度A。结果是来自该单元的输出电压(T1与T2之差)710以如下形式出现:该形式是在电流712为正的正半周期720的中心的持续角为2*A的正脉冲715和在电流712为负的负半周期722的中心的持续角为2*A的负脉冲717。对于该周期的剩余部分,来自该单元的输出电压为零。由于该单元在正半周期720期间(当负载电流为正时)产生正电压而在负半周期722期间(当负载电流为负时)产生负电压,所以功率从该单元流向负载。利用这种控制模式,对于该单元的控制仅有一个自由度、即角度A的值。
[0052] 通常,当对于串联连接的数目为“X”的功率单元利用这种SHE方法时,串联的“X”个单元的相组具有“X”个自由度用于控制。例如当对于串联连接的六个功率单元利用这种SHE方法时,有可能使六个功率单元中的每个功率单元都具有针对角度A的不同值。因此,串联的六个单元的相组具有六个自由度用于控制。一个自由度被用来建立预期基波幅度。剩余的五个自由度可以被用来消除多达五个分离的非所需谐波。
[0053] 图8图示了根据各种实施例的电力供应设备的相组中的六个单元的输出电压801-806。为简单起见,在图8中仅示出了单元输出电压的一个正半周期,因为负半周期除了极性相反之外将是相同的。对于这样的实施例,每个单元对于不同角度利用上述SHE控制方法。在图8中紧跟在相对应的单元输出电压之后示出了六个不同角度(A、B、C、D、E 和F),并且在图8的顶部列出相应角度的以度为单位的值。这些角度表示来自每个单元的脉宽的一半。“M”的值与相组的预期基波输出电压成比例。如图8中所示,单元输出电压的每个脉冲在半周期中居中于90°。图8也图示了由将六个串联连接的单元一起求和而产生的波形810以及基波和前五个奇数谐波的幅度的各种实施例。对于所选的角度,基波(所需)电压具有其最大值的近似75%,但是5次谐波(非所需)电压、7次谐波(非所需)电压、11次谐波(非所需)电压和13次谐波(非所需)电压都在0.07%以下。3次谐波并非零,但是由于可被三除尽的所有谐波为零序列(如果这些谐波在所有三相上平衡),所以这些谐波由于三线连接而不能出现在负载上。
[0054] 使角度的值与预期基波和与非所需谐波相关的联立方程集是超越的,这意味着没有解析解。根据各种实施例,在上面引用的Chiasson的论文中描述的方法可以被用来找到给出预期基波同时消除某些谐波的角度集。根据其它实施例,可以利用计算装置执行收敛搜索,以找到给出预期基波同时消除某些谐波的角度集。这些“脱机”解可以被存储在存储装置中,用于主控中的实时使用。
[0055] 然而,这样的解未必对于所有的基波(所需)电压可能值都存在。在图9中图示了两次收敛搜索的结果。虽然有其中当每个搜索都被配置来消除五个谐波时不能找到解的基波电压范围,但是当搜索被配置来消除仅四个谐波(5次、7次、11次和13次)时在87%与25%的基波之间找到第一连续解而在28%与0%的基波之间找到第二连续解。在图9中组合在28%以上和以下的通过这两次搜索找到的角度A-F。
[0056] 针对基波电压的六个特定值,在图8、10、11、12、13和14中示出了与图9中的角度A-F相对应的波形。这六个特定值由图9中的虚线垂直箭头表示并且分别对应于图8、10、11、12、13和14。
[0057] 图10-14与图8的类似之处在于图10-14分别列出针对“M”的值,列出六个相应角度A-E 的以度为单位的值,图示了根据各种实施例的电力供应设备的相组中的六个单元的输出电压,角度分别表示来自每个单元的脉宽的一半,示出了单元输出电压的仅一半周期的值,单元输出电压的每个脉冲都居中于90°,并且图示了由将六个串联连接的单元一起求和而产生的波形以及基波和前五个奇数谐波的幅度的各种实施例。
[0058] 然而,图8和图10-14中的每个图都与不同的基波电压相关联。尽管与图8相关联的预期基波是最大值的近似75%,但是分别与图10-14相关联的预期基波近似于最大值的85%、最大值的63%、最大值的56%、最大值的48%和最大值的36%。
[0059] 图10示出了角度、波形1001-1006和最终得到的总和1010,这些角度、波形1001-1006和最终得到的总和1010被找到来产生为其最大值的85%的基波(所需)电压,而
5次谐波(非所需)电压、7次谐波(非所需)电压、11次谐波(非所需)电压和13次谐波(非所需)电压都在0.07%以下。图11示出了角度、波形1101-1106和最终得到的总和1110,这些角度、波形1101-1106和最终得到的总和1110被找到来产生为其最大值的63%的基波(所需)电压,而5次谐波(非所需)电压、7次谐波(非所需)电压、11次谐波(非所需)电压和13次谐波(非所需)电压都在0.11%以下。图12示出了角度、波形1201-1206和最终得到的总和1210,这些角度、波形1201-1206和最终得到的总和1210被找到来产生为其最大值的
56%的基波(所需)电压,而5次谐波(非所需)电压、7次谐波(非所需)电压、11次谐波(非所需)电压和13次谐波(非所需)电压都在0.17%以下。图13示出了角度、波形1301-1306和最终得到的总和1310,这些角度、波形1301-1306和最终得到的总和1310被找到来产生为其最大值的48%的基波(所需)电压,而5次谐波(非所需)电压、7次谐波(非所需)电压、11次谐波(非所需)电压和13次谐波(非所需)电压都在0.25%以下。图14示出了角度、波形1401-1406和最终得到的总和1410,这些角度、波形1401-1406和最终得到的总和1410被找到来产生为其最大值的36%的基波(所需)电压,而5次谐波(非所需)电压、7次谐波(非所需)电压、11次谐波(非所需)电压和13次谐波(非所需)电压都在0.14%以下。
[0060] 通过利用上述SHE方法而生成的并且在图8和图10-14中示出的波形可以在电力供应设备的输出产生与利用开关频率为基波(所需)频率的四倍的PWM控制而产生的功率质量一样好的并且开关损耗更低的功率质量。然而,如下文更详细描述的那样,输入功率质量通常将不会与利用PWM控制产生的功率质量一样好,并且一些角度可能呈现在基波的某个值以下的负值。
[0061] 利用SHE方法,每个功率单元都产生不同数量的基波电压。由于每个串联连接的相组中的所有功率单元都承载相同的电流,所以这些功率单元也产生不同数量的功率。如上文所述,在变压器110的初级绕组112(参见图1)的谐波消失与承载相等份额的负载功率的所有功率单元有关。由于在SHE方法的情况下并非这种情况,所以利用SHE方法产生的输入功率质量通常不会与利用PWM控制产生的功率质量一样好。
[0062] 利用SHE方法,如图9中所示,一些角度可能呈现负值。在图13中,清楚的是角度A为负的,因为来自相对应的单元的脉冲1301在正半周期期间为负的。在图14中,角度A和B均为负的,因为它们的脉冲1401、1402为负的。因此,不同于在Chiasson的论文中描述的方法(其中不允许负角度并且所获得的解中存在差距),与图9相关联的收敛搜索允许负角度。例如在图15中示出了负角度的实施方案。
[0063] 回顾图7中的内容,正控制角意味着左极(T1)701被提前控制角而右极(T2)702被延迟相同控制角。结果是来自该单元的输出电压(T1-T2)710包括在正半周期770的中心的持续时间为控制角的两倍的正脉冲715和在负半周期722的中心的持续时间为控制角的两倍的负脉冲717。对于该周期的剩余部分,来自该单元的输出电压为零。图15示出了负控制角意味着左极(T1)1501具有负提前或者被延迟控制角,而右极(T2)1502具有负延迟或者被提前相同控制角。结果是来自该单元的输出电压(T1-T2)1510是在电流1512为正的正半周期1520的中心的持续时间为控制角的两倍的负脉冲1515和在电流1512为负的负半周期1522的中心的持续时间为控制角的两倍的正脉冲1517。对于该周期的剩余部分,来自该单元的输出电压为零。
[0064] 然而,如图15中所示,利用负控制角,单元产生负电压1515,与此同时负载电流1512为正,而且产生正电压1517,与此同时负载电流1512为负。在这两种情况下,功率从负载流入到该单元中。当如图2中所示地配置功率单元时(其中功率单元210包括二极管整流器212),功率单元并未被配置来向专用次级绕组返回功率。
[0065] 对于可以接收负角度命令的每个功率单元,给功率单元配置再生整流器而不是二极管整流器会允许功率单元向专用次级绕组返回功率。然而,这样的配置给功率单元增添相当可观的成本和复杂度。
[0066] 可以通过旋转角度命令在功率单元之间的分配来克服与产生不同数量的功率的每个功率单元和与呈现负值的一些角度的关连。因此无需再生整流器。
[0067] 由于来自每个相组的输出电压是来自所有六个单元的电压之和,所以哪个单元被分配来实施每个单独的角度命令无关紧要。因此,最初随机地向每个相组中的六个单元分配六个角度。然后,在操作间隔之后,在新模式下重新分配角度,以致没有单元被分配有在前五个模式期间已经被给予的角度。按照相等间隔连续地重复这一过程。在六个间隔之后,模式将重复,并且每个单元将已生成相同的平均份额的负载功率。因此将恢复在变压器的初级绕组的谐波消失。在每个单元产生(为正的)相同部分份额的负载功率的情况下,每个部分份额也将为正的,并且没有单元要求再生整流器。
[0068] 在旋转角度命令的分配的情况下,来自每个单元的在一个完整旋转周期期间的平均功率将相等,但是来自每个单元的功率将在旋转周期内波动。对于这样的配置,电容器(图2中的214)可被确定大小来提供足够的滤波,使得这些波动并不影响功率流入单元中。具体而言,电容器214可以被确定大小来能够存储在具有负角度命令的间隔期间所吸收的能量,使得可以稍后在具有正角度命令的间隔期间消耗所存储的能量。电容器214可以被确定大小来存储这一能量,而不必充电到过高的电压电平。可以通过避免具有连续的负角度命令的模式并且通过使旋转时段尽可能短来限制充电。如下文所述,分配间隔可以少于或者等于输出频率的一个周期,使得旋转时段并未超过输出频率的一个周期与每个相组的单元数目的乘积。在各种实施方案中,分配间隔可以等于输出频率的一半周期。
[0069] 通常,功率单元可以与用于正常的50/60赫兹PWM应用的功率单元相同地被配置,使得这些功率单元将已经具有足够滤波来处理这些低频处的正常纹波电流。对于高频应用,使用上述SHE方法,这种正常滤波通常将是充分的。
[0070] 图16图示了使用无角度工作旋转的SHE控制的来自一个单元组(即六个功率单元)的示例性波形。对于图16,选择如下角度集A-F:该角度集A-F仅产生最大基波电压的25%,其中三个角度命令(A、B和C)为负的。这一特定角度集来自图9上未示出的不同解。
[0071] 图16的顶部示出了相组中的每个单元的两极在三个周期的间隔上的波形。第一单元的左极被标记为LP1,而第一单元的右极被标记为RP1。附加单元的相应左极和右极被标记为RP2-RP6和LP2-LP6。每个单元的每个极都生成对称的方波电压。
[0072] 图16也示出了相组中的每个单元在三个周期的相同间隔上的输出电压。这些单元被标记为CL1-CL6。如图16中所示,功率单元CL1-CL3在其中电流1612为正的正半周期期间产生负脉冲而在其中电流1612为负的负半周期期间产生正脉冲。功率单元CL4-CL6在正半周期期间产生正脉冲而在负半周期期间产生负脉冲。控制变量Q控制对角度命令的旋转并且因此在图16中是不活动的。
[0073] 图16的底部示出了来自所有六个单元的输出电压之和1610的波形和输出电流的假设波形(有单位功率因数而无谐波)。如假设的那样图示了波形1610,因为实际输出电流1612可以具有不同的功率因数和谐波。对于与图16相关联的SHE方法,每个单元所产生的或者所吸收的平均功率将不同并且对于前三个单元将为负的。六个单元中的每个单元的左极和右极中的IGBT和反并联二极管中的平均电流对于每个单元将不同。
[0074] 图17图示了使用有角度工作旋转的SHE控制的来自一个单元组(即六个功率单元)的示例性波形。图17利用与图16中利用的角度集相同的角度集。参照与图17相关联的SHE方法,在每个半周期结束时旋转角度命令分配。因此,每六个半周期(或者三个全周期)出现完整的旋转。
[0075] 图17的顶部示出了相组中的每个单元的两极在三个周期的间隔上的波形。标记表示与图16中相同。每个单元的每个极仍然如图16中那样每个周期进行一次正和负切换,但是方波电压不再如图16中那样是对称的。
[0076] 图17也示出了相组中的每个单元在三个周期的相同间隔上的输出电压1710。标记表示与图16中相同。每个单元在三个周期的时段期间产生具有六个不同持续时间的脉冲,而不是如图16中那样产生相同持续时间的六个脉冲。每个单元在三个周期的时段期间产生具有负角度的三个脉冲和具有正角度的三个脉冲。功率单元CL1、CL3和CL5产生的模式除了一个周期的位移之外都是相同的。功率单元CL2、CL4和CL6产生的模式也除了一个周期的位移之外都是相同的,并且除了具有相反极性之外与功率单元CL1、CL3和CL5产生的模式匹配。
[0077] 控制变量Q控制对角度分配的旋转,并且与在图16中不同,Q在三个周期的时段期间逐步完成(step through)六个不同值。在每个半周期结束时出现阶跃,并且因为所有极在那些点都具有相同值,所以旋转将不会引起额外的切换事件。
[0078] 图17的底部示出了来自所有六个单元的输出电压之和1710的波形和输出电流1712的波形。输出电压之和1710与图16相同,因为如前文所阐述的那样分配哪个单元来实施每个单独的角度命令无关紧要。
[0079] 对于与图17相关联的SHE方法,六个单元中的每个单元所产生的或者所吸收的平均功率将相等并且对于所有六个单元将为正的。六个单元中的每个单元的左极和右极中的IGBT和反并联二极管中的平均电流也将未必相等,但是将具有比无旋转时少得多的变化。此外,在单元CL1、CL3和CL5的左极中的平均电流将等于在单元CL2、CL4和CL6的右极中的平均电流;并且反之亦然。出现这一两分法是因为单元CL1、CL3和CL5产生的切换模式具有与单元CL2、CL3和CL6产生的切换模式相反的极性。
[0080] 图18图示了使用有角度工作旋转的SHE方法的来自一个单元组(即六个功率单元)的示例性波形。图18利用与图17相同的角度集并且示出了在六个周期的间隔上的波形。参照与图18相关联的SHE方法,在每个全周期结束时而不是如图17中那样在每个半周期结束时旋转角度分配。因此,每六个全周期出现完整的旋转。
[0081] 图18的顶部示出了相组中的每个单元的两极在六个周期的间隔上的波形。标记表示与图16和图17中相同。每个单元的每极仍然如在图16和图17中那样每个周期进行一次正和负切换,但是方波电压不再如图16中那样是对称的。然而,在六个周期之后,每个单元的每极都已经在正电平花费总时间的一半而在负电平花费一半。
[0082] 图18也示出了相组中的每个单元在六个周期的相同间隔上的输出电压。标记表示与图16和图17中相同。每个单元在六个周期的时段期间产生各自有六个不同持续时间的两个脉冲,即每个持续时间的一个正脉冲和一个负脉冲。每个单元在六个周期的时段期间产生具有负角度的六个脉冲和具有正角度的六个脉冲。所有单元产生的模式除了一个周期的位移之外都是相同的。
[0083] 控制变量Q控制对角度分配的旋转并且在六个周期的时段期间逐步完成六个不同值。在每个全周期结束时出现阶跃,并且因为所有极在那些点都具有相同值,所以旋转将不会引起额外的切换事件。
[0084] 图18的底部示出了来自所有六个单元的输出电压之和1810的波形和输出电流1812的假设波形。输出电压之和1810与图16和图17相同,因为如前文所阐述的那样分配哪个单元来实施每个单独的角度命令无关紧要。
[0085] 对于与图18相关联的SHE方法,六个单元中的每个单元所产生的或者所吸收的平均功率将相等并且对于所有六个单元将为正的。六个单元中的每个单元的左极和右极中的IGBT和反并联二极管中的平均电流对于所有单元也将是相等的,并且反并联二极管中的平均电流对于所有单元也将是相等的。
[0086] 图19图示了使用有角度工作旋转的来自一个单元组(即六个功率单元)的示例性波形。图19与图18相同,除了图19使用产生74%的基波电压并且无负角度的角度集之外。对于与图19相关联的SHE方法,来自每个单元的平均功率相等并且对于所有六个单元均为正的。IGBT中的平均电流对于所有单元也是相等的,并且反并联二极管中的平均电流对于所有单元也是相等的。
[0087] 图19的底部示出了来自所有六个单元的输出电压之和1910的波形和输出电流1912的假设波形。图19示范了每个全周期的角度命令旋转无论是否存在负角度都在单元之间维持相等的平均功率并且在所有单元IGBT之间维持相等的电流而且也在所有单元反并联二极管之间维持相等的电流。
[0088] 每个半周期或者每个全周期的角度命令旋转对于所有单元将实现相等的平均功率,并且因此将在变压器的初级实现良好的谐波电流消失。对于电力供应设备可以容许IGBT和反并联二极管的平均电流有一些变化的应用,SHE方法可以每个半周期利用旋转来实现电容器(图2中的214)所需的最短可能旋转时段和最少能量存储。然而,如果针对IGBT和反并联二极管需要保证相等的平均电流,则SHE方法可以利用每个全周期的旋转。
[0089] 前文已经描述了使用如下SHE波形:这些SHE波形允许开关频率等于所需频率来使得每个开关装置每个周期仅接通和关断一次。这些SHE波形对于每个单元仅提供一个自由度。在每个单元仅有一个自由度的情况下,可能需要最少五个单元来控制来自电力供应设备的输出电压的基波幅度并且也利用这些波形来消除四个谐波。在一些应用中,可能需要运用每相六个单元来找到开关角的连续解。然而在许多应用中,所需最大输出电压可以允许每相较少数目的单元,这可以造成更少的成本。对于这样的应用,对于每个单元提供多于一个的自由度的SHE波形可以被用来控制来自电力供应设备的输出电压的基波幅度并且也消除谐波。被消除的谐波的数目可以变化。
[0090] 图20图示了根据各种实施例的选择性谐波消除(SHE)控制模式。在图20中,开关频率等于所需频率的两倍。图20的SHE控制模式与图7的SHE控制模式几乎相同,除了持续角为B的缺口2030被插入到左极输出T1 2001的正半周期2020的中间并且相同缺口2032也被插入到右极输出T2 2002的负半周期2022的中间之外。在插入这些缺口的情况下,左极和右极都每周期切换两次而不是每周期切换一次。缺口使单元输出(T1-T2)2010在每个半周期中包含两个脉冲而不是仅一个脉冲。这两个脉冲的持续时间和位置由角度A
2035和角度B 2030/2032来确定,使得有两个自由度。
[0091] 如果在图1的单元中使用图20的SHE波形,从而使这些单元每周期切换两次,则会有可能获得每相仅三个单元的六个自由度。这可以允许消除与前文针对每相六个单元(每个单元每周期切换一次)所述的情况有相同数目的谐波。这样的方法对于可以容许更高开关频率的诸多应用可以是一种有利折衷并且会仍然给出比利用PWM控制更低的开关损耗。
[0092] 图21图示了根据各种实施例的选择性谐波消除(SHE)控制模式。图21的SHE控制模式与图20的SHE控制模式几乎相同,除了左极T1 2101的波形和右极T2 2012的波形已经被交换之外。单元输出(T1-T2)2110在每个半周期中仍然包含两个脉冲而不是仅一个脉冲,但是这些脉冲与图20相比具有相反极性。因此,与图21相关联的SHE方法可以产生负功率流。
[0093] 针对SHE角度的解可能未必对于所有的基波(所需)电压可能值都存在。图22示出了当计算机程序被配置为利用每个相组三个功率单元来消除四个谐波(5次谐波、7次谐波、11次谐波和13次谐波)时的两次搜索的结果。在62%与0%的基波电压之间找到一个连续解,而在69%与62%的电压之间找到第二连续解。组合这些解以创建图22。
[0094] 图22中的角度A-F被解释如下:每个单元产生对称地位于每个半周期中的两个脉冲。可以将这两个脉冲形象化为中间有更窄的缺口的一个主脉冲。可以将缺口形象化为负宽度的脉冲。在缺口的宽度为-2*A的情况下,三个功率单元中的第一功率单元产生宽度为2*D 的主脉冲。在缺口的宽度为-2*B 的情况下,三个功率单元中的第二功率单元产生宽度为2*E的主脉冲。在缺口的宽度为-2*C 的情况下,三个功率单元中的第三功率单元产生宽度为2*F 的主脉冲。因为缺口宽度角度必须为负的,所以有比在与图9相关联的搜索中更多的约束。由于附加约束,所以尽管图9的解达到87%的最大电压,但是图22的解仅达到
69%的最大电压。如果缺口宽度超过主脉冲宽度,则该单元将在正半周期期间产生负脉冲并且将具有负功率流。
[0095] 为了更为清晰,针对两个特定的基波电压值,针对图22中描绘的角度A-F显示波形。这两个特定值由图22中的虚线垂直箭头表示并且分别对应于图23-26。图23-26中的每个图都列出“M”的值(与预期基波幅度成比例),列出六个相应角度A-F的值(以度为单位),图示了根据各种实施例的电力供应设备的A相组中的三个单元(CLa1、CLa2、CLa3)的输出电压,图示了A、B和C相组中的单元电压之和并且图示了控制角度命令旋转的控制变量Q。图23-26中的每个图也示出了从A相到零相的负载电压和A相的假设负载电流。
[0096] 图23示出了无角度命令旋转的与最大可能基波电压的13%相对应的波形。每个A组单元的输出对于每个周期重复而不改变并且不同于其它A组单元。如图23中所示,功率单元CLa1在正半周期期间产生正脉冲。功率单元CLa2也在正半周期期间产生正脉冲,但是持续时间不同于功率单元CLa1的持续时间。功率单元CLa3在正半周期期间产生负脉冲并且将具有负功率流。因此,功率单元中的每个功率单元都产生不同数量的功率。图23的底部示出了来自所有单元的输出电压之和2310的波形和输出电流2312的假设波形。
[0097] 图24也示出了与最大可能基波电压的13%相对应的但是有角度命令旋转的波形。变量Q在三个周期的旋转间隔期间逐步完成三个相继值,然后该模式重复。在每个全周期结束时出现阶跃,并且因为所有极在那些点具有相同值,所以旋转将不会引起额外的切换事件。Q的值被用来确定给每个单元分配哪个SHE波形。图24中的从A相到零相的负载电压2410(Van)与图23中相同,因为如前文所阐述的那样分配哪个单元来实施每个单独的角度命令无关紧要。
[0098] 图24示出了:在每个全周期有角度命令旋转的情况下,每个单元在三个周期的旋转时段期间产生相同波形(在单元之间有一个周期的相移)。每个单元经历一个周期的负功率流,但是针对每个单元的平均功率为正的并且对于所有单元相同。
[0099] 图25示出了无角度命令旋转的与最大可能基波电压的69%相对应的波形。每个A组单元的输出对于每个周期重复而不改变并且不同于其它A组单元。如图25中所示,功率单元CLa1在正半周期期间产生正脉冲。功率单元CLa2也在正半周期期间产生正脉冲,但是持续时间不同于功率单元CLa1的持续时间。功率单元CLa3也在正半周期期间产生正脉冲,但是持续时间不同于功率单元CLa1和CLa2的持续时间。因此,每个功率单元都产生不同数量的功率。
[0100] 图26也示出了与最大可能基波电压的69%相对应的、但是有角度命令旋转的波形。变量Q在三个周期的旋转间隔期间逐步完成三个相继值,然后该模式重复。在每个全周期结束时出现阶跃,并且因为所有极在那些点都具有相同值,所以旋转将不会引起额外的切换事件。Q的值被用来确定给每个单元分配哪个SHE波形。图26中的从A相到零相的负载电压2610与图25中相同,因为如前文所阐述的那样分配哪个单元来实施每个单独的角度命令无关紧要。
[0101] 图26示出了:在每个全周期有角度命令旋转的情况下,每个单元在三个周期的旋转周期期间产生相同波形(在单元之间有一个周期的相移)。针对每个单元的平均功率为正的并且对于所有单元都相同。
[0102] 如前文所述,对于每个单元提供多于一个的自由度的SHE波形可以被用来控制输出电压的基波幅度并且消除谐波。图27图示了如下选择性谐波消除(SHE)控制模式:该选择性谐波消除(SHE)控制模式具有三个自由度并且也具有等于所需频率的三倍的开关频率。这一模式类似于图7的模式,其中左极输出T1 2701被提前角度A而右极输出T2 2702被延迟相同角度A。然而,在图27中,持续角为C的缺口和持续角为B的脉冲被插入到左极输出T1 2701的正半周期2720中。左极输出T1 2701的负半周期2722相同,但极性相反,使得该左极输出T1 2701的负半周期2722包含持续角为B的缺口和持续角为C的脉冲。右极输出T2 2702也类似于图7中所示的右极输出,除了持续角为C的缺口和持续角为B的脉冲被插入到右极输出T2 2702的负半周期2722中之外。右极输出T2 2702的正半周期2720相同,但极性相反,使得该右极输出T2 2702的正半周期2720包含持续角为B的缺口和持续角为C 的脉冲。
[0103] 在插入这些缺口和脉冲的情况下,左极和右极均每周期切换三次而不是每周期切换一次。缺口和脉冲使单元输出(T1-T2)2710在每个半周期中包含三个脉冲而不是仅一个脉冲。这三个脉冲的持续时间和位置由角度A、角度B 和角度C确定 ;使得有三个自由度。
[0104] 如果在与图1类似的电力供应设备的单元中使用图27的SHE波形从而使其每周期切换三次,则会有可能获得每相仅有两个单元的六个自由度。这可以允许消除与前文针对每相六个单元(分别每周期切换一次)所述的情况有相同数目的谐波。这样的方法对于可以容许更高开关频率的诸多应用可以是一种有利折衷并且会仍然具有比PWM控制更低的开关损耗。
[0105] 图28图示了如下SHE控制模式:该SHE控制模式具有等于所需频率的三倍的开关频率。这一模式与图27的控制模式几乎相同,除了左极T1 2701和右极T2 2702的波形已经被交换之外。单元输出2710也与图27的单元输出几乎相同,除了极性被反转之外,使得该单元现在在正半周期2720期间产生负电压而在负半周期2722期间产生正电压。因此,图28的SHE控制模式可以被用来产生负功率流。
[0106] 对于图27和图28的波形,找到给出预期基波电压同时消除某些谐波电压的SHE角度的过程对于每周期切换一次和每周期切换两次的模式会类似于前文所示的情况。
[0107] 根据各种实施例,SHE波形可以被用来每周期将高速电机驱动中的装置切换一次。然后随着速度(并且因此频率)减小,在最高速度的约一半时,其它SHE波形可以被用来每周期将装置切换两次。开关损耗会仍然没有比在最高速度时更差,但是可以消除两倍之多的谐波。随着速度进一步减小,在最高速度的约三分之一时,尚有其它SHE波形可以被用来每周期将装置切换三次。开关损耗会仍然没有比在最高速度时更差,但是可以消除三倍之多的谐波。这个过程随着速度减小一次又一次地继续。最终,速度可以达到对于利用PWM控制来切换装置可接受的点。
[0108] 图29图示了用于使用在此描述的方法来控制高速AC电机2905的示例性控制系统2900。参照图29,电力电路2910由如下系统控制:该系统测量在电力电路2910与旋转电机机架2905之间的电流信号2921和电压信号2923。所测量的三相电流和电压信号分别可以被变换成两相表示(2922,2924)以及被变换成估计旋转的d-q轴中的电压和电流的表示(2926,2928)。磁通估计器(flux estimator)2930可以使用d-q电压电流来确定定子磁通幅度、频率和相位。
[0109] 磁通速度调节器2932、2934被用来分别生成针对磁通和转矩产生部件2936、2938的电流命令。电流调节器2940将所测量的d-q电流调节成所命令的值。前馈信号2942、2944被相加来去耦合磁通和转矩并且提高瞬态响应。
[0110] 利用这一控制方法,可以使用滑差补偿2950,但是通常仅针对感应电机使用滑差补偿2950。对于同步电机和永磁电机(其中转子以与定子相同的频率自旋),滑差补偿块2950可能不提供任何输出。所有其它功能相同。定子电阻是主要对基于定子磁通的控制的稳定性有影响的参数。不正确的转子电阻值可能仅引起速度误差并且可以不影响转矩。可以通过使用稳健的电机电压积分器(未示出)来估计定子磁通而解决低速时的稳定性问题。
[0111] 可以在中压(2300伏特和更高)和高功率(例如1000千瓦和更高)时在包括高速应用(例如250赫兹和更高的频率)的各种应用中使用在此描述的实施例。
[0112] 尽管在此已经通过例子描述本发明的若干实施例,但是本领域技术人员将理解可以实现对所述实施例的各种修改、变更和适配而不脱离本发明的如所附权利要求书限定的精神和范围。