用于二次电池的充放电控制设备以及充放电控制方法转让专利

申请号 : CN201010548584.8

文献号 : CN102064573B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 南浦啓一

申请人 : 丰田自动车株式会社

摘要 :

本发明涉及用于二次电池的充放电控制设备以及充放电控制方法。一种用于为作为控制对象的混合动力车辆(10)配备的锂离子电池(13)的充电和放电控制设备(30)包括:作为前馈控制装置的输入/输出限制装置(31);作为反馈控制装置的上限电压保护装置(32)和锂析出抑制装置(33);电池温度确定装置(34);以及控制模式改变装置(35)。当所述电池温度确定装置(34)确定电池温度低于或等于预定温度时,所述控制模式改变装置(35)禁止所述前馈控制并通过所述反馈控制来执行输入限制控制。

权利要求 :

1.一种用于二次电池(13)的充电和放电控制设备,其组合地使用前馈控制和反馈控制来执行对所述二次电池(13)的充电和放电控制,并包括执行所述前馈控制的前馈控制装置和执行所述反馈控制的反馈控制装置,所述充电和放电控制设备的特征在于包括:控制模式改变装置(35),其在所述前馈控制与所述反馈控制之间改变控制模式,其中所述前馈控制装置基于预定的可允许的电功率值而控制充电电功率和放电电功率中的至少一者,并且当所述可允许的电功率值低于或等于预定值时,所述控制模式改变装置(35)禁止所述前馈控制,并改变所述控制模式以通过所述反馈控制来控制所述充电电功率和所述放电电功率中的至少一者。

2.根据权利要求1的用于二次电池(13)的充电和放电控制设备,其中

所述前馈控制装置基于这样的图而限制所述充电电功率和所述放电电功率中的至少一者,该图根据电池温度和充电状态中的至少一者而限定所述可允许的电功率值,并且当所述电池温度低于或等于预定温度时,所述控制模式改变装置(35)改变所述控制模式。

3.根据权利要求2的用于二次电池(13)的充电和放电控制设备,其中,当所述电池温度低于或等于所述预定温度时,所述控制模式改变装置(35)禁止所述前馈控制并基于上限电压值(Vlim)而执行所述反馈控制。

4.根据权利要求1到3中任何一项的用于二次电池(13)的充电和放电控制设备,其中所述控制模式改变装置(35)在充电期间改变所述控制模式,并且所述反馈控制装置包括充电电压限制装置(32)和充电电流限制装置(33),其中所述充电电压限制装置(32)基于作为充电电压的上限的上限电压值(Vlim)而限制所述充电电压,所述充电电流限制装置(33)基于作为充电电流的上限的上限电流值(Ilim)而限制所述充电电流。

5.根据权利要求4的用于二次电池(13)的充电和放电控制设备,其中,当所述电池温度低于或等于预定温度时,所述控制模式改变装置(35)禁止所述前馈控制并基于所述上限电压值(Vlim)而执行所述反馈控制。

6.根据权利要求1到3中任何一项的用于二次电池(13)的充电和放电控制设备,其中所述控制模式改变装置(35)在放电期间改变所述控制模式,并且所述反馈控制装置包括放电电压限制装置(32)和放电电流限制装置(33),其中所述放电电压限制装置(32)基于作为放电电压的下限的下限电压值而限制放电电压,所述放电电流限制装置(33)基于作为放电电流的下限的下限电流值而限制放电电流。

7.根据权利要求6的用于二次电池(13)的充电和放电控制设备,其中,当所述电池温度低于或等于预定温度时,所述控制模式改变装置(35)禁止所述前馈控制并基于所述下限电流值而执行所述反馈控制。

8.根据权利要求4的用于二次电池(13)的充电和放电控制设备,其中所述充电电压限制装置(32)使用与所述充电电流的累积上限对应的上限值作为所述上限电流值(Ilim)来约束充电电流。

9.根据权利要求5的用于二次电池(13)的充电和放电控制设备,其中所述充电电压限制装置(32)使用与所述充电电流的累积上限对应的上限值作为所述上限电流值(Ilim)来约束充电电流。

10.一种用于二次电池(13)的充电和放电控制方法,其特征在于包括:

组合地使用前馈控制和反馈控制来执行对所述二次电池(13)的充电和放电控制,其中所述前馈控制被执行以基于预定的可允许的电功率值而控制充电电功率和放电电功率中的至少一者,以及当所述可允许的电功率值低于或等于预定值时,禁止所述前馈控制,并通过所述反馈控制来控制所述充电电功率和所述放电电功率中的至少一者。

11.根据权利要求10的用于二次电池(13)的充电和放电控制方法,其中所述前馈控制和所述反馈控制各自都被执行,以基于这样的图而限制所述充电电功率和所述放电电功率中的至少一者,该图根据电池温度和充电状态中的至少一者而限定所述可允许的电功率值,所述充电和放电控制方法还包括当所述电池温度低于或等于预定温度时在所述前馈控制与所述反馈控制之间改变控制模式。

说明书 :

用于二次电池的充放电控制设备以及充放电控制方法

技术领域

[0001] 本发明涉及用于二次电池的充电和放电控制设备以及充电和放电控制方法,更特别地,涉及这样的用于二次电池的充电和放电控制设备以及充电和放电控制方法,其组合使用前馈控制和反馈控制以执行充电和放电控制。

背景技术

[0002] 当二次电池的充电状态(下文中,称为SOC)落到适当状态之外并进入过充电状态或过放电状态时,会发生性能劣化等等,所以要控制充电和放电以维持适当的SOC。此外,与在锂离子电池的情况一样地,一些二次电池需要对充电电流或充电电压的严格限制控制以防止锂金属的析出(precipitation)等等。此外,在任何二次电池中,例如,在低温环境中,从性能保护等等的观点出发,要大幅地(significantly)限制用于充电和放电的可允许的电功率,因此有必要根据电池温度适当地控制充电和放电电功率。
[0003] 一种二次电池的充电和放电控制模式为这样的控制模式,其组合使用前馈控制和反馈控制。前馈控制例如为这样的控制模式,其中将与电池温度对应的可允许的电功率值设定为目标值,然后单边(unilaterally)给出实现该目标值的控制信号。另一方面,反馈控制例如为这样的控制模式,其中检测诸如充电电压的控制参数,然后给出控制信号以减小控制参数的目标值与控制参数的检测值之差。通常,根据前馈控制,可以维持稳定的充电电压等等;然而,当外部影响(干扰)作用于充电/放电电压等等时,难以充分地进行控制。因此,结合反馈控制,例如,管理充电电压以不超过上限电压值(目标值)。也就是,在参考结果的同时进行反馈控制,因此控制参数的变化范围增大;然而,即使当在检测值中发生和出现干扰时,该检测值也会被反馈以管理目标值。
[0004] 已提出了一些旨在在低温环境中实现高效充电和放电的控制设备。例如,日本专利申请公开10-108380(JP-A-10-108380)描述了一种控制设备,其使从检测的电池温度和检测的充电电压计算的可充电的充电深度与使用电池温度、充电深度和充电电压作为参数的预存函数(prestored function)相比较,从而即使在任何环境中也可以将充电电功率控制到最优的充电电功率(例如,在低温环境中降低充电电功率,而在正常温度下提高充电电功率)。此外,日本专利申请公开2000-92603(JP-A-2000-92603)描述了一种输出控制设备,其在电池的电池电压或SOC的下降程度增大时增大电池的输出限制值,由此增加输出限制的程度。
[0005] 在JP-A-10-108380和JP-A-2000-92603中描述的控制设备根据电池温度等等而使充电和放电电功率变化,由此用来响应于环境变化等等而有效地进行充电和放电;然而,这些控制设备没有考虑充电和放电操作的可控性。也就是,如上所述,对于在低温环境中的二次电池,要大幅地限制充电和放电电功率以防止电池的性能劣化等等;然而,要精确控制经大幅地限制的低充电和放电电功率是不容易的。
[0006] 特别地,在低温环境中对锂离子电池充电时,存在例如锂金属容易在负电极表面上析出的问题,并且与其他二次电池相比进一步限制了充电电功率,从而难以精确地控制充电电功率。此外,在引擎被驱动时充电的车辆内二次电池中,当在低温环境中大幅地限制充电电功率时,难以执行对引擎的驱动控制,所以充电操作的可控性劣化。

发明内容

[0007] 本发明提供用于二次电池的充电和放电控制设置以及充电和放电控制方法,其改善了充电和放电的可控性并同时在低温环境中充分地保护二次电池的性能。
[0008] 本发明的第一方面涉及一种用于二次电池的充电和放电控制设备。所述充电和放电控制设备包括执行前馈控制的前馈控制装置和执行反馈控制的反馈控制装置,并组合地使用所述前馈控制和所述反馈控制来执行对所述二次电池的充电和放电控制。所述充电和放电控制设备包括:控制模式改变装置,其在所述前馈控制与所述反馈控制之间改变控制模式。所述前馈控制装置基于预定的可允许的电功率值而控制充电电功率和放电电功率中的至少一者。当所述可允许的电功率值低于或等于预定值时,所述控制模式改变装置禁止所述前馈控制,并改变所述控制模式以通过所述反馈控制来控制所述充电电功率和所述放电电功率中的至少一者。
[0009] 利用上述方面,当可允许的电功率值为高时通过前馈控制可以稳定地控制受控值(例如,充电电功率);而当将可允许的电功率值限制到预定值或低于预定值时,可以在充分保护二次电池的性能的同时改善受控值的可控性。也就是,当大幅地限制可允许的电功率值且难以通过前馈控制来控制充电电功率等等时,禁止前馈控制,并通过反馈控制来仅仅控制限制值,因此可以扩展充电电功率的可允许的值等等。
[0010] 在上述方面中,所述前馈控制装置基于这样的图而限制所述充电电功率和所述放电电功率中的至少一者,该图根据电池温度而限定所述可允许的电功率值。当所述电池温度低于或等于预定温度时,所述控制模式改变装置改变所述控制模式。
[0011] 利用上述方面,在其中电池温度超过预定温度的中温(mild temperature)环境中,通过前馈控制来稳定地控制受控值(例如,充电电功率);同时,可以在充分保护二次电池在低温环境中的性能的同时改善受控值的可控性。注意,在任何二次电池中,当电池温度降低时,为了防止性能劣化,用于充电和放电的可允许的电功率值倾向于降低;然而,利用上述配置,可以根据电池温度而适当地控制充电和放电电功率。
[0012] 在上述方面中,当所述电池温度低于或等于所述预定温度时,所述控制模式改变装置可以禁止所述前馈控制并可以基于上限电压值而允许所述反馈控制。
[0013] 在上述方面中,所述控制模式改变装置可以在充电期间改变所述控制模式。所述反馈控制装置可以包括充电电压限制装置和充电电流限制装置,其中所述充电电压限制装置基于作为充电电压的上限的上限电压值而限制所述充电电压,所述充电电流限制装置基于作为充电电流的上限的上限电压值而限制所述充电电流。并且,所述充电电压限制装置可以使用与所述充电电流的累积上限对应的上限值作为所述上限电流值来约束充电电流。
[0014] 利用上述方面,即使当大幅地限制所述可允许的电功率值并禁止前馈控制时,也可以控制所述充电电压和所述充电电流以使其不超过各自的上限值,因此可以充分地保护电池性能。注意,在锂离子电池中,为了防止性能劣化,需要严格限制所述充电电流和所述充电电压(特别地,当电池温度低时,大幅地限制所述充电电功率),并且当受控的二次电池为锂离子电池时,上述配置是适当的。
[0015] 在上述方面中,当所述电池温度低于或等于预定温度时,所述控制模式改变装置可以禁止所述前馈控制并可以基于所述上限电压值而允许所述反馈控制。
[0016] 在上述方面中,所述控制模式改变装置可以在放电期间改变所述控制模式。所述反馈控制装置可以包括放电电压限制装置和放电电流限制装置,其中所述放电电压限制装置基于作为放电电压的下限的下限电压值而限制放电电压,所述放电电流限制装置基于作为放电电流的下限的下限电流值而限制放电电流。
[0017] 利用上述方面,即使当大幅地限制可允许的电功率值并禁止前馈控制时,也可以控制放电电压和放电电流以使其不超过各自的上限值,因此可以充分地保护电池性能。
[0018] 在上述方面中,当所述电池温度低于或等于所述预定温度时,所述控制模式改变装置可以禁止所述前馈控制并可以基于所述上限电压值允许所述前馈控制。
[0019] 本发明的第二方面涉及一种用于二次电池的充电和放电控制方法。所述充电和放电控制方法包括:组合地使用前馈控制和反馈控制来执行对所述二次电池的充电和放电控制,其中所述前馈控制被执行以基于预定的可允许的电功率值而控制充电电功率和放电电功率中的至少一者;以及当所述可允许的电功率值低于或等于预定值时,禁止所述前馈控制,并通过所述反馈控制来控制所述充电电功率和所述放电电功率中的至少一者。
[0020] 在上述方面中,所述前馈控制和所述反馈控制可以被执行以基于这样的图而限制所述充电电功率和所述放电电功率中的至少一者,该图根据电池温度和充电状态中的至少一者而限定所述可允许的电功率值。所述充电和放电控制方法还包括当所述电池温度低于或等于预定温度时在所述前馈控制与所述反馈控制之间改变控制模式。
[0021] 根据上述方面,可以改善充电和放电的可控性,同时在低温环境中充分地保护二次电池的性能。

附图说明

[0022] 下面将参考附图描述本发明的特征、优点以及技术和工业重要性,其中相似的标号表示相似的要素,其中:
[0023] 图1为示出了根据本发明的实施例的锂离子电池的充电和放电控制设备以及装备有该充电和放电控制设备的混合动力车辆的图;
[0024] 图2为示出了在根据本发明的实施例的充电和放电控制设备中的关于电池温度的可允许的电功率图(Win/Wout图)的图;
[0025] 图3为示出了上限电压值和充电电压值的实例的图;
[0026] 图4为示出了锂析出抑制控制图和充电电流值的实例的图;
[0027] 图5为这样的图,其示出了在根据本发明的实施例的充电和放电控制设备对锂离子电池执行充电控制时可允许的输入值根据电池温度的变化的实例;以及[0028] 图6为示出了根据本发明的实施例的充电和放电控制设备对锂离子电池执行的输入限制控制的过程的流程图。

具体实施方式

[0029] 将参考附图详细描述根据本发明的实施例的充电和放电控制设备。图1示出了根据本发明的实施例的充电和放电控制设备30以及装备有该充电和放电控制设备30的混合动力车辆10。注意,下文中,充电和放电控制设备30被描述作为控制为混合动力车辆10而配备的锂离子电池13的充电和放电的设备。然而,受控的二次电池以及充电和放电控制设备30的应用并不受上述情况限制。例如,除了锂离子电池13之外,二次电池还可以为镍-镉电池或镍-金属氢化物电池。
[0030] 如图1所示,装备有充电和放电设备30的混合动力车辆10(下文中称为HV车辆10)包括作为车辆的驱动源的电动机11和引擎12。此外,混合动力车辆10包括锂离子电池13、电池监视单元14、发电机15、逆变器(inverter)16、混合动力控制单元(hybrid control unit)17(下文中,称为HV控制单元17)、转换器(converter)(未示出)等等。锂离子电池13为充电和放电控制设备30的控制对象。电池监视单元14监视锂离子电池13的状态。发电机15对锂离子电池13充电。逆变器16将从锂离子电池13供给的直流电流转变为交流电流。HV控制单元17全面执行对HV系统的各种控制。电动机11、引擎12和发电机15被连接到减速齿轮19并通过动力分配机构(power distribution mechanism)18驱动车轮20。
[0031] HV车量10例如可以为作为串联HV和并联HV的组合的并联/串联HV。在串联HV中,由电动机11驱动车辆,并且引擎12作为对电动机11的电力供给源。在并联HV中,由电动机11和引擎12驱动车辆。
[0032] 在并联/串联HV中,电动机11主要用于辅助引擎12来输出动力,并且还作为用于在减速期间再生(regeneration)的发电机。此外,引擎12用于驱动混合动力车辆10且驱动发电机15。通常,混合动力车辆10以仅仅使用电动机11的EV模式运行或者以在开动车辆时或在低负载驱动期间使用电动机11和引擎12的组合的模式运行,并且以当车辆的速度增加到特定水平时使用引擎12的模式运行。通过包括充电和放电控制设备30的HV控制单元17来控制电动机11和引擎12。
[0033] 锂离子电池13具有存储由发电机15等等产生的电力以及然后将所存储的电力供给到电动机11的功能。锂离子电池13为使用由诸如石墨的碳材料构成的负电极和由诸如钴酸锂(lithium cobaltate)的锂化合物构成的正电极的二次电池。锂离子可逆地在电极之间迁徙以进行充电和放电。更具体而言,如稍后将描述的,在锂离子电池13中,当充电电压过高时会劣化循环寿命,而当充电电流过大时锂金属会在负电极的表面上析出,因此需要严格地控制充电电压和充电电流。
[0034] 电池监视单元14具有监视锂离子电池13的状态的功能。具体而言,电池监视单元14从为锂离子电池13设置的传感器(温度传感器等等)(未示出)获取电池温度、电压值和电流值,然后将电池温度、电压值和电流值传送到充电和放电控制设备30(HV控制单元17)。然后,充电和放电控制设备30基于这些信息段而执行充电和放电控制。
[0035] 发电机15为产生供给到电动机11的电力的旋转电机。发电机15的旋转轴通过动力分配机构18而被耦合到引擎12的输出轴,并由引擎12驱动。动力分布机制18被耦合到引擎12、发电机15以及电动机11,并在它们之间分配动力。动力分配机构18例如具有在驱动轮20与发电机15之间分配由引擎12产生的驱动力的功能。
[0036] 逆变器16具有将从锂离子电池13供给的直流电流转变为交流电流且然后将该交流电流供给到电动机11的功能。此外,逆变器16还具有将由发电机15产生的或由电动机11再生的交流电流转变为直流电流并将该转变后的直流电流供给到锂离子电池13的功能。注意,由发电机15产生的电力可以被直接供给到电动机11。
[0037] 注意,为电动机11、引擎12和发电机15设置诸如旋转速度传感器和温度传感器的各种传感器(未示出),并且由这些传感器检测的信息段同样被传送到充电和放电控制设备30(HV控制单元17)并被主要用作用于反馈控制的参数。
[0038] HV控制单元17包括充电和放电控制设备30并全面执行对HV系统的各种控制。HV控制单元17具有例如基于来自各种传感器和各种电子控制单元(ECU)的信息或信号、驾驶者的输出请求(加速器操作量)等等而对电动机11或引擎12进行输出控制的功能。注意,HV控制单元17由包括CPU、输入和输出端口、存储器等等的微计算机形成,并且可以通过执行软件来实施HV控制单元17的各种功能。
[0039] 充电和放电控制设备30控制锂离子电池13的充电和放电并可被配置为HV控制单元17的一部分。特别地,充电和放电控制设备30具有以下功能:在中温环境中维持稳定的充电和放电特性,特别地,在极低温环境中在充分地保护电池性能的同时改善充电期间的可控性。为了实现上述功能,充电和放电控制设备30包括作为前馈控制装置的输入/输出限制装置31、作为反馈控制装置的上限电压保护装置32以及锂析出抑制装置33、电池温度确定装置34和控制模式改变装置35。
[0040] 输入/输出限制装置31具有基于锂离子电池13的温度限制充电和放电电功率的功能。此外,输入/输出限制装置31具有将SOC维持在适当值的功能。也就是,当SOC超过上限时,输入/输出限制装置31禁止充电;然而,当SOC低于下限时,输入/输出限制装置31禁止放电。注意,充电被称为输入,放电被称为输出,并且,为了方便起见,由负值表示输入值(电流和电功率)并由正值表示输出值(电流和电功率)。
[0041] 这里,可以主要通过对电动机11的输出控制来执行对锂离子电池13的输出限制控制,并且可以通过对引擎12的输出控制来执行对锂离子电池13的输入限制控制。特别地,通过控制逆变器16或转换器(未示出)的操作来执行对电动机11的输出控制。此外,可以通过例如控制主继电器(main relay)(未示出)的连接和中断来执行对再生的输入限制控制。
[0042] 通过经由前馈控制的输入/输出限制装置31来执行输入/输出限制控制,并且控制电动机11和引擎12的输出,以便输入/输出值不基于电压值或电流值而变为目标值。特别地,输入/输出限制装置31使用Win/Wout图来进行控制,该Win/Wout图根据电池温度而限定了可允许的输入/输出值(kW)。也就是,Win/Wout图的可允许的输入/输出值(kW)为前馈控制的目标值,而输入/输出限制装置31限制输入/输出以便不超过可允许的输入/输出值(kW)。
[0043] 图2示出了Win/Wout图,该Win/Wout图根据电池温度限定了可允许的输入/输出值。这里,Win图表示相对于电池温度的可允许的输入值(Win),Wout图表示相对于电池温度的可允许的输出值(Wout)。如图2所示,在Win/Wout图中,当电池在中温环境中时可允许的输入/输出值是恒定的,并且可允许的输入/输出值随电池温度的降低而降低。注意,当电池温度为高时,可允许的输入/输出值也降低。这里,当输入/输出连续预定的时长(例如,A秒或更长)时Win/Wout例如被设定为超过限制值(例如,上/下限电池电压)的值。
[0044] 注意,Win/Wout图为限定了关于SOC的可允许的输入/输出值的图。此外,一个轴(X轴)表示电池温度,另一轴(Y轴)表示SOC,于是Win/Wout图限定了关于电池温度和SOC限定了可允许的输入/输出值。也就是,输入/输出限制装置31可以获取电池温度和SOC,然后使用其中X轴表示电池温度且Y轴表示SOC的Win/Wout图来由此限制输入/输出。
[0045] 在Win图中,交替的长和短虚线表示锂离子电池13的可允许的输入值,折线(broken line)表示镍-金属氢化物电池的可允许的输入值。以该方式,在B℃或更低的极低温环境中锂离子电池13的可允许的输入值为特别小的值,因此,对引擎12的输出控制难以控制这样的小值(例如,C kW或低于C kW的可允许的输入值)。于是,如稍后详细描述的,充电和放电装置30禁止在其中电池温度低于或等于预定温度(B℃等)的低温环境中使用Win图的输入限制控制。
[0046] 上限电压保护装置32具有基于上限充电电压(下文中,称为上限电压)而限制充电电压的功能。如上所述,在锂离子电池13中,当充电电压过度增大时,循环寿命会劣化。为了防止循环寿命的劣化,设定上限电压值,然后通过上限电压保护装置32来严格地控制充电电压。上限电压保护装置32从电池监视单元14获取电压值,并且当所获取的电压值超过上限电压值(Vlim)时,降低充电电压以便不超过上限电压值(Vlim)。也就是,上限电压保护装置32基于所测量的电源而限制充电电压,所以该控制是反馈控制。
[0047] 图3示出了上限电压值(Vlim)和充电电压值的实例。如图3所示,上限电压值被设置在(Vlim),即,例如,与电池温度、充电持续时间等等无关的恒定值,如4V。通过由输入/输出限制装置31执行的前馈控制来稳定地维持充电电压值。然而,当充电电压值超过上限电压值(Vlim)时,施加陡峭的反馈控制,因此充电电压值骤然降低。以该方式,虽然反馈控制在受控值的稳定性上有所欠缺,但却可以控制充电电压值以不超过作为限制值的上限电压值(Vlim)。注意,为了既实现控制稳定性又实现限制值管理,可以组合地使用前馈控制和反馈控制。
[0048] 锂析出抑制装置33具有基于上限充电电流(下文中称为上限电流)而限制充电电流的功能。在锂离子电池13中,当充电电流过度增加时,锂金属在负电极表面上析出。因此,为了防止锂金属的析出,设定上限电流值,然后通过锂析出抑制装置33严格地控制充电电流。锂析出抑制装置33从电池监视单元14获取电流值,并且,当所获取的电流值超过上限电流值(Ilim)时,减小充电电流值以便不超过上限电流值(Ilim)。也就是,锂析出抑制装置33执行反馈控制以基于所测量的电流值而限制充电电流值。
[0049] 图4示出了限定了上限电流值(Ilim)的锂析出抑制控制图和充电电流值的实例。如图4所示,上限电流值(Ilim)随充电持续时间的流逝而逐渐降低。通过由输入/输出限制装置31执行的前馈控制来稳定地维持充电电流值。然而,当充电电流值超过上限电流值(Ilim)时,施加陡峭的反馈控制,因此充电电流值骤然降低。
[0050] 可以使用与充电电流的累积值(下文中将其简单地视为累积的上限电流值)对应的上限值作为上限电流值(Ilim)。可使用随充电电流的累积值成比例地变化的值作为累积的上限电流值。如图4所示,当充电电流的累积值由于长的充电持续时间而增加时,可以成比例地减小累积的上限电流值。也就是,锂析出抑制装置33计算(计数)充电电流的累积值,并基于计算出的充电电流的累积值而减小累积的上限电流值。并且,当充电电流的累积值超过累积的上限电流值时,充电电流值被减小到低于累积的上限电流值的值。可以紧接在完成了锂离子电池13的充电之后重设充电电流的累积值。考虑到其中重复地对锂离子电池13充电和放电的情况,例如,可以通过根据电池充电的停止时间的持续时长而减小充电电流的累积值来设定充电电流的累积值。
[0051] 同样,累积的上限电流值可以为不随充电持续时间变化的恒定值。例如,锂析出抑制装置33计算充电电流的累积值,然后,当计算出的充电电流的累积值超过作为恒定值的累积的上限电流值时,限制锂离子电池13的充电。
[0052] 电池温度确定装置34具有确定锂离子电池13的温度是否低于或等于预定温度的功能。具体而言,电池温度确定装置34从电池监视单元14获取电池温度,然后比较所获取的电池温度与预定温度。这里,例如,预定温度(预定值)被设定在B℃,在该温度下,Win图的可允许的输入值特别小。
[0053] 控制模式改变装置35具有当电池温度确定装置34确定出电池温度低于或等于预定温度(例如,低于或等于B℃)时禁止使用Win图的前馈控制的功能。也就是,不通过输入/输出限制装置31执行输入限制控制,而是通过上限电压保护装置32和锂析出抑制装置33仅仅执行反馈控制。由此,基于上限电压值和上限电流值而实施输入限制。当充电电压值或充电电流值超过对应的限制值时,施加反馈控制。
[0054] 图5示出了可允许的输入值(Win)根据电池温度而变化的实例。如图5所示,当电池温度超过B℃时,通过输入/输出限制装置31执行前馈控制,因此可允许的输入值的变化是缓和的(gentle)。另一方面,当电池温度低于或等于B℃时,禁止由输入/输出限制装置31执行的前馈控制,并且由上限电压保护装置32和锂析出抑制装置33执行反馈控制,因此可允许的输入值的变化是陡峭的。以该方式,充电和放电控制装置30在可允许的输入值大时通过前馈控制来执行输入限制控制,并且由于难以抑制过度的输入而在可允许的输入值小时仅通过反馈控制来执行输入限制控制。
[0055] 将参考图6描述由此配置的充电和放电控制装置30的操作,特别地,输入限制控制。图6为示出了对锂离子电池13的输入限制控制的过程的流程图。
[0056] 首先,确定锂离子电池13的电池温度是否低于或等于预定值(例如,低于或等于B℃)(S10)。通过电池温度确定装置34的功能而执行上述过程。具体地,电池温度确定装置34使从电池监视单元14获取的电池温度与预定值(预定温度)相比较。
[0057] 当在S10中确定电池温度超过预定值时,组合地使用前馈控制和反馈控制以执行输入限制控制(S11)。也就是,主要控制引擎12的输出,以便输入值不超过与电池温度对应的Win图的可允许的输入值。然后,当由于干扰而导致充电电压超过上限电压值(参见图3)或充电电流超过上限电流值(参见图4)时,通过反馈控制而执行输入限制。通过输入/输出限制装置31、上限电压保护装置32以及锂析出抑制装置33的功能来执行上述过程。
[0058] 另一方面,当在S10中确定电池温度低于或等于预定值时,禁止前馈控制(S12)。也就是,仅仅通过反馈控制来执行输入限制。通过控制模式改变装置35的功能来改变控制模式。
[0059] 如上所述,用于锂离子电池13的充电和放电控制装置30包括作为前馈控制装置(前馈控制单元)的输入/输出限制装置31、作为反馈控制装置(反馈控制单元)的上限电压保护装置32和锂析出抑制装置33、电池温度确定装置34(电池温度确定单元)以及控制模式改变装置35(控制模式改变单元)。当电池温度确定装置34确定电池温度低于或等于预定温度时,控制模式改变装置35禁止使用Win图的前馈控制并通过反馈控制来执行输入限制控制。由此,可以在中温环境中通过前馈控制来维持稳定的输入/输出值,并且可以在极低温环境中充分地保护锂离子电池13的性能的同时改善输入/输出的可控性[0060] 下面描述上述实施例的修改例。下面的说明描述了与上述实施例不同的特征,从而省略掉重复的解释。
[0061] 在上述说明中,充电和放电控制装置30改变控制模式以禁止在对锂离子电池13的输入限制控制中的前馈控制。然而,依赖于受控的二次电池,改变控制模式还可被应用于输出限制控制。此外,根据本发明的该方面的充电和放电控制设备可以被设计为仅在放电期间改变控制模式。
[0062] 在放电期间改变控制模式的充电和放电控制设备可包括基于下限放电电压值而限制放电电压的放电电压限制装置和基于下限放电电流值而限制放电电流的放电电流限制装置作为反馈控制装置,并且,即使在禁止前馈控制时,例如,也可以防止由高速率放电导致的性能劣化等等。
[0063] 并且,在上述说明中,当确定电池温度低于或等于预定温度时,控制模式改变装置35禁止前馈控制。然而,即使在除了电池温度低于或等于预定温度的条件之外的条件下,也可以在可允许的电功率值低于或等于预定值时禁止前馈控制。例如,当SOC高于或等于预定值时,推测可允许的电功率值(可允许的充电电功率)低于或等于预定值。
[0064] 由此,控制模式改变装置例如当在输入限制控制中确定SOC高于或等于预定值时能够禁止前馈控制,或者当在输出限制控制中确定SOC低于或等于预定值时能够禁止前馈控制。也就是,根据本发明的该方面的充电和放电控制设备除了电池温度确定装置34之外还包括SOC确定装置,而不是仅包括电池温度确定装置34,并且能够基于电池温度和SOC而改变控制模式。
[0065] 此外,在上述说明中,在锂析出抑制控制中,充电电流被描述为随充电持续时间的流逝而逐渐减小上限电流值(Ilim)或者可以根据与充电电流的累积值对应的累积的上限电流值来加以限制。然而,例如,在除了锂离子电池之外的二次电池中,可以根据与充电的持续时间或充电电流的累积值无关的恒定上限电流值来限制充电电流。
[0066] 虽然已经参考其示例性实施例描述了本发明,但是应该理解,本发明并不局限于所描述的实施例或构造。相反地,本发明旨在覆盖各种修改和等价设置。此外,虽然以各种组合和配置示出了示例性实施例的各种要素,但包括更多、更少的要素或仅仅单个要素的其他组合和配置同样在本发明的范围内。