产生具有低漂移的带隙电压的电路和方法转让专利

申请号 : CN201010588027.9

文献号 : CN102081421B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : B·哈维

申请人 : 英特赛尔美国股份有限公司

摘要 :

根据本发明的一个实施例,带隙电压基准电路包括一组X电流源、多个电路支路以及多个开关。X个(其中X≥3)电流源中的每一个电流源产生与组内其它电流源产生的电流基本相等的相应电流。带隙电压基准电路的多个电路支路共同用来产生带隙电压输出(VGO)。多个电路支路中的每个电路支路接收未曾由其它电路支路接收的至少一路电流。多个开关(例如由控制器控制)有选择地随时间而改变由电流源产生的哪些电流被带隙电压基准电路中的多个电路支路中的哪些支路所接收。

权利要求 :

1.一种产生带隙电压输出(VGO)的带隙电压基准电路,包括:一组X个电流源,其中每个电流源产生与该组内其它电流源产生的电流基本相等的对应电流,其中X≥3;

所述带隙电压基准电路的多个电路支路,包括

第一和第二电路支路,用于产生与绝对温度成比例的电压(VPTAT),以及第三电路支路,用于产生与绝对温度互补的电压(VCTAT),其中VPTAT和VCTAT合而用来产生所述带隙电压输出(VGO),以及其中所述第一、第二和第三电路支路中的每一个包括一个或多个晶体管,所述一个或多个晶体管产生用来生成VPTAT或VCTAT的基极-发射极电压降;以及多个开关,所述多个开关适于将所述电流源中的每一个有选择地轮转到或轮转出所述第一、第二和第三电路支路中的每一个,以由此有选择地随时间推移而改变哪些电流源向所述第一电路支路提供电流,哪些电流源向所述第二电路支路提供电流,以及哪些电流源向所述第三电路支路提供电流;

其中所述电流源是与开关分开的组件,以及与产生基极-发射极电压降的晶体管分开的元件。

2.如权利要求1所述的带隙电压基准电路,其特征在于,由所述X个电流源中的每个电流源产生的电流由所述第一电路支路接收大约1/X的时间,由所述第二电路支路接收大约

1/X的时间,并由所述第三电路支路接收大约1/X的时间。

3.如权利要求1所述的带隙电压基准电路,其特征在于,X=3。

4.如权利要求1所述的带隙电压基准电路,其特征在于,X>3。

5.如权利要求1所述的带隙电压基准电路,其特征在于,在任何给定时间,由所述电流源中的至少一个电流源产生的至少一路电流不由合而用来产生所述带隙电压输出(VGO)的任何电路支路所接收,尽管在其它时间由所述电流源中的所述至少一个电流源产生的所述至少一路电流由合而用来产生所述带隙电压输出(VGO)的电路支路所接收。

6.如权利要求1所述的带隙电压基准电路,其特征在于:合而用来产生所述带隙电压输出(VGO)的所述多个电路支路中的至少一个支路接收由所述X个电流源中的至少两个电流源产生的至少两路电流。

7.如权利要求1所述的带隙电压基准电路,其特征在于:所述第一电路支路包括一个二极管式连接的晶体管;

所述第二电路支路包括:

电阻器;以及

并联连接的N个二极管式连接的晶体管;以及

所述第三电路支路包括:

另外的电阻器;以及

一个二极管式连接的晶体管。

8.如权利要求7所述的带隙基准电路,其特征在于,还包括放大器,所述放大器包括:反相(–)输入,用来接收由所述第一电路支路产生的第一电压;

非反相(+)输入,用来接收由所述第二电路支路产生的第二电压;以及输出,所述输出使所述X个电流源中的每个电流源偏置以使所述X个电流源中的每个电流源产生与其它电流源产生的电流基本相等的电流。

9.如权利要求1所述的带隙基准电路,其特征在于,还包括:用于控制所述开关的控制器。

10.一种用于与产生带隙电压输出(VGO)的带隙电压基准电路联用的方法,其特征在于,所述带隙电压基准电路包括合而用来产生所述带隙电压输出(VGO)的多个电路支路,所述多个电路支路包括用于产生与绝对温度成比例的电压(VPTAT)的第一和第二电路支路,用于产生与绝对温度互补的电压(VCTAT)的第三电路支路,其中VPTAT和VCTAT合而用来产生所述带隙电压输出(VGO),所述方法包括:

(a)使用一组X个电流源中的每个电流源来产生与该组内其它电流源产生的电流基本相等的对应电流,其中X≥3;以及(b)将所述电流源中的每一个有选择地轮转到或轮转出所述第一、第二和第三电路支路中的每一个,以由此有选择地随时间推移而改变哪些电流源向所述第一电路支路提供电流,哪些电流源向所述第二电路支路提供电流,以及哪些电流源向所述第三电路支路提供电流。

11.如权利要求10所述的方法,其特征在于:执行有选择的轮转以使由所述X个电流源中的每个电流源产生的电流由合而用来产生所述带隙电压输出(VGO)的所述多个电路支路中的每一个支路接收大约1/X的时间。

12.如权利要求11所述的方法,其特征在于:X=3。

13.如权利要求11所述的方法,其特征在于:X>3。

14.一种稳压器,包括:

用以产生带隙电压输出(VGO)的带隙电压基准电路;以及运算放大器,所述运算放大器包括:

接收所述带隙电压输出(VGO)的非反相(+)输入;

反相(–)输入;以及

产生所述稳压器的电压输出(VOUT)的输出;

其中所述带隙电压基准电路包括:

一组电流源,其中每个电流源产生与该组内其它电流源产生的电流基本相等的对应电流;

所述带隙电压基准电路的多个电路支路,包括

第一和第二电路支路,用于产生与绝对温度成比例的电压(VPTAT),以及第三电路支路,用于产生与绝对温度互补的电压(VCTAT),其中VPTAT和VCTAT合而用来产生所述带隙电压输出(VGO),以及其中所述第一、第二和第三电路支路中的每一个包括一个或多个晶体管,所述一个或多个晶体管产生用来生成VPTAT或VCTAT的基极-发射极电压降;以及多个开关,所述多个开关适于将所述电流源中的每一个有选择地轮转到或轮转出所述第一、第二和第三电路支路中的每一个,以由此有选择地随时间推移而改变哪些电流源向所述第一电路支路提供电流,哪些电流源向所述第二电路支路提供电流,以及哪些电流源向所述第三电路支路提供电流;

其中所述电流源是与开关分开的组件,以及与产生基极-发射极电压降的晶体管分开的元件。

15.如权利要求14所述的稳压器,其特征在于,所述运算放大器的反相(–)输入连接于所述运算放大器的输出。

16.如权利要求15所述的稳压器,其特征在于,所述稳压器包括固定输出线性稳压器。

17.如权利要求14所述的稳压器,其特征在于,还包括:电阻分压器,用来根据所述稳压器的电压输出(VOUT)来产生进一步的电压;

其中所述运算放大器的所述反相(–)输入接收由所述电阻分压器产生的所述进一步的电压。

18.如权利要求17所述的稳压器,其特征在于,所述稳压器包括可调输出线性稳压器。

19.如权利要求14所述的稳压器,其特征在于,还包括:用于控制所述开关的控制器。

说明书 :

产生具有低漂移的带隙电压的电路和方法

[0001] 优先权要求
[0002] 本申请要求以下美国专利申请的优先权:
[0003] ·由Barry Harvey在2010年3月3日提交的题为“产生具有低漂移的带隙电压的电路和方法(CIRCUITS AND METHODS TO PRODUCE A BANDGAP VOLTAGE WITH LOW-DRIFT)(代理人案卷号No.ELAN-01249US1)”的美国专利申请No.12/717,052,以及[0004] ·由Barry Harvey在2009年11月30日提交的题为“产生具有低漂移的带隙电压的电路和方法(CIRCUITS AND METHODS TO PRODUCE A BANDGAP VOLTAGE WITH LOW-DRIFT)(代理人案卷号No.ELAN-01249US0)”的美国临时专利申请No.61/265,303,上述申请各自均通过援引纳入于此。发明领域
[0005] 本发明的实施例一般涉及产生带隙电压输出(VGO)的带隙电压基准电路、用于与产生带隙电压输出(VGO)的带隙电压基准电路联用的方法、以及包括产生带隙电压输出(VGO)的带隙电压基准电路的较大电路(例如稳压器)。

背景技术

[0006] 带隙电压基准电路可用来例如为工作在温度波动的环境中的电路提供基本恒定的基准电压。带隙电压基准电路通常将与绝对温度互补的电压(VCTAT)加至与绝对温度成比例的电压(VPTAT)上以产生带隙基准输出电压(VGO)。VCTAT通常为简单二极管电压,也称基极-发射极电压降、正向电压降、基极-发射极电压、或简称为VBE。这种二极管电压通常由二极管式连接的晶体管(即,其基极和集电极连接在一起的BJT晶体管)提供。VPTAT可自一个或更多个VBE得到,其中ΔVBE(VBE增量)是具有不同发射极面积和/或电流并因此在不同电流密度工作的BJT晶体管的VBE之间的差。
[0007] 图1A示出一种示例性常规带隙电压基准电路100a,该电路100a包括并联连接的晶体管Q1到QN(在“N”支路中)、晶体管QN+1(在“1”支路中)以及又一晶体管QN+2(在“CTAT”支路中)。
[0008] 带隙电压基准电路100a还包括放大器120和三个PMPS晶体管M1、M2和M3,这些PMPS晶体管配置成充当向“N”、“1”、和“CTAT”支路提供电流的电流源。由于这些PMOS晶体管的栅极被束缚在一起,因此其源极端子全部连接于正电压轨(VDD),这些晶体管的源极-栅极电压是相等的。结果,“N”、“1”和“CTAT”支路接收并工作在大致相同的电流Iptat下。
[0009] 在图1A中,晶体管QN+2用来产生VCTAT,而与晶体管QN+1配合工作的晶体管Q1到QN用来产生VPTAT。更具体地,VCTAT是二极管式连接的晶体管QN+2的基极发射极电压(VBE)的函数,而VPTAT是ΔVBE的函数,而ΔVBE是晶体管QN+1的基极-发射极电压与并联连接的二极管式连接的晶体管Q1到QN的基极-发射极电压之间的差的函数。
[0010] 由于负反馈,放大器120调节电流源晶体管M1、M2和M3的共PMOS栅极电压,直到放大器120的非反相(+)和反相(-)输入处于等电势为止。这发生在Iptat*R1+VBE1,2..,n=VBEn+1时,其中VBE1,2,..,n=VBEn+1-VBE。因此,Iptat=ΔVBE/R1。
[0011] 这里,带隙电压输出(VGO)如下:
[0012] VGO=VCTAT+VPTAT,
[0013] =VBE+R2/R1*VT*ln(N)。
[0014] 其中VT是热电压,该热电压在室温下大约为26mV。
[0015] 如果VBE~0.7V,且R2/R1*VT*ln(N)~0.5V,则VGO~1.2V。
[0016] 这些电流源可使用图1A中所示以外的替代结构来实现。相应地,提供图1B以示出更一般的电路。如同图1A的情形,在图1B中,放大器120控制电流源I1、I2和I3。
[0017] 在实践中,电流源的长期漂移造成带隙电压输出(VGO)上的漂移,这是不可取的。
[0018] 尤其,I1的变化造成输出如下的VGO变化
[0019]
[0020] 来自I2的电流的类似变化造成如下的输出变化
[0021]
[0022] I3的变化产生
[0023] 另外,带隙电压基准电路产生噪声,其中一强分量是1/F噪声(有时称为闪烁噪声),该噪声与基极电流有关。降低1/F噪声是合需的。

发明内容

[0024] 本发明的某些实施例针对减小电流源的长期漂移对由带隙电压基准电路产生的带隙电压输出(VGO)的影响的带隙电压基准电路。
[0025] 根据本发明的一实施例,带隙电压基准电路包括一组X个电流源、多个电路支路、以及多个开关。这X个(其中X≥3)电流源中的每一个电流源产生与该组内其它电流源产生的电流基本相等的对应电流。带隙电压基准电路的这多个电路支路合而用来产生带隙电压输出(VGO)。这多个电路支路中的每个电路支路接收未被其它电路支路接收的电流中的至少一路。这多个开关(例如,由控制器控制)有选择地随时间推移而改变由这些电流源产生的电流中的哪些被带隙电压基准电路中的这多个电路支路中的哪些支路所接收。这减少了电流源的长期漂移对带隙电压输出(VGO)的影响,由此使带隙电压输出(VGO)更稳定。另外,这降低了1/F噪声。
[0026] 根据一实施例,在任何给定时间,由至少一个电流源产生的至少一路电流不被合而用来产生带隙电压输出(VGO)的任何电路支路接收,尽管在其它时间由这个(些)电流源产生的电流是由合而用来产生带隙电压输出(VGO)的电路支路接收的。
[0027] 本发明的实施例还针对用于与产生带隙电压输出(VGO)的带隙基准电路联用的方法,其中带隙电压基准电路包括多个电路支路,这些支路合而用来产生带隙电压输出(VGO)。根据一实施例,这类方法包括使用一组X个(其中X≥3)电流源中的每个电流源来产生与该组中其它电流源产生的电流基本相等的对应电流。该方法还包括有选择地随时间推移而改变由这些电流源产生的电流中的哪些由合而用来产生带隙电压输出(VGO)的带隙电压基准电路中的哪些电路支路接收。
[0028] 根据一实施例,一种方法包括:控制该有选择的改变以使由这X个电流源中的每个电流源产生的电流在大约1/X的时间被合而用来产生带隙电压输出(VGO)的这多个电路支路中的每一个支路接收。
[0029] 本发明的实施例还针对包括诸如前述那样的带隙电压基准电路的稳压器,但不仅限于此。稳压器可例如是固定输出或可调输出线性稳压器,但不仅限于此。
[0030] 本发明内容部分无意于概括本发明的所有实施例。根据下面阐述的详细说明、附图以及权利要求,本发明的其他和替代实施方式以及特征、方面以及优点将变得更加明显。

附图说明

[0031] 图1A和1B示出示例性常规带隙电压基准电路。
[0032] 图2A和2B示出根据本发明示例性实施例的低漂移带隙电压基准电路。
[0033] 图3是包括根据本发明一实施例的低漂移带隙电压基准电路的示例性固定输出线性稳压器的框图。
[0034] 图4是包括根据本发明一实施例的低漂移带隙电压基准电路的示例性可调输出线性稳压器的框图。
[0035] 图5是用来概括根据本发明一实施例的提供低漂移带隙电压基准电路的方法的高层流程图。
[0036] 附图中主要组件的参考标号的清单
[0037]100a,100b 带隙电压基准电路
120 放大器
M1,M2,M3 PMOS晶体管
R1,R2,R3,R4 电阻器
Q1,Q2,QN,QN+1,QN+2 晶体管
VGO 带隙电压输出
200a,200b 带隙电压基准电路
202 控制器
S1,S2,S3 开关
VDD 正电压轨
I1,I2,I3 电流源
Iptat 与绝对温度成比例的电流
300 低漂移带隙电压基准电路
302 固定输出线性稳压器
306 运算放大器
402 可调输出线性稳压器
502,504 方法步骤

具体实施方式

[0038] 如上面在图1A和2A的讨论中提到过的那样,带隙电压基准电路的电流源的长期漂移造成带隙电压输出(VGO)的漂移,这是不可取的。本文描述的本发明实施例减少了这种长期漂移,如将参照图2A和2B描述的那样。本发明的实施例还可降低1/F噪声。
[0039] 根据本发明的一实施例,图2A和2B中的这三个电流源有效地移换位置以使每个电流源在每个位置(即在每个支路中)花费1/3的时间。换句话说,由每个电流源产生的电流由图2A和2B所示的三个电路支路中的每一个接收1/3的时间。
[0040] 在该实施例中,ΔI将创建所有这些扰动方程之和除以3作为ΔVGO。将它们加起来就得到ΔVGO的平均输出扰动
[0041] ΔVBE环的正常操作中IR1=VT ln N。N通常为8,尽管它可以是各种替换值,这些替换值均落在本发明实施例的范围内。
[0042] 令N=8,
[0043] 令N=8, 以产生具有良好温度系数(tempco)的VGO。
[0044] 假如I1具有扰动ΔI且电流源不轮转,则
[0045] 因此,通过轮转电流源,根据本发明的一实施例,I1的漂移对VGO的影响可改善(即减小)59倍。轮转电流源使I2的漂移对VGO的影响减小116倍,并使I3的漂移对VGO的影响减小60倍。
[0046] 图2A示出根据本发明的一实施例可如何修改图1A的带隙电压基准电路以有效地轮转电流源而获得如前所述的改进。图2B示出根据本发明的一实施例可如何修改图1B的更一般的带隙电压基准电路以使电流源轮转。
[0047] 在图2A和2B中,控制器202用开关S1、S2和S3控制以改变哪个电流源正在将其电流提供给带隙电压基准电路200a和200b中的哪个支路。根据本发明的一实施例,控制这些开关以使这三个电流源向每个支路提供电流达1/3的时间。根据一实施例,这些开关以循环方式受到控制。根据另一实施例,这些开关以随机或伪随机方式受到控制。
[0048] 在图2A和2B中,每个开关图示为单极三掷开关,但本发明的实施例不仅限于此。例如,取代每个单极三掷开关,可使用三个单极单掷开关,但三个此类开关仍然合称为开关。开关可例如使用CMOS晶体管来实现,但不仅限于此。控制器202可由简单计数器、状态机、微控制器或处理器来实现,但不仅限于此。
[0049] 根据某些实施例,可以有比带隙基准电压电路中的支路更多的电流源。举特定例来说,可以有三个以上的电流源。在一些这样的实施例中,在任何给定时间,由电流源中的至少一个电流源产生的至少一路电流不被合而用来产生带隙电压输出(VGO)的电路支路中的任一电路支路所接收。然而,在其它时间,由同样这个(些)电流源产生的电流被合而用来产生带隙电压输出(VGO)的电路支路所接收。不用来产生VGO的电流(即,由临时从带隙电压基准电路断开的电流源产生的电流)可汇至地,提供给一个或更多个其它电路,或以某种其它方式使用。
[0050] 参见图2A,可例如通过将附加PMOS晶体管与M1、M2和M3并联连接并使添加的电流源也因放大器120的输出而偏置来提供附加电流源。附加的开关和替代的开关功能也可能是需要的。例如,如果存在六个电流源,则每个开关可以是单极六掷开关,而不是单极三掷开关,这是本领域内技术人员在阅读本说明书后能明了的。
[0051] 在某些实施例中,可以一次使用一个以上的电流源来将电流提供给带隙电压基准电路的同一支路。例如,在有九个电流源的情形下,其中三个电流源可将其电流提供给“1”支路,三个电流源可将其电流提供给“N”支路,并且三个电流源可将其电流提供给“CTAT”支路。在这些实施例中,在任何给定时间,这三个支路中的每一个支路仍然优选地接收未曾被其它两个电路支路接收的电流中的至少一路电流。此外,在这些实施例中,开关仍然用来有选择地随时间推移而改变哪些电流由带隙电压基准电路中的哪些支路所接收。可提供甚至更多的电流源。例如,在有十八个电流源的情况下,则在任何给定时间,三个电流源可将其电流提供给“1”支路,三个电流源可将其电流提供给“N”支路,三个电流源可将其电流提供给“CTAT”支路,并且九个电流源可暂时从带隙电压基准电路断开(例如,此时其电流汇入地、提供给一个或更多个其它电路,或以某种其它方式使用)。这些只是几个示例,其并不意味着涵盖全部和构成限定。
[0052] 图3是示例性固定输出线性稳压器302的框图,该稳压器302包括根据前述的本发明一实施例(例如200a、200b)的低漂移带隙电压基准电路300。带隙电压基准电路300产生带隙电压输出(VGO),该带隙电压输出被提供给运算放大器306的输入(例如,非反相输入),该运算放大器306被连接成作为缓冲器。运算放大器306的另一输入(例如,反相输入)接收放大器输出电压(VOUT)作为反馈信号。通过反馈的使用,输出电压(VOUT)基本保持固定的+/-容限(例如+/-1%)。
[0053] 图4是示例性可调输出线性稳压器402的框图,该稳压器402包括根据前述的本发明一实施例(例如200a、200b)的低漂移带隙电压基准电路300。如从图4中可见,VOUT≈VGO*(1+R3/R4)。由此,通过为电阻器R3和R4选择合适值,就能选择合意的VOUT。电阻器R3和R4可在稳压器内,或在稳压器外部。这两个电阻器之一或其两者可以是可编程的或可以其它方式调节的。
[0054] 图5是用来概括根据本发明一实施例的提供低漂移带隙电压基准电路的方法的高层流程图。该方法供与产生带隙电压输出(VGO)的带隙电压基准电路联用,其中带隙电压基准电路包括多个电路支路(例如,“N”支路、“1”支路和“CTAT”支路),这些支路合而用于产生带隙电压输出(VGO)。参见图5,如步骤502所指出的那样,一组X个电流源中的每个电流源用来产生与该组内的其它电流源产生的电流基本相等的对应电流,其中X≥3。如步骤504所指出的那样,随时间推移对由这些电流源产生的哪些电流被合而用来产生带隙电压输出(VGO)的带隙电压基准电路的哪些电路支路所接收存在有选择的改变。这减少了电流源的长期漂移对带隙电压输出(VGO)的影响,由此使带隙电压输出(VGO)更稳定。另外,这降低了1/F噪声。该方法和其它方法的更多细节可从前面对图1-4的描述中得以理解。
[0055] 尽管在附图中,二极管式连接的晶体管图示为NPN晶体管,然而这些晶体管也可以是二极管式连接的PNP晶体管。此外,尽管在图2A中,每个电流源图示为使用单个PMOS晶体管来实现,然而电流源可替代地使用PNP晶体管、或包括多个PMOS或PNP晶体管的栅地阴地(cascoded)电流源来实现,如同从更一般的图2B中可以理解的那样。这些只是几个示例,并不意味着构成限定。
[0056] 尽管在附图中,电流源图示为连接于高电压轨,但并非必需如此。例如,在替代实施例中,电流源可连接在二极管式连接的晶体管与低电压轨(例如,地)之间,由此使Iptat等效地流过每个支路。此类实施例也在本发明的范围之内。此外,尽管在这些替代实施例中,电流Iptat可认为是“汇的”而非“源的”,但是用于使Iptat流动的设备仍然被称为电流源。
[0057] 上面的描述是本发明的优选实施例的描述。出于说明和描述目的而提供这些实施例,但它们不旨在穷举或将本发明限定于所公开的精确形式。许多改型和变化对本领域内技术人员而言是明显的。实施例的选择和描述是为了最好地阐述本发明的原理及其实践应用,由此使本领域内其他技术人员能理解本发明。微小的修改和变化被认为落在本发明的精神和范围内。本发明的范围旨在由所附权利要求及其等效技术方案限定。