一种LED照明控制电路用磁性材料转让专利

申请号 : CN201110008633.3

文献号 : CN102163480B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陆明岳

申请人 : 临沂中瑞电子有限公司

摘要 :

一种LED照明控制电路用磁性材料,其特征在于:该磁性材料是一种MnZn铁氧体,包括主成分Fe2O3、ZnO、MnO及辅助成分,主成分包含换算为(摩尔比):Fe2O3:59.5~61.8mol%,ZnO:9~12mol%,余量为MnO;所述辅助成分包括KCO3、Y2O3、CaO和SiO2;另外还包括其它辅助成分MgO、V2O5、CoO、Nb2O5和ZrO2中的2种或2种以上。所述辅助成分相对于主成分总量含量如下(重量比):KCO3:0.01~0.15wt%、Y2O3:0.008~0.10wt%、CaO:0.01~0.25wt%、SiO2:0.005~0.055wt%、MgO:0.005~0.50wt%、V2O5:0.005~0.06wt%、CoO:0.01~0.50wt%、Nb2O5:0.005~0.08wt%、ZrO2:0.005~0.055wt%。所述磁性材料的特征是:在25℃下的磁导率为1500±25%;在100℃条件下的饱和磁通密度大于500mT;在100℃以及100KHz×200mT条件下的功耗小于620mW/cm3。

权利要求 :

1.一种LED照明控制电路用磁性材料,其特征在于:该磁性材料是一种MnZn铁氧体材料,包括主成分Fe2O3、ZnO、MnO及辅助成分,主成分配方为:Fe2O3:59.5~61.8mol%,ZnO:9~12mol%,余量为MnO;所述辅助成分包括K2CO3和Y2O3,相对所述主成分总量,K2CO3和Y2O3的总含量为0.018~0.25wt%,该磁性材料,其特征在于:在25℃下的磁导率为

1500±25%;在100℃条件下的饱和磁通密度大于500mT;在100℃以及100KHz×200mT条3

件下的功耗小于620mW/cm。

2.根据权利要求1所述的一种LED照明控制电路用磁性材料,其特征在于:所述辅助成分相对于主成分的含量分别是:K2CO3:0.01~0.15wt%、Y2O3:0.008~0.10wt%。

3.根据权利要求1或2所述的一种LED照明控制电路用磁性材料,其特征在于:所述辅助成分还包括CaO和SiO2,相对于主成分的含量分别是:CaO:0.01~0.25wt%、SiO2:

0.005~0.055wt%。

4.根据权利要求3所述的一种LED照明控制电路用磁性材料,其特征在于:所述辅助成分进一步包括MgO、V2O5、CoO、Nb2O5和ZrO2中的2种以上,所述辅助成分相对于主成分的含量分别是:MgO:0.005~0.50wt%、V2O5:0.005~0.06wt%、CoO:0.01~0.50wt%、Nb2O5:

0.005~0.08wt%、ZrO2:0.005~0.055wt%。

说明书 :

一种LED照明控制电路用磁性材料

技术领域

[0001] 本发明涉及一种LED照明控制电路用磁性材料及其制备方法。

背景技术

[0002] LED照明需要在直流条件下工作,因此,需要使用驱动电源,而在各种控制电路(又称驱动电路)设计中,通常要使用扼流圈,扼流圈是由磁性材料制成的磁心和在其周围绕制的线圈组成。扼流圈是驱动电路的关键元器件,其性能好坏直接决定LED照明能否正常工作。
[0003] 作为驱动电路的扼流圈,其工作电路中往往同时含有交流和直流成分,有时LED驱动电源还要安装在灯具内,其环境工作温度较高,有时会达到100℃甚至更高。为了保证LED能够正常工作,要求驱动电路的扼流圈,在高温下以及在很高的直流电流条件下工作时,其电感都不下降,或者降低很少,对于磁心,要求在数百KHz的频率下使用,在高温下直至很高的电流值时也难以磁饱和。
[0004] 扼流圈中所使用的磁性材料通常由硅钢片、铁粉心、磁粉心(包括:铁硅铝、钼坡莫合金以及高通量铁镍合金)、非晶和纳米晶等金属软磁材料或铁氧体材料制成。虽然金属软磁材料与铁氧体材料相比,饱和磁通密度更高,即具有在较大的电流下也难以饱和的优点,然而其价格较高,使用成本较高,而且电阻率低,因此,难以在高频下使用,此外,由于金属软磁材料防锈性差,随着时间的推移,其电磁性能会逐渐下降,这对于应用,无疑是不利的。在软磁铁氧体中,尽管NiZn铁氧体能够在更高频率下使用,但是由于其饱和磁通密度大大低于MnZn铁氧体,因此,MnZn铁氧体更适合在高频大电流下使用。此外,为了进一步降低LED的能耗,需要提高LED驱动电源的工作效率,即降低扼流圈和变压器的功耗。 [0005] 随着LED驱动电源愈来愈趋于小型化,其工作电路的频率也越来越高,驱动电源目前正朝着高频大功率、小体积、高效率等方向发展。其对MnZn铁氧体材料性能的要求可概括为以下几个方面:在100℃左右具有尽可能高的饱和磁通密度,以获得优良的直流叠加特性;具有较高的磁导率,以便在绕制较少的线圈匝数条件下,就能获得较高的电感值,即节约铜线又减少了扼流圈的铜损;在高频下具有较低的损耗,降低扼流圈的铁损,从而减少扼流圈或变压器的温升,使扼流圈或变压器在高频下也能正常工作。
[0006] 因此,能够广泛应用于开关电源变压器性能优良的传统高频低功耗铁氧体,却不能满足高频大功率LED驱动电源的要求,这是由于尽管这些高频低功耗铁氧体的功耗很3 3
低,在100℃、100KHz×200mT下的磁芯功耗在300mw/cm 以下(甚至在250mw/cm 以下),
25℃下,材料起始磁导率在2500左右,但由于其在100℃下的饱和磁通密度通常在420mT左右或以下,材料的直流叠加特性还不够优良。
[0007] 在中国公开发明专利CN1890197A中,公开了一种获得高饱和磁通密度和低功耗MnZn铁氧体的方法,其主配方为:Fe2O3:63~80mol%,ZnO:3~15mol%,余量为MnO,辅助成分包括CaO、SiO2、Ta2O5等,在纯N2气氛中升温、保温和降温,并在1175℃下保温8小时。获得的铁氧体材料性能为:在100℃下,饱和磁通密度在520mT以上,50KHz×150mT下的磁
3
芯功耗在1100mw/cm 以下;25℃下,材料起始磁导率在1200以下,且大多数在500以下。显然,尽管100℃下,饱和磁通密度较高,但由于功耗较大,起始磁导率低,只能在某些要求不太高的场合使用。另外,由于在纯N2气氛中升温、保温和降温,消耗大量的N2气,能源消耗大,制造成本高。
[0008] 在中国公开发明专利CN1692089A中,公开了一种获得高饱和磁通密度和低功耗MnZn铁氧体的方法,其主配方为:Fe2O3:62~68mol%、ZnO:12~20mol%,以及NiO:0~5mol%(不包括0)和/或Li2O:0~4mol%(不包括0)余量为MnO,辅助成分包括CaO、SiO2,以及Nb2O5、Ta2O5、ZrO2、Ta2O5、Ga2O5、In2O5等中的至少一种以及SnO2、TiO2等中至少一种,在1350℃保温5小时,平衡氧分压在4%以下烧结而成。获得的铁氧体材料性能为:在
3
100℃下,饱和磁通密度在470mT以上,100KHz×200mT下的磁芯功耗在1400mw/cm 以下(大
3
多数情况在1000mw/cm 以下);25℃下,材料起始磁导率在1100以下,且大多数情况在900以下。
[0009] 与中国公开发明专利CN1890197A相比,尽管100℃下,饱和磁通密度有所降低,3
但磁芯功耗由50KHz×150mT条件下的1100mw/cm 以下,下降到100KHz×200mT条件下的
3 3
1400mw/cm 以下(大多数情况在1000mw/cm 以下),功耗得到了明显的改善;另外,起始磁导率也有所提高。但由于在该发明中使用了NiO,NiO属于比较昂贵的材料,因而其制造成本较高。
[0010] 但是,由于上述材料,尽管100℃下,饱和磁通密度较高,但由于磁芯功耗仍然偏大,起始磁导率仍然偏低,因而影响该铁氧体材料在更多的场合使用,确切的说,还不能应用于小体积、大功率的LED驱动电源(为缩小电源体积,电路工作频率较高,为传输更大的功率,扼流圈和变压器工作在高磁通密度状态下,同时扼流圈中有较大的电流通过)。 [0011] 本发明正是基于该现状而提出的,其目的在于,提供在100℃条件下具有较高饱和磁通密度,在100℃条件下具有较低的高频功耗,在室温下具有较高的起始磁导率的性能优异且制造成本较低的磁性材料及其制造方法。
[0012] 发明内容
[0013] 本发明目的是:提出一种在100℃条件下具有较高饱和磁通密度,在100℃条件下具有较低的高频功耗,在室温下具有较高的起始磁导率的性能优异且制造成本较低的磁性材料及其制造方法。该材料是一种MnZn铁氧体材料,能够成功应用于工作频率较高的小体积、大功率的LED驱动电源。
[0014] 本发明的技术方案是:一种LED照明控制电路用磁性材料,其特征是:该磁性材料是一种MnZn铁氧体材料,包括主成分和辅助成分,主成分配方为:Fe2O3:59.5~61.8mol%,ZnO:9~12mol%,余量为MnO;辅助成分包括K2CO3和Y2O3;另外还包括其他辅助成分CaO和SiO2,以及MgO、V2O5、CoO、Nb2O5和ZrO2中的2种或2种以上,所述辅助成分相对于主成分总量含量如下(重量比):K2CO3:0.01~0.15wt%、Y2O3:0.008~0.10wt%、CaO:0.01~0.25wt%、SiO2:0.005~0.055wt%、MgO:0.005~0.50wt%、V2O5:0.005~
0.06wt%、CoO:0.01~0.50wt%、Nb2O5:0.005~0.08wt%、ZrO2:0.005~0.055wt%。本发明在主配方中,由于没有使用较为昂贵的NiO,因此,制造成本大大降低。
[0015] 下面,对本发明的主成分和辅助成分的数值范围的限定理由进行说明。 [0016] 当Fe2O3的组成小于59.5mol%,或ZnO的组成大于12mol%时,100℃条件下的饱和磁通密度降低。当Fe2O3的组成大于61.8mol%,尽管可以获得较高的饱和磁通密度,但是功耗明显加大。此外,当ZnO的组成小于9mol%时,100℃条件下的饱和磁通密度降低,产品功耗亦明显加大。
[0017] 本发明涉及的磁性材料,作为辅助成分,加入0.01~0.15wt%的K2CO3和0.008~0.10wt%的Y2O3,是为了使铁氧体获得较高的密度,并获得较高的饱和磁通密度以及起始磁导率。当K2CO3的含有量小于0.01wt%,或Y2O3的含有量小于0.008wt%时,对提高饱和磁通密度和起始磁导率效果不明显。而当K2CO3的含有量大于0.15wt%,或Y2O3的含有量大于0.10wt%时,会引起晶粒异常生长,导致铁氧体功耗明显上升,同时饱和磁通密度下降。 [0018] 本发明涉及的磁性材料,作为其他辅助成分CaO和SiO2,加入0.01~0.25wt%CaO和0.005~0.055wt%的SiO2,主要是为了在铁氧体烧结时,在铁氧体的晶粒边界上形成高电阻层,从而达到降低铁氧体功耗的目的。当CaO的含有量大于0.15wt%时,或SiO2的含有量大于0.055wt%时,将会使铁氧体在烧结时产生不连续晶粒生长,从而使铁氧体的功耗急剧上升,并使起始磁导率下降。
[0019] 本发明涉及的磁性材料,作为其他辅助成分MgO、V2O5、CoO、Nb2O5和ZrO2,还需加入其中的2种以上,加入0.005~0.50wt%的MgO、0.005~0.06wt%的V2O5、0.01~0.50wt%的CoO、0.005~0.08wt%的Nb2O5、0.005~0.055wt%的ZrO2,可以降低铁氧体的烧结温度,降低铁氧体的功耗,并提高铁氧体的饱和磁通密度。当MgO的含有量大于0.5wt%、V2O5的含有量大于0.06wt%、CoO的含有量大于0.5wt%、Nb2O5的含有量大于0.08wt%、ZrO2的含有量大于0.055wt%时,容易引起铁氧体晶粒异常生长,使铁氧体功耗明显上升,同时使饱和磁通密度和起始磁导率下降;而当MgO的含有量小于0.005wt%、V2O5的含有量小于0.01wt%、CoO的含有量小于0.005wt%、Nb2O5的含有量小于0.005wt%、ZrO2的含有量小于0.005wt%时,对改善铁氧体材料性能不明显。
[0020] 本发明一种LED照明控制电路用磁性材料,其制备方法包括以下步骤:1〕将主成分Fe2O3、Mn3O4、ZnO加入预先加有去离子水的砂磨机或球磨机中进行研磨、然后再经过喷雾干燥造粒、在回转窑或箱式炉中800~900℃预烧,得到铁氧体预烧料;2〕将铁氧体预烧料同辅助成分一道加入预先加有去离子水的砂磨机或球磨机中进行研磨,得到铁氧体料浆,随后加入10%的PVA溶液(该PVA浓度为10%)进行喷雾干燥造粒,得到铁氧体粉料;3〕3
将铁氧体粉料经压机压制得到密度为3.0±0.2g/cm 的铁氧体毛坯,铁氧体毛坯可以是各种形状。将毛坯在真空烧结炉或钟罩炉或N2保护推板窑内,在氧分压为0.5~5%的平衡气氛中,在1150~1250℃温度下烧结3~6小时。
[0021] 通过这样的制造方法,就能容易地,并且低成本地制造本发明的磁性材料。 [0022] 本发明的有益效果是:获得了一种应用于LED照明控制电路,具有高频低功耗、高饱和磁通密度和高起始磁导率的性能优异的磁性材料,该材料是一种MnZn铁氧体。满足了LED照明控制电路进一步朝着频率更高、功率更大、效率更高、体积更小的方向发展的迫切需求。
[0023] 利用本发明方法制备的磁性材料,其特征是:该材料是一种MnZn铁氧体,在25℃下的磁导率为1500±25%、在100℃条件下的饱和磁通密度大于500mT、在100℃以及3
100KHz×200mT条件下的功耗小于620mW/cm。
[0024] 具体实施方式
[0025] 以下,基于实施方式说明本发明。
[0026] 1)原材料称量:按主成分配方称取原材料,原材料为Fe2O3、ZnO以及Mn3O4。主成分配方包含换算为(摩尔比):Fe2O3:59.5~61.8mol%,ZnO:9~12mol%,余量为MnO; [0027] 2)一次砂磨:将称量好的原材料放入砂磨机中,进行湿式砂磨,料浆含水量30%~50%,砂磨时间0.5~1.0小时;
[0028] 3)一次喷雾干燥造粒:在原材料料浆中加入约10%PVA溶液(浓度为10%),进行一次喷雾干燥造粒;
[0029] 4)预烧:将一次喷雾干燥造粒粉料通过回转窑进行预烧,预烧温度为800~900℃;
[0030] 5)辅助成分添加:添加下列辅助成分,辅助成分相对于主成分总量含量如下(重量百分比):K2CO3:0.01~0.15wt%、Y2O3:0.008~0.10wt%、CaO:0.01~0.25wt%、SiO2:0.005~0.055wt%、。
[0031] 另外,还需再添加MgO:0.005~0.50wt%、V2O5:0.005~0.06wt%、CoO:0.01~0.50wt%、Nb2O5:0.005~0.08wt%、ZrO2:0.005~0.055wt%中的2种以上。 [0032] 6)二次砂磨:将铁氧体预烧料及上述辅助成分放入砂磨机中,进行湿式砂磨,料浆含水量30%~50%,砂磨时间1.5~2.5小时;;
[0033] 7)二次喷雾干燥造粒:
[0034] 在铁氧体料浆中加入约10%PVA溶液(其浓度为10%),进行二次喷雾干燥造粒; [0035] 8)成型:将二次喷雾干燥造粒铁氧体粉料进行压制成密度为3.0±0.2g/cm3的铁氧体毛坯;
[0036] 9)烧结:将毛坯在真空烧结炉或钟罩炉或N2保护推板窑内,按以下烧结温度曲线和气氛控制:从室温到600℃,此为排胶阶段,升温较为平缓,这有利于排胶充分,升温速率50~150℃/hr,空气气氛;排胶结束后,升温速率提高到150~300℃/hr,空气气氛;烧结温度1150~1250℃,保温3~6小时,烧结平衡氧分压为0.5~5%;保温结束到1100℃左右的降温阶段,氧含量控制在0.01~0.2%,降温速率100~150℃/hr;从1100℃开始,快速降温到室温,降温速率150~250℃/h,氧含量控制在0.01%以下。
[0037] 上述配方和制备方法完全能使磁性材料达到本发明所述性能参数。以下结合具体实施例对本发明做进一步说明,为进一步说明本发明的有益效果,列举了对比例1,其中:对比例1对应的MnZn铁氧体材料主要用于开关电源变压器或者是扼流圈用有关领域,是一种性能优良的高频低功耗铁氧体材料。但是,尽管铁氧体功耗很小,在100℃以及3
100KHz×200mT条件下的功耗为285mW/cm,但由于其饱和磁通密度通常在420mT左右或以下,材料的直流叠加特性还不够优良,因此,不能满足LED照明进一步朝着频率更高、功率更大、效率更高、体积更小的方向发展的需求。
[0038] 为比较材料的直流叠加特性,在实施例3和比较例1中的棒形磁心上绕制线径为0.25mm的铜漆包线48匝,在频率为100KHz及测试电流为1mA的条件下,测量在100℃的直流叠加特性,其中,两种棒形尺寸完全一样,未加直流电流时,电感基本相同。测量结果示于
1中。
[0039] 由表1可以看出:对于实施例3的棒形磁心,不叠加直流电流时,电感为100.2μH,当叠加1.4A直流时,电感开始下降,当叠加1.6A直流时,电感下降到90.2μH,下降幅度为10%,当叠加1.8A直流时,电感下降到41.5μH,下降幅度为60%,当叠加2.0A直流时,电感下降到20.3μH(此为空心线圈电感,此时磁心已基本饱和);而对于比较例1中的棒形磁心,不叠加直流电流时,电感为99.6μH,当叠加1.0A直流时,电感开始下降,当叠加1.2A直流时,电感下降到90.5μH,下降幅度为10%,当叠加1.4A直流时,电感下降到
39.8μH,下降幅度为60%,当叠加1.6A直流时,电感下降到20.5μH(此为空心线圈电感,此时磁心已基本饱和)。
[0040] 显然,实施例3中棒形磁心直流叠加特性明显优于本比较例1。本发明的铁氧体材料,由于在100℃下,具有比传统开关电源变压器用高频低功耗MnZn铁氧体更高的饱和磁通密度,因此,更实用于环境工作温度较高的小体积、大功率的LED驱动电源。这种铁氧体可以利用本发明方法,很容易并且以较低的成本稳定的制造。
[0041] 实施例1:按主成分配方(摩尔比):Fe2O3:59.8mol%,ZnO:10.8mol%,MnO:31mol%,称取Fe2O3、Mn3O4和ZnO。投入预先加有去离子水的砂磨机中研磨,料浆含水量
40%,砂磨时间0.5小时,将料浆在一次喷雾造粒后,在850度下用电热式回转窑进行预烧。
随后预烧料投入预先加有去离子水砂磨机进行二次砂磨,料浆含水量30%,砂磨过程中相对所述主成分含量,加入K2CO3:0.03wt%、Y2O3:0.05wt%、CaO:0.08wt%、SiO2:0.015wt%,另外,还添加MgO:0.1wt%、V2O5:0.035wt%、CoO:0.25wt%砂磨时间1.5小时,控制砂磨的平均粒径为1.1±0.3μm。最后进行二次喷雾得到MnZn铁氧体颗粒料粉。取该颗粒料成型
3
压制φ25mm×φ15mm×7.5mm、密度大约为3.0±0.2g/cm 的圆环。
[0042] 烧结按以下烧结温度曲线和气氛控制:从室温到600℃,此为排胶阶段,升温较为平缓,这有利于排胶充分,升温速率50~150℃/hr,空气气氛;排胶结束后,升温速率提高到150~300℃/hr,空气气氛;烧结温度1180℃,保温5小时,平衡氧分压为3%;从保温结束到1100℃左右的降温阶段,氧含量控制在0.01~0.2%,降温速率100~150℃/hr;从1100℃开始,快速降温到室温,降温速率150~250℃/hr,氧含量控制在0.01%以下。获得的磁环性能为:
[0043] 材料在25℃下的磁导率为1550;在100℃条件下的饱和磁通密度是525mT;在3
100℃以及100KHz×200mT条件下的功耗为574mW/cm。
[0044] 实施例2:按主成分配方(摩尔比):Fe2O3:60.5mol%,ZnO:10.5mol%,MnO:29.0mol%,称取Fe2O3、Mn3O4和ZnO。投入预先加有去离子水的砂磨机中研磨,料浆含水量
40%,砂磨时间0.5小时,将料浆在一次喷雾造粒后,在880度下用电热式回转窑进行预烧。
随后预烧料投入预先加有去离子水砂磨机进行二次砂磨,料浆含水量30%,砂磨过程中相对所述主成分含量,加入K2CO3:0.12wt%、Y2O3:0.03wt%、CaO:0.10wt%、SiO2:0.01wt%,另外,还添加Nb2O5:0.03wt%、ZrO2:0.02wt%、CoO:0.25wt%,另外,还添加,砂磨时间1.5小时,控制砂磨的平均粒径为1.1±0.3μm。最后进行二次喷雾得到MnZn铁氧体颗粒料粉。
3
取该颗粒料成型压制φ25mm×φ15mm×7.5mm、密度大约为3.0±0.2g/cm 的圆环。 [0045] 烧结按以下烧结温度曲线和气氛控制:从室温到600℃,此为排胶阶段,升温较为平缓,这有利于排胶充分,升温速率50~150℃/h r,空气气氛;排胶结束后,升温速率提到150~300℃/hr,空气气氛;烧结温度1250℃,保温5小时平衡氧分压为1%;从保温结 束到1100℃左右的降温阶段,氧含量控制在0.01~0.1%,降温速率100~150℃/hr;从
1100℃开始,快速降温到室温,降温速率150~250℃/h,氧含量控制在0.01%以下。获得的磁环性能为:
[0046] 材料在25℃下的磁导率为1320;在100℃条件下的饱和磁通密度是538mT;在3
100℃以及100KHz×200mT条件下的功耗分别为593mW/cm。
[0047] 实施例3:按主成分配方(摩尔比):Fe2O3:61.5mol%,ZnO:11.5mol%,MnO:27.0mol%,称取Fe2O3、Mn3O4和ZnO。投入预先加有去离子水的砂磨机中研磨,料浆含水量
40%,砂磨时间0.5小时,将料浆在一次喷雾造粒后,在900度下用电热式回转窑进行预烧。
随后预烧料投入预先加有去离子水砂磨机进行二次砂磨,料浆含水量30%,砂磨过程中相对所述主成分含量,加入K2CO3:0.04wt%、Y2O3:0.10wt%、CaO:0.15wt%、SiO2:0.035wt%,另外,还添加MgO:0.30wt%、V2O5:0.05wt%、ZrO2:0.04wt%,砂磨时间1.5小时,控制砂磨的平均粒径为1.1±0.3μm。最后进行二次喷雾得到MnZn铁氧体颗粒料粉。取该颗粒料成型压制φ25mm×φ15mm×7.5mm的圆环,以及直径为6mm、高度为12mm的棒形,毛坯密度控
3
制为3.0±0.2g/cm。
[0048] 烧结按以下烧结温度曲线和气氛控制:从室温到600℃,此为排胶阶段,升温较为平缓,这有利于排胶充分,升温速率50~150℃/hr,空气气氛;排胶结束后,升温速率提高到150~300℃/hr,空气气氛;烧结温度1160℃,保温6小时,平衡氧分压为1%;从保温结束到1100℃左右的降温阶段,氧含量控制在0.01~0.1%,降温速率100~150℃/hr;从1100℃开始,快速降温到室温,降温速率150~250℃/h,氧含量控制在0.01%以下。 [0049] 获得的磁环性能为:
[0050] 材料在25℃下的磁导率为1210;在100℃条件下的饱和磁通密度是546mT;在3
100℃以及100KHz×200mT条件下的功耗为612mw/cm。
[0051] 为了解材料直流叠加特性,在棒形磁心上绕制线径为0.25mm的铜漆包线48匝,在频率为100KHz及测试电流为1mA的条件下,测量其在100℃的直流叠加特性,测量结果示于表1中。由表1可以看出:
[0052] 不叠加直流电流时,电感为100.2μH;
[0053] 当叠加1.4A直流时,电感开始下降;
[0054] 当叠加1.6A直流时,电感下降到90.2μH,下降幅度为10%;
[0055] 当叠加1.8A直流时,电感下降到41.5μH,下降幅度为60%;
[0056] 当叠加2.0A直流时,电感下降到20.3μH(此为空心线圈电感,此时磁心已基本饱和)。
[0057] 比较例1:按主成分配方(摩尔比):Fe2O3:53.5mol%,ZnO:12.5mol%,MnO:34.0mol%,称取Fe2O3、Mn3O4和ZnO。投入预先加有去离子水的砂磨机中研磨,料浆含水量
40%,砂磨时间0.5小时,将料浆在一次喷雾造粒后,在900度下用电热式回转窑进行预烧。
随后预烧料投入预先加有去离子水砂磨机进行二次砂磨,料浆含水量30%,砂磨过程中相对所述主成分含量,加入CaO:0.03wt%、SiO2:0.01wt%、MgO:0.10wt%、Nb2O5:0.03wt%、ZrO2:0.03wt%,砂磨时间1.5小时,控制砂磨的平均粒径为1.1±0.3μm。最后进行二次喷雾得到MnZn铁氧体颗粒料粉。取该颗粒料成型压制φ25mm×φ15mm×7.5mm的圆坏,以及
3
直径为6mm、高度为12mm的圆柱体,毛坯密度控制为3.0±0.2g/cm。
[0058] 烧结按按以下烧结温度曲线和气氛控制:从室温到600℃,此为排胶阶段,升温较为平缓,这有利于排胶充分,升温速率50~150℃/hr,空气气氛;排胶结束后,升温速率提