蒸汽烹调器转让专利

申请号 : CN201110062336.7

文献号 : CN102172315B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 安藤有司中岛优子寺田真理能泽利佳大桥纪子

申请人 : 夏普株式会社

摘要 :

本发明的蒸汽烹调器,在设置于加热室外的外部循环通路的中途配置有蒸汽产生装置,通过外部循环通路向加热室供给蒸汽。控制装置对配置在蒸汽产生装置中的蒸汽产生加热器、和设置在外部循环通路使气流回流到加热室的部位上的气体升温加热器进行控制,以下述两种加热模式单独或者组合构成烹调程序,所述两种加热模式是指:利用由气体升温加热器使蒸汽升温而得到的过热蒸汽进行加热的加热模式(加热模式A)、和利用通过使气体升温加热器在无蒸汽条件下发热而得到的热风或热辐射进行加热的加热模式(加热模式B)。

权利要求 :

1.一种蒸汽烹调器,其特征在于,包括:

加热室,在该加热室中放入被加热物;

蒸汽产生装置,具备罐体和蒸汽产生加热器,产生向上述加热室供给的蒸汽;以及气体升温加热器,对从上述蒸汽产生装置产生的蒸汽进行加热;

以由上述气体升温加热器使蒸汽升温而得到的过热蒸汽充满上述加热室内,食品的内部温度上升,由此,通过排出空气,使氧气浓度从大气中的通常浓度即20%下降,将上述过热蒸汽朝向上述被加热物供给,由此,食品所含的脂肪成分液化,渗出到食品表面,脂肪成分单独或与附着到食品表面上的冷凝水一起滴落,并且附着到食品表面的冷凝水中溶解了食品表面附近所含的盐分,并与冷凝水一同滴落而从食品排出。

2.如权利要求1所述的蒸汽烹调器,其特征在于,

上述蒸汽产生加热器和上述气体升温加热器中的双方由主加热器和副加热器构成,并且,上述蒸汽产生加热器和上述气体升温加热器的耗电功率总量不超过容许值。

3.如权利要求1或2所述的蒸汽烹调器,其特征在于,

在上述加热室外设置有外部循环通路,在上述外部循环通路中附属有送风装置,该送风装置吸入上述加热室内的气体并使吸入的气体再次回流到上述加热室,并且向在该外部循环通路中流动的气流中供给由所述蒸汽产生装置产生的蒸汽。

说明书 :

蒸汽烹调器

[0001] 本申请是申请日为2004年12月8日、申请号为200480042486.X、发明名称为“蒸汽烹调器”的发明专利申请的分案申请。

技术领域

[0002] 本发明涉及一种蒸汽烹调器。

背景技术

[0003] 关于使用蒸汽进行加热烹调的蒸汽烹调器,到目前为止已提出了多种方案。其实例有专利文献1~5中公开的方案。专利文献1中记载了向食品托盘中喷射蒸汽的蒸汽烹调装置。专利文献2中记载了将过热蒸汽送入烘烤室中、或通过辐射加热而使烘烤室内的蒸汽成为过热蒸汽的加热烹调装置。专利文献3中记载了将过热蒸汽供给到加热室整体和食品附近部分这两个范围中的一方或双方的加热烹调装置。专利文献4记载了将在锅炉中产生的过热蒸汽用设置在送风机构吹出侧的追加加热机构加热并送到室内的过热蒸汽烹调器。专利文献5记载了用由加热器加热的空气预热加热箱内部,而后用过热蒸汽进行烹调的加热装置。
[0004] 专利文献1:实开平3-67902号公报(说明书全文第4-6页、图1-3)、
[0005] 专利文献2:特开平11-141881号公报(第3-5页、图1-3)、
[0006] 专利文献3:特开平8-49854号公报(第2-3页、图1、2-8)、
[0007] 专利文献4:特开2001-263667号公报(第2-4页、图1-6)、
[0008] 专利文献5:特开2002-272604号公报(第13页、图19)。

发明内容

[0009] 专利文献1~5中记载的装置均是用过热蒸汽进行食品烹调。但是,根据烹调目的,有时仅用热风或热辐射来作为热介质比过热蒸汽理想。本发明鉴于这点而作出,其目的是提供一种通过区分采用以过热蒸汽进行加热的加热模式、和仅用热风或热辐射进行加热的加热模式,而能够根据目的进行适当烹调的蒸汽烹调器。
[0010] 能够根据目的进行适当烹调的蒸汽烹调器。
[0011] 为实现上述目的,本发明的特征在于,包括:
[0012] 加热室,在该加热室中放入被加热物;
[0013] 蒸汽产生装置,具备罐体和蒸汽产生加热器,产生向上述加热室供给的蒸汽;以及 [0014] 气体升温加热器,对从上述蒸汽产生装置产生的蒸汽进行加热;
[0015] 以由上述气体升温加热器使蒸汽升温而得到的过热蒸汽充满上述加热室内,食品内部温度的上升,由此,通过排出空气,使氧气浓度从大气中的通常浓度即20%下降, [0016] 将上述过热蒸汽朝向上述被加热物供给,
[0017] 由此,食品所含的脂肪成分液化,渗出到食品表面,脂肪成分单独或与附着到食品表面上的冷凝水一起滴落,
[0018] 并且附着到食品表面的冷凝水中溶解了食品表面附近所含的盐分,并与冷凝水一同滴落而从食品排出。
[0019] 本发明的特征在于,具备:
[0020] (a)加热室,装入被加热物;
[0021] (b)蒸汽产生装置,产生向所述加热室供给的蒸汽;
[0022] (c)气体升温加热器,将从所述蒸汽产生装置产生的蒸汽加热;
[0023] (d)控制装置,以下述两种加热模式单独或者组合构成烹调程序,所述两种加热模式是指:利用由所述气体升温加热器使蒸汽升温而得到的过热蒸汽进行加热的加热模式(加热模式A)、和利用通过使所述气体升温加热器在无蒸汽条件下发热而得到的热风或热辐射进行加热的加热模式(加热模式B)。
[0024] 根据该方案,以下述两种加热模式单独或者组合构成烹调程序,所述两种加热模式是指:利用由气体升温加热器使蒸汽升温而得到的过热蒸汽进行加热的加热模式(加热模式A)、和利用通过使气体升温加热器在无蒸汽条件下发热而得到的热风或热辐射进行加热的加热模式(加热模式B),由此,可根据目的来进行适当的烹调。
[0025] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,设定下述程序:以所述加热模式A进行烹调前半阶段的主要加热,以所述加热模式B进行烹调后半阶段的主要加热。 [0026] 根据该方案,能够进行在烹调前半阶段中利用过热蒸汽使内部温 度快速上升、在烹调后半阶段中切断蒸汽而进行烧烤的烹调。
[0027] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,设定下述程序:以所述加热模式B进行烹调前半阶段的主要加热,以所述加热模式A进行烹调后半阶段的主要加热。 [0028] 根据该方案,可以进行加热初期不想向材料中加入水分的烹调,例如,蛋糕和饼干等的烘焙。
[0029] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,能够通过使用者的操作来改变上述程序的条件。
[0030] 根据该方案,可由使用者的操作来改变程序的条件,从而进行更符合使用者喜好的烹调。
[0031] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,在上述程序中包括上述加热模式A和加热模式B两者的情况下,以加热模式A的持续时间为调整对象。
[0032] 根据该方案,可通过调整加热模式A的持续时间而增强或减弱过热蒸汽的特征。 [0033] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,在烹调后半阶段中进行主要加热的加热模式的持续时间可以调整。
[0034] 根据该方案,可通过调整在烹调后半阶段中进行主要加热的加热模式的持续时间,从而调整烧烤色。
[0035] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,具备程序选择机构、和加热时间设定机构或加热时间/加热温度设定机构,设定加热时间后,程序中加热模式的时间分配按照预先设定的条件确定。
[0036] 根据该方案,通过加热时间的设定,程序中加热模式的时间分配按照预先设定的条件确定,所以能以手动方式来设定烹调程序。
[0037] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,在设定进行以所述加热模式A为主体的烹调的程序时,加热模式A的持续时间可以调整,并且将加热模式A的控制温度设定为130℃以下。
[0038] 根据该方案,可防止进行“加热”和“蒸制”烹调情况下的误设定。
[0039] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,在设定进行以所述加热模式A为主体的烹调的程序时,在选择该程序的机构上,显示用微波加热有可能因内压上升而破裂的被加热物和/或具有微波不 可透过的包装的被加热物的名称和/或图标。
[0040] 根据该方案,可消除将担心破裂或不能加热而常避免自动加热的食品交付利用蒸汽进行的自动烹调时的心理障碍。
[0041] 此外,本发明在上述方案的蒸汽烹调器中,特征在于,在所述加热室外设置有外部循环通路,在该外部循环通路中附设有吸入加热室内的气体并使吸入的气体再次回流到加热室的送风装置,并且,向在该外部循环通路中流动的气流中供给由所述蒸汽产生装置产生的蒸汽。
[0042] 根据该方案,在蒸汽产生装置中产生的蒸汽直接进入循环气流中,蒸汽的产生和循环的结构简单化。而且,产生了借助循环气流将蒸汽积极地吹到被加热物上的效果。 [0043] 图1是蒸汽烹调器的外观立体图。
[0044] 图2是将加热室的门打开的状态的外观立体图。
[0045] 图3是将加热室的门取下的状态的主视图。
[0046] 图4是内部机构的基本结构图。
[0047] 图5是从与图4成直角的方向观察的内部机构的基本结构图。
[0048] 图6是加热室的俯视图。
[0049] 图7是蒸汽产生装置的垂直剖视图。
[0050] 图8是图7中A-A线处的水平剖视图。
[0051] 附图说明
[0052] 图9是图7中B-B线处的水平剖视图。
[0053] 图10是蒸汽产生装置的主视图。
[0054] 图11是送风装置的垂直剖视图。
[0055] 图12是副腔室的底面面板的俯视图。
[0056] 图13是控制方框图。
[0057] 图14是与图4同样的基本结构图,表示与图4不同的状态。
[0058] 图15是与图5同样的基本结构图,表示与图5不同的状态。
[0059] 图16是表示烹调选项和该选项下使用的加热器之间的关系的表格。
[0060] 图17是表示蒸汽量和功率量之间关系的表格。
[0061] 图18是烹调程序的表格。
[0062] 图19是对加热模式对食品的影响进行说明的第一曲线图。
[0063] 图20是对加热模式对食品的影响进行说明的第二曲线图。
[0064] 图21是对加热模式对食品的影响进行说明的第三曲线图。
[0065] 图22是对加热模式对食品的影响进行说明的第四曲线图。
[0066] 附图标记说明
[0067]

具体实施方式

[0068] 下面参照附图来说明本发明的实施方式。
[0069] 蒸汽烹调器1具备长方体形状的箱体10。在箱体10的正面设有门11。门11以下端为中心在垂直面内转动,通过握住上部的把手12向前拉,而可从图1所示垂直的关闭状态向图2所示水平的打开状态做90°姿态变换。门11具备的结构为,在具有嵌入了耐热玻璃的透视部的中央部分11C的左右,将由金属装饰板制成的左侧部分11L及右侧部分11R对称地配置。右侧部分11R上设有操作面板13。
[0070] 在打开门11时,露出箱体10的正面。在与门11的中央部分11C对应的部位设有加热室20。在与门11的左侧部分11L对应的部位设有水箱室70。在与门11的右侧部分11R对应的部位没有特别设置开口部,但在该部位的内部配置有控制基板。
[0071] 加热室20是长方体形状,面向门11的正面侧在整个面上成为开口部。加热室20的其他面由不锈钢板形成。在加热室20的周围采取了隔热措施。加热室20的底面上放置有不锈钢板制的托盘21,托盘21上放置有载置被加热物F的不锈钢丝制的搁架22。 [0072] 加热室20中的蒸汽(通常情况下,加热室20内的气体是空气,但在开始蒸汽烹调后用蒸汽置换空气。在本说明书中,对加热室20内的气体已置换为蒸汽的情况进行说明)通过图4所示的外部循环通路30循环。
[0073] 作为外部循环通路30始端的是在加热室20里侧侧壁上部的角部形成的吸入口28。在本实施方式中,如图3中所示,在侧壁的左上角配置有吸入口28。吸入口28是使多个水平狭槽上下排列而形成的,越上方的狭槽越长,越下方的狭槽越短,整体形成为直角三角形的开口形状(参照图11)。直角三角形的直角与加热室20里侧侧壁的角部吻合。即,吸入口28的开口度越接近加热室20里侧侧壁的上边越大。而且,越靠近左边越大。 [0074] 连接到吸入口28的是形成在外部循环通路30内流动的气流的送风装置25。送风装置25接近加热室20的一个侧壁外表面配置。作为一个侧壁,选择的是加热室20的里侧侧壁。如图11所示,送风装置25具备离心风扇26及容纳离心风扇的风扇罩27、使离心风扇26旋转的马达29。使用多叶片式风扇作为离心风扇26。马达29使用可高速旋转的直流马达。风扇罩27固定于加热室20的里侧侧壁外表面中吸入口28右下方的位置上。 [0075] 风扇罩27具有吸入口27a和排出口27b。排出口27b指向特定的方向,该方向的意义将在后面进行说明。
[0076] 在外部循环通路30中,送风装置25连接到蒸汽产生装置50。蒸汽产生装置50的详情在后面进行说明。蒸汽产生装置50与送风装置25同样地接近加热室20里侧侧壁的外表面配置。但是,送风装置25配置于靠加热室20左侧的位置上,相对于此,蒸汽产生装置50位于加热室20的中心线上。
[0077] 在外部循环通路30中,从风扇罩27的排出口27b到蒸汽产生装置50间的区间由管道31构成。离开蒸汽产生装置50后的区间由管道35构成。管道35与靠近加热室20设置的副腔室40连接。
[0078] 副腔室40在加热室20的顶部设置于俯视时处于顶部中央部的部位。副腔室40的俯视形状为圆形,其内侧配置有作为蒸汽加热机构的气体升温加热器41。气体升温加热器41包括主加热器41a和副加热器41b,且两者均由铠装加热器构成。在加热室20的顶部形成有与副腔室40等大的开口部,构成副腔室40底面的底面面板42嵌入到该开口部中。 [0079] 底面面板42上形成有多个上部喷气孔43。上部喷气孔43中的每一个都是朝向正下方的小孔,分散配置在大致整个板面上。虽然上部喷气孔43是平面地、即二维地分散配置的,但也可在底面面板42上设置凹凸而附加三维成分。
[0080] 底面面板42上下两面都通过涂装等表面处理而处理成暗色。也可以用颜色会因反复使用而变暗的金属材料成型底面面板42。或者,也可利用暗色的陶瓷成型品构成底面面板42。
[0081] 也可不用分体的底面面板42构成副腔室40的底面,而将加热室20的顶板直接兼用作副腔室40的底面。这种情况下,在顶板中对应于 副腔室40的部位设置上部喷气孔43,并将其上下两面处理成暗色。
[0082] 在加热室20的左右两侧壁的外侧,如图5所示设置有小型的副腔室44。副腔室44通过管道45与副腔室40连接,接受来自副腔室40的蒸汽供给(参照图5、图6)。管道
45用截面圆形的管构成。优选使用不锈钢板制的管。
[0083] 在加热室20的侧壁下部对应于副腔室44的部位,设置有多个侧部喷气孔46。各侧部喷气孔46是指向放入加热室20的被加热物F的方向、准确地说指向被加热物F下方的小孔,使蒸汽向搁架22上放置的被加热物F的方向喷出。设定侧部喷气孔46的高度以及方向,使得喷出的蒸汽进入被加热物F下方。又,侧部喷气孔46的位置以及/或方向设定成,使得从左右喷出的蒸汽在被加热物F下方会合。
[0084] 侧部喷气孔46既可形成在分体的板上,也可以以在加热室20的侧壁上直接穿设小孔的形式形成。这与上部喷气孔43的情况一样。但是与副腔室40的情况不同的是,不必将对应于副腔室44的部位处理成暗色。
[0085] 另外,左右相对的侧部喷气孔46的总面积大于上部喷气孔43的总面积。为了向这样大面积的侧部喷气孔46供给大量的蒸汽,每1个副腔室44设置有多条(在图中是4条)管道45。
[0086] 接着,说明蒸汽产生装置50的结构。蒸汽产生装置50具备使中心线垂直地配置的筒形罐体51。罐体51中构成垂直面的侧壁的平面轮廓形状是扁平的,且具有细长的水平截面形状,即长方形、长圆形或与之类似的水平截面形状。罐体51要求耐热性,只要满足该条件,则可用任何材料形成。可以是金属,也可以是合成树脂。还可采用陶瓷。将不同种材料组合也可以。
[0087] 如图6所示,将蒸汽产生装置50安装成罐体51的一个扁平侧面与加热室20的里侧侧壁平行的形式。如果设成该形式,则即使加热室20外表面和箱体10内表面之间的空间宽度窄,也可配置蒸汽产生装置50。因此,可以缩小上述空间的宽度而使箱体10紧凑,提高箱体10内的空间利用效率。
[0088] 对罐体51内的水进行加热的是配置在罐体51底部的蒸汽产生加热器52。蒸汽产生加热器52由铠装加热器构成,浸入罐体51内的水中而直接加热水。如图9所示,与罐体51的俯视形状为扁平这一点相 配合地,蒸汽产生加热器52也以沿着罐体51内表面的形式弯曲成俯视形状为马蹄形。与副腔室40中的气体升温加热器41同样,蒸汽产生加热器52也包括主加热器52a和副加热器52b,并将前者配置于外侧,将后者配置于内侧。截面的直径也不同,主加热器52a较粗,副加热器52b较细。
[0089] 若在面积相等的面中配置铠装加热器,则在长方形或长圆形面中装入弯曲成马蹄形等扁平形状的铠装加热器的情况下,其铠装加热器的长度比在圆形的面中装入弯曲成圆形的铠装加热器的情况下长。即,在细长水平截面形状的罐体中装入弯曲成马蹄形的铠装加热器,与在截面圆形的罐体中装入弯曲成圆形的铠装加热器相比,铠装加热器的长度相对于同一水量的比例大,从而铠装加热器的表面积变大,并且,由于还可输入大的功率,所以易于使热量传递到水中。因此,在本实施方式的蒸汽产生装置50中,可快速地将水加热。 [0090] 在罐体51的上部,形成有用于将蒸汽吸入到在外部循环通路30内流动的气流中的蒸汽吸引部。构成蒸汽吸引部的是从罐体51的一个扁平侧面贯穿到另一扁平侧面地形成的蒸汽吸引喷射器34。蒸汽吸引喷射器34总计三个,相互之间留有预定间隔,在同一高度彼此并列且平行地配置。
[0091] 每个蒸汽吸引喷射器34包括内喷嘴34a及包围其排出端的外喷嘴34b。蒸汽吸引喷射器34在与罐体51的轴线相交的方向上延伸。实施方式的情况是,交角为直角,即蒸汽吸引喷射器34为水平的。内喷嘴34a连接到管道31,外喷嘴34b连接到管道35。蒸汽吸引喷射器34为与副腔室40大致相同高度,管道35大致水平地延伸。通过这样将蒸汽吸引部和副腔室40用水平管道35直线连接,可使经过蒸汽吸引部后的外部循环通路30为最短路径。
[0092] 外部循环通路30在蒸汽产生装置50以后,分为包括三个蒸汽吸引喷射器34和与其连接的管道35的三条支路。因此,通路的压力损失减小,可增大循环蒸汽量,并且,可将蒸汽快速混入到在外部循环通路30内流动的气体中。
[0093] 这样,设置在罐体51上部的三个蒸汽吸引喷射器34构成占据垂直截面形状扁平的空间的蒸汽吸引部,覆盖广阔区域,所以蒸汽吸引区域宽阔,产生的蒸汽全部被均匀地吸引,并且,能将吸引的蒸汽快 速送出,进一步提高蒸汽产生装置50的蒸汽产生功率。此外,由于三个蒸汽吸引喷射器34在同一高度彼此并列配置,所以即使在高度方向上没有空间余裕的情况下也能输送大量蒸汽。
[0094] 这里,对送风装置25的风扇罩27的朝向进行说明。风扇罩27的吸入口27a和排出口27b相互之间成直角。风扇罩27的位置和角度设定成,排出口27b指向蒸汽吸引部、即蒸汽吸引喷射器34的方向(参照图11)。排出口27b和蒸汽吸引喷射器34之间由管道31确保通风路。吸入口28和吸入口27a之间也由未图示的管道确保通风路。
[0095] 根据上述结构,从吸入口28吸入的气体通过作为离心风扇提供的送风路线来说最短的路线,到达蒸汽吸引喷射器34。因此,缩短了外部循环通路30的长度,并降低了送风时的压力损失。由此,提高了外部循环通路30的能量输入效率。此外,由于外部循环通路30的散热面积缩小,所以还降低了热损失。综上,提高了外部循环通路30的循环效率。 [0096] 从排出口27b排出的气流如图11中箭头组所示那样在其中心部流速最大,越接近管道31内表面流速越小。这是由管道31内表面和气体的摩擦造成的。气流中流速最大的部分朝向三个并排的蒸汽吸引喷射器34中的中央一个。这样,在中央的蒸汽吸引喷射器34和排出口27b之间形成直接连通的关系。
[0097] 这里,“直接连通的关系”是指从排出口27b排出的气体不绕道便到达蒸汽吸引喷射器34。使得该“直接连通的关系”不仅对中央的蒸汽吸引喷射器34成立,对其两侧的蒸汽吸引喷射器34也成立。这可以通过适当地设定管道31中与排出口27b相连部分的宽度及角度而实现。通过如此构成,可减小分配到各蒸汽吸引喷射器34的风量的离散,从大范围均等地吸引蒸汽,所以提高了蒸汽吸引效率。
[0098] 回到图4继续说明。罐体51的底部形成为漏斗状,从该底部垂下排水管53。排水管53的中途设有排水阀54。排水管53的下端朝向加热室20下方以构成预定角度的倾斜的形式弯曲。配置在加热室20下方的排水箱14承接着排水管53的端部。排水箱14可从箱体10的正面侧拉出而排除内部的水。
[0099] 经供水通路向罐体51供水。构成供水通路的是连接水箱71和排水管53的供水管55。供水管55在比排水阀54靠上的部位连接到排水 管53。从与排水管53连接的部位引出的供水管55在一度呈倒U形上升后下降。在下降部分的中途设置有供水泵57。供水管55连通到横向的漏斗状接入口58。水平的连通管90将供水管55和接入口58连接。 [0100] 罐体51的内部配置有罐体水位传感器56。罐体水位传感器位于比蒸汽产生加热器52略高的位置。
[0101] 横向宽度窄的长方体形状的水箱71插入到水箱室70中。从该水箱71的底部延伸出的供水管72连接到接入口58。
[0102] 在将水箱71从水箱室70拉出,供水管72从接入口58离开时,水箱70内的水和供水管55侧的水会直接流出。为防止该情况,在接入口58和供水管72上安装连结塞59a、59b。在如图4那样将供水管72连接到接入口58的状态下,连结塞59a、59b互相连结,成为可通水的状态。如果将供水管72从接入口58拉开,则连结塞59a、59b分别成为关闭状态,阻止水从供水管55和水箱71流出。
[0103] 连通管90上自接入口58起依次连接着供水管55、压力检测管91及压力释放管92。在压力检测管91的上端设有水位传感器81。水位传感器81测定水箱71中的水位。
压力释放管92的上端水平地弯曲,与使蒸汽从加热室20逸出的排气通路连接。
[0104] 构成排气通路的是排气管道93及容器93a。排气管道93构成排气通路的前部,容器93a构成排气通路的后部。排气管道93的长度较长。排气管道93在从加热室20的侧壁伸出并逐渐增加高度后,连接到容器93a。容器93a连通到机器外,即箱体10外。容器93a由合成树脂形成,流路横截面积比排气管道93大。
[0105] 排气管道93的入口向加热室20内侧敞开。因此,如果在排气管道93中存在向与排气相反的方向流下的液体,则其进入加热室20中,并积存在加热室底部。由于在加热室20的底部积存液体是一目了然的,所以不会忘记处理。
[0106] 排气管道93的至少一部分构成散热部94。散热部94由在外表面具有多个散热片95的金属管构成。
[0107] 容器93a通过管道31的侧面。在该部位,管道31和容器93a之间设有连通路。构成连通路的是连通管道96,其内部设有电动式的挡板97。挡板97在通常状态下关闭连通管道96。
[0108] 供水管55的最高部分经溢水通路连通到容器93a。构成溢水通路 的是一端连接到供水管55、另一端连接到压力释放管92的上端水平部的溢水管98。压力释放管92连接到容器93a的部位的高度将是所谓的溢水高度。溢水高度设定为比罐体51内的通常水位高度高且比蒸汽吸引喷射器34低的高度。
[0109] 虽然容器93a呈接入排气管道93、连通管道96、溢水管98和各种管道及管子的复杂形状,但因由合成树脂形成,所以可使其自身上不存在接缝。因此,不会发生从接缝漏水的问题。
[0110] 进行蒸汽烹调器1的动作控制的是图13所示的控制装置80。控制装置80包括微处理器和存储器,遵循预定程序控制蒸汽烹调器1。控制状况在操作面板13中的显示部上显示。通过配置在操作面板13上的各种操作键来向控制装置80中输入动作指令。更具体而言,进行烹调程序的选择和程序的条件设定。即,操作面板13用作烹调程序选择机构和/或烹调程序条件设定机构。操作面板13上配置有发出各种声音的发声装置。
[0111] 在控制部80上,除操作面板13外,还连接着送风装置25、气体升温加热器41、挡板97、蒸汽产生加热器52、排水阀54、罐体水位传感器56、供水泵57及水位传感器81。此外,还连接着测定加热室20内温度的温度传感器82、和测定加热室20内湿度的湿度传感器83。
[0112] 蒸汽烹调器1的动作如下。首先,打开门11,将水箱71从水箱室70拉出,并由未图示的供水口向箱内注水。将满水状态的水箱71推入水箱室70,并设置于预定位置。在确认供水管72的末端牢固地连接到供水通路的接入口58后,在加热室20内放入被加热物F,并关闭门11。然后,按下操作面板13中的电源键而使电源接通,并且,同样按下设置在操作面板13内的操作键组,进行烹调选项的选择和各种设定。
[0113] 在供水管72连接到接入口上58后,水箱71和压力检测管91成为连通状态,水位传感器81测定水箱71中的水位。如果存在对于执行所选择的烹调选项来说足够的水量,则控制装置80开始产生蒸汽。如果水箱71内的水量不足以执行选择的烹调选项,则控制装置80将该情况作为警告信息而在操作面板13上加以显示。而且,直到消除水量不足问题才开始产生蒸汽。
[0114] 在达到可开始产生蒸汽的状态后,供水泵57开始运转,开始向蒸汽产生装置50供水。此时,关闭排水阀54。
[0115] 水从罐体51的底部开始积存。如果罐体水位传感器56检测到水位到达预定高度,则停止供水。然后,开始向蒸汽产生加热器52通电。蒸汽产生加热器52直接加热罐体51的水。
[0116] 在向蒸汽产生加热器52通电的同时,或估计罐体51中的水到达预定温度后,开始向送风装置25及气体升温加热器41通电。送风装置25从吸入口28吸入加热室20中的蒸汽,并向蒸汽产生装置50送出蒸汽。由于用于将蒸汽送出的是离心风扇26,所以螺旋桨式风扇相比可产生更高压力。此外,由于用直流马达使离心风扇26高速旋转,所以气流的流速极快。
[0117] 这样,由于气流流速快,所以相对于流量来说,流路截面积较小即可。因此,可将构成外部循环通路30主体的管设为截面圆形且直径较小的形式,与利用截面矩形的管道形成外部循环通路30时相比,可减小外部循环通路30的表面积。因此,尽管在内部通过热的蒸汽,从外部循环通路30散失的热量也较少,蒸汽烹调器1的能量效率提高。利用隔热材料缠绕外部循环通路30时,还可减少该隔热材料的用量。
[0118] 此时,挡板97封闭着从管道31通向容器93a的通道。从送风装置25压送来的蒸汽从管道31进入蒸汽吸引喷射器34,进而经过管道35进入副腔室40。
[0119] 罐体51中的水沸腾后,产生100℃且为1个大气压的饱和蒸汽。饱和蒸汽从蒸汽吸引喷射器34进入到外部循环通路30。由于采用了喷射器结构,所以饱和蒸汽被快速吸入并合流到循环气流中。而且,由于是喷射器结构,所以在蒸汽产生装置50中不作用压力,从而不妨碍饱和蒸汽的排放。
[0120] 出蒸汽吸引喷射器34后的蒸汽通过管道35流入副腔室40。进入副腔室40的蒸汽被气体升温加热器41加热到300℃,变成过热蒸汽。过热蒸汽的一部分从上部喷气孔43向下方喷出。过热蒸汽的其他部分通过管道45绕到副腔室44,从侧部喷气孔46向横向喷出。
[0121] 图14、图15示出了加热室20中没有放入被加热物F的状态下蒸汽的流动状况。蒸汽从上部喷气孔43以到达加热室20底面的强度向下方喷出。碰撞到加热室20底面后的蒸汽向外侧改变方向。蒸汽脱离下吹的气流后,开始上升。由于蒸汽特别是过热蒸汽较轻,所以这样的方向转换是自然产生的。由此,在加热室20的内部,如图中箭头所 示,产生在中央部下吹、在其外侧上升这一形态的对流。
[0122] 为了形成明显的对流,在上部喷气孔43的配置上也有技巧。即,上部喷气孔43的配置,如图12所示,在底面面板42的中央部密集,在周缘部稀疏。由此,在底面面板42的周缘部蒸汽下吹的力较弱,不会妨碍蒸汽的上升,所以对流表现得更明显。
[0123] 蒸汽从侧部喷气孔46朝横向喷出。该蒸汽在加热室20的中央部会合后,混入到来自上部喷气孔43的蒸汽所卷起的对流中。对流的蒸汽依次被吸入吸入口28。然后从外部循环通路30进入到副腔室40,绕这一路线一周后,返回加热室20。这样,加热室20内的蒸汽反复进行进入外部循环通路30又返回加热室20这一循环。
[0124] 在加热室20中放入被加热物F时,加热到约300℃并从上部喷气孔43喷出的过热蒸汽碰撞被加热物F而将热量传递给被加热物F。在该过程中,蒸汽温度降低到250℃左右。接触到被加热物F表面的过热蒸汽在被加热物F的表面结露时释放出潜热。借此也会对被加热物F进行加热。
[0125] 如图4、图5所示,将热赋予被加热物F后,蒸汽向外侧改变方向并脱离向下吹的气流。如前述那样由于蒸汽轻,所以脱离下吹的气流之后开始上升,在加热室20内部形成如箭头所示的对流。利用该对流,可维持加热室20内的温度,并不断使刚在副腔室40中加热过的过热蒸汽碰撞被加热物F,从而可大量且快速地赋予被加热物F热量。
[0126] 从侧部喷气孔46横向喷出的蒸汽从左右进入搁架22下方,在被加热物F的下方会合。来自侧部喷气孔46的蒸汽喷出方向相对于被加热物F的表面是切线方向,但通过这样使来自左右的蒸汽会合,蒸汽不是照直向对面侧流失掉,而是滞留在被加热物F下方并溢出。因此,会产生与向被加热物F表面的法线方向喷吹蒸汽时一样的效果,蒸汽所具有的热量被切实传递给被加热物F的下部。
[0127] 如上所述,被加热物F,就连来自上部喷气孔43的蒸汽接触不到的部位,也与上部一样被来自侧部喷气孔46的蒸汽烹调。从而可获得均匀的、外观良好的烹调结果。而且,由于被加热物F从整个表面均匀地获得热量,所以可在短时间内充分加热到中心部。 [0128] 来自侧部喷气孔46的蒸汽,最初也是300℃,但接触被加热物F后会降低到250℃左右,在该过程中向被加热物F传递热量。而且,在 被加热物F的表面结露时会释放潜热,来加热被加热物F。
[0129] 来自侧部喷气孔46的蒸汽,对被加热物F的下部赋予热量后,加入到来自上部喷气孔43的蒸汽所卷起的对流中。对流的蒸汽被依次吸入吸入口28。然后绕从外部循环通路30到副腔室40这一路线一周后,返回加热室。这样,加热室20内的蒸汽反复进行进入到外部循环通路30中又返回加热室20这一循环。
[0130] 随着时间的推移,加热室20内的蒸汽量增加。多余的蒸汽通过排气通路放出到机器外。如果将蒸汽直接排放到箱体10外,则会在周围的壁面上结露而产生霉菌。但是,由于在排气管道93的中途设有散热部94,所以蒸汽通过该散热部期间被夺去热量,从而在排气管道93的内表面上结露。因此,放出到箱体10外部的蒸汽量较少,不会成为严重的问题。在排气管道93的内表面结露的水向与排气方向相反的方向流下,进入到加热室20中。可以在对积存在托盘21中的水进行处理时,将该水一并处理掉。
[0131] 由于与机器外部连通的容器93a形成为较大的流路面积,所以蒸汽的吹出速度缓慢。因此,由于蒸汽以较高强度碰撞而对机器外部的物体造成损伤的问题得以消除。 [0132] 侧部喷气孔46从副腔室40远离,在蒸汽喷出方面与上部喷气孔43相比较为不利。但是,由于使左右侧部喷气孔46的面积和比上部喷气孔43的面积和大,所以能将足够量的蒸汽引导到侧部喷气孔46,从而被加热物F上下部的加热不匀问题减轻。
[0133] 由于一边使加热室20的气体循环一边加热被加热物F,所以蒸汽烹调器1的能量效率较高。而且,来自上方的过热蒸汽是从副腔室40的底面面板42的大致整个板面范围内分散配置的多个上部喷气孔43向下喷出,所以被加热物F的大致整体都被包入到来自上方的蒸汽中。过热蒸汽碰撞被加热物F、和碰撞的面积较大这两点共同作用,使得过热蒸汽所含的热量快速高效地传递给被加热物F。而且,由于进入副腔室40中的蒸汽被气体升温加热器41加热而膨胀,所以喷出的强度增加,向被加热物F碰撞的速度快。从而被加热物F被更快速地加热。
[0134] 离心风扇26可产生比螺旋桨式风扇更高的压力,所以可提高从上部喷气孔43喷出的力。其结果,能够以到达加热室20底面的强度喷出过热蒸汽,而强力加热被加热物F。由于利用直流马达使离心风扇 26高速旋转而强力送风,所以上述效果更显著。
[0135] 又,送风装置25的送风力较强这一点,对于在打开门11时从排气口32迅速排气来说也是非常有利的。
[0136] 副腔室40的底面面板42上表面是暗色的,所以能良好地吸收气体升温加热器41放出的辐射热。被底面面板42吸收的辐射热从同样为暗色的底面面板42下表面向加热室20辐射放热。因此,抑制了副腔室40及其外表面的温度上升,安全性提高,并且,气体升温加热器41的辐射热通过底面面板42传递给加热室20,加热室20被更有效地加热。底面面板42的俯视形状可以是圆形,也可以是与加热室20的俯视形状相似的矩形。又,如前所述,也可将加热室20的顶壁兼用作副腔室40的底面面板。
[0137] 被加热物F是肉类时,温度上升时会有油滴落。如果被加热物F是装在容器中的液体类,则沸腾时会有一部分溢出。滴落或溢出的东西被接在托盘21中,待烹调结束后处理。
[0138] 当蒸汽产生装置50不断产生蒸汽时,罐体51中的水位下降。当水位传感器56检测到水位降到规定水位时,控制装置80再次开始供水泵57的运转。供水泵57吸入水箱71中的水,对罐体51补给蒸发部分的水。在水位传感器56检测到罐体51中的水位恢复到预定水位的时刻,控制装置80再次停止供水泵57的运转。
[0139] 在由于罐体水位传感器56或供水泵57的故障、或者其他原因而有供水泵57的运转停止等状况时,罐体51中的水位超过预定高度后继续上升。在水位到达溢水高度时,从供水泵57送出的水从溢水管98向容器93a溢出,并流入排气管道93。因此,罐体51内的水不会从蒸汽吸引喷射器34进入外部循环通路30。进入排气管道93的水流向加热室20。 [0140] 由于容器93a形成为较大的流路面积,所以容量大。因此,即使大量的水溢出也能以足够余量阻挡,从而从排气管道93缓慢流出。
[0141] 烹调结束后,控制装置80在操作面板13上进行该意思的显示,并发出信号音。通过声音和显示得知烹调结束的使用者打开门11,从加热室20取出被加热物F。
[0142] 当打开门11时,控制装置80切换挡板97的开闭状态,敞开管道96。于是,在外部循环通路30中流动的气流从管道96向容器93a放出, 几乎没有蒸汽绕到蒸汽产生装置50中。因此,蒸汽向副腔室40的流入量减少,蒸汽从上部喷气孔43以及侧部喷气孔46的喷出即使存在也是很弱的。因此,使用者的脸和手等不会被蒸汽烫伤,可安全地取出被加热物F。挡板97在门11打开期间将管道96打开。
[0143] 由于管道96及容器93a不进行蒸汽的循环,所以温度不如外部循环通路30高。因此,从外部循环通路30流入的蒸汽在接触到管道96及容器93a内壁时结露。由结露产生的水在管道93中流下而进入加热室20。该水可与因其它原因而积存在加热室20底部的水一同在烹调结束后处理。
[0144] 容器93a形成为较大的流路面积,所以内部表面积大。因此,从管道96进入的蒸汽的大部分在此结露,可减少放出到外部的蒸汽量。
[0145] 如果启动停止中的送风装置25而进行排气,则要达到稳定的送风状态会有时间滞后,但在本实施方式的情况下,送风装置25已经在运行中,时间滞后为零。并且,绕加热室20和外部循环通路30的循环气流直接变成从容器93a排出的气流,所以也没有用于改变气流方向的时间滞后。由此,能够无延迟地排出加热室20中的蒸汽,缩短到达门11可敞开的状态所需的时间。
[0146] 使用者打开门11这一状况,例如可如下传递给控制装置80。即,在箱体10与门11之间设置将门11保持在关闭状态的闩锁,并以从把手12露出的方式设置对该闩锁进行解锁的闩锁操作杆。在门11或把手12的内侧配置响应闩锁或闩锁操作杆的动作而开闭的开关,使用者握住把手12和闩锁操作杆进行解锁操作时,从开关向控制装置80发送信号。 [0147] 如上所述,蒸汽产生加热器52包括发热量大的主加热器52a和发热量小的副加热器52b。这里,将主加热器52a的耗电功率设定为700W,将副加热器52b的耗电功率设定为
300W。控制装置80进行主加热器52a和副加热器52b的通电控制的模式如下设定。即,有下述两种模式:向主加热器52a和副加热器52b两者通电而使蒸汽产生加热器52整体的耗电功率为1000W的模式、和仅向副加热器52b通电而使蒸汽产生加热器52整体的耗电功率为300W的模式。
[0148] 气体升温加热器41也包括发热量大的主加热器41a和发热量小的副加热器41b。这里,将主加热器41a的耗电功率设定为1000W,将副 加热器41b的耗电功率设定为300W。
控制装置80进行主加热器41a和副加热器41b的通电控制的模式如下设定。即,有下述三种模式:向主加热器41a和副加热器41b两者通电而使气体升温加热器41整体的耗电功率为1300W的模式、仅向主加热器41a通电而使气体升温加热器41整体的耗电功率为1000W的模式、和仅向副加热器41b通电而使气体升温加热器41整体的耗电功率为300W的模式。
耗电功率1300W的模式在产生不包含蒸汽的热风时使用,耗电功率1000W的模式和300W的模式在使蒸汽过热时使用。
[0149] 利用上述方案,可实施图16所示的各种烹调选项。
[0150] 在“蒸制”的选项中,向蒸汽产生加热器52的主加热器52a和副加热器52b两者通电。在气体升温加热器41侧,则仅向副加热器41b通电。
[0151] 在设蒸汽产生装置50的发热效率为82.0%的情况下,向主加热器52a和副加热器52b两者通电时蒸汽产生加热器52的耗电功率1000W,在图17中大致等于产生22g/分钟的蒸汽所需的加热器功率。如果是该蒸汽量,则在气体升温加热器41中,能以300W的副加热器41b得到130℃的过热蒸汽。这样,可进行温度传递主体是过热蒸汽而不是热风的“蒸制”烹调。蒸汽产生加热器52和气体升温加热器41的耗电功率总计为1300W,处于家用插座每个插口的功率容量范围内。
[0152] 利用过热蒸汽进行的烹调如下所述:
[0153] (a)超过100℃的过热蒸汽接触食品表面而冷凝,对食品赋予冷凝热。
[0154] (b)这样,与热风相比,食品表面温度上升更快。
[0155] (c)由于食品表面温度快速上升,所以通过热传导而使食品内部温度也快速上升。放出冷凝潜热后的蒸汽成为高温的水,该水浸入食品内部而使食品的内部温度上升,并且使食品内部湿润。
[0156] (d)在食品表面温度达到100℃后,过热蒸汽在食品表面反复进行冷凝和汽化,食品表面温度停滞在100℃附近。
[0157] (e)在继续加热时,食品表面干燥而成为超过100℃的温度,出现烧焦色。 [0158] 在过热蒸汽的温度为130℃以下的情况下,进行到上述(c)阶段。可进行相当于“蒸制”、“煮制”的烹调。
[0159] 在过热蒸汽的温度为150℃以上的情况下,进行到上述(d)至(e)阶段。可进行“烧烤着色”、“烧烤”的烹调。
[0160] 利用过热蒸汽进行的烹调并不是蒸汽量越多越能发挥其特征。在蒸汽温度为130℃以下的“蒸制”、“煮制”烹调的情况下,在上述(a)~(c)的工序中,即,到冷凝的水对食品起到某些作用的阶段为止附着到食品上的蒸汽量为蒸汽量上限值。该上限值以上的蒸汽成为不能附着到食品上的无效蒸汽。
[0161] 此外,在使用150℃以上的过热蒸汽来进行“烧烤着色”烹调的情况下,若蒸汽量多,则浸入食品内部的水分量多,在上述(d)阶段中滞留于100℃附近的时间变长,烧烤色出现得晚。因此,过热蒸汽量适度为好。
[0162] 根据以上观点,进行了求出适于“蒸制”、“煮制”烹调的蒸汽量的实验,结果发现,如果加热室的尺寸是家庭用的一般加热烹调器尺寸,则从食品每分钟蒸发15~25g水的蒸汽量是合适的。
[0163] 此外,进行求出适于“烧烤着色”烹调的蒸汽量的实验,结果发现,如果加热室的尺寸是家庭用的一般加热烹调器尺寸,则从食品每分钟蒸发5~10g水的蒸汽量是合适的。 [0164] 在耗电功率的容许值为1300W时,如果想要通过增加蒸汽产生加热器52的耗电功率而增加蒸汽量,则不得不减少气体升温加热器41的耗电功率。但是,蒸汽产生加热器52和气体升温加热器41的耗电功率比例当前是1000W比300W,即10∶3,如果再进一步加大蒸汽产生加热器一方的比重,则不能使蒸汽成为130℃的过热蒸汽。即,在插座每个插口的容许功率为1500W左右的日本家庭中,将蒸汽产生加热器52的耗电功率设为1000W、将气体升温加热器41的耗电功率设为300W,是进行“蒸制”、“煮制”烹调时现实的功率设定。 [0165] 在“烧烤着色”选项中,在蒸汽产生加热器52侧仅向副加热器52b通电。在气体升温加热器41侧仅向主加热器41a通电。蒸汽产生加热器52和气体升温加热器41的耗电功率总计1300W。
[0166] 蒸汽产生加热器52的副加热器52b的耗电功率300W,在图17中大致等于产生6.5g/分钟蒸汽所需的加热器功率。如果蒸汽量为该程度,对气体升温加热器41分配1000W,则过热蒸汽的温度达到200℃以上。这样,能够利用过热蒸汽进行烹调,并使食品带上烧烤色。
[0167] 向蒸汽产生加热器52通电而产生蒸汽,并进行“蒸制”、“煮制”、“烧烤着色”烹调时,耗电功率不仅向蒸汽产生加热器52集中,对气体升温加热器41也分配一些功率。这是因为不向气体升温加热器41通电便不能得到过热蒸汽。但是,气体升温加热器41也可与蒸汽产生加热器52无关地单独使用。
[0168] 在“烧烤”的选项中,不向蒸汽产生加热器52通电,仅向气体升温加热器41通电,且对主加热器41a、副加热器41b均通电。这样,可不依赖蒸汽而仅用热风烹调。蒸汽产生加热器52和气体升温加热器41的耗电功率总共1300W。
[0169] 这样,控制装置80根据选择的烹调选项,来改变蒸汽产生加热器52的主加热器52a和副加热器52b、及气体升温加热器41的主加热器41a和副加热器41b的使用模式。由于可进行与蒸汽产生加热器52比较使气体升温加热器41的发热量较大的控制、和与气体升温加热器41比较使蒸汽产生加热器52的发热量较大的控制,所以可提供主要着眼于蒸汽所产生的烹调效果的烹调选项、和主要着眼于热风所产生的烹调效果的烹调选项,从而进行适合于食品性质的烹调。
[0170] 此外,由于控制装置80进行控制,使得蒸汽产生加热器52和气体升温加热器41的耗电功率总量不超过容许值(这里是1300W),所以即使在对容许电流值有限制的场所也可安全使用。
[0171] 蒸汽产生加热器52和气体升温加热器41分别包括发热量大的主加热器和发热量小的副加热器,通过向这些主加热器和副加热器中的一方通电或同时向双方通电而切换发热量,所以功率控制系统可以是简单的系统,从而不会导致控制装置的成本上升。 [0172] 而且,由于气体升温加热器41的总耗电功率大致等于容许值,所以可使用满容许值的功率来进行仅利用热风的烹调。此外,将气体升温加热器41的副加热器41b的发热量加到蒸汽产生加热器52的总发热量上所得的发热量也大致等于容许值,所以可使用满容许值的功率来进行用气体升温加热器41使由蒸汽产生装置50产生的蒸汽成为过热蒸汽而加以利用的烹调。
[0173] 再有,由于将蒸汽产生加热器52中主加热器52a的耗电功率设定为700W,将副加热器52b的耗电功率设定为300W,所以,可选择下述两种模式:使用主加热器52a和副加热器52b两者而以1000W的耗 电功率来产生蒸汽的模式、和仅使用副加热器52b而以300W的耗电功率来产生蒸汽的模式。此外,由于将气体升温加热器41中主加热器41a的耗电功率设定为1000W,将副加热器41b的耗电功率设定为300W,所以可选择下述三种模式:使用主加热器41a和副加热器41b两者而以1300W的耗电功率来加热气体的模式、仅使用主加热器41a而以1000W的耗电功率来使蒸汽过热的模式、和仅使用副加热器41b而以300W的耗电功率来使蒸汽过热的模式。
[0174] 根据上述耗电功率的设定,可进行用300W的耗电功率来使以1000W的耗电功率产生的蒸汽成为过热蒸汽的组合、用1000W的耗电功率来使以300W的耗电功率产生的蒸汽成为过热蒸汽的组合、用1300W的耗电功率来产生不含蒸汽的热风的组合,而且,任一种组合均处于家用插座每个插口的功率容量范围内。
[0175] 对蒸汽产生加热器52的耗电功率也可如下设定。即,使主加热器52a的耗电功率为1000W,使副加热器52b的耗电功率为300W。
[0176] 根据上述方案,可选择下述两种模式:使用主加热器52a而用1000W的耗电功率来产生蒸汽的模式、和使用副加热器52b而用300W的耗电功率来产生蒸汽的模式。如果将气体升温加热器41的主加热器41a的耗电功率设定为1000W,将副加热器41b的耗电功率设定为300W,则可选择下述三种模式:使用主加热器41a和副加热器41b两者而以1300W的耗电功率来加热气体的模式、仅使用主加热器41a而以1000W的耗电功率来使蒸汽过热的模式、和仅使用副加热器41b而以300W的耗电功率来使蒸汽过热的模式。因此,可进行用300W的耗电功率来使以1000W的耗电功率产生的蒸汽成为过热蒸汽的组合、用1000W的耗电功率来使以300W的耗电功率产生的蒸汽成为过热蒸汽的组合、和用1300W的耗电功率来产生不含蒸汽的热风的组合,而且,任一种组合均处于家用插座每个插口的功率容量范围内。
[0177] 蒸汽烹调器1的加热模式可分为:利用借助气体升温加热器41使蒸汽产生装置50产生的蒸汽升温而得到的过热蒸汽进行加热的加热模式(加热模式A)、和利用使气体升温加热器41在无蒸汽条件下发热而得到的热风或辐射热进行加热的加热模式(加热模式B)。加热模式A在图16的表格中相当于“蒸制”、“烧烤着色”,加热模式B在图16的表格中相当于“烧烤”。组合这些加热模式A、B,可构成将 一切交给蒸汽烹调器1的自动烹调、或由使用者进行条件设定的手动烹调等各种烹调程序。图18的表格中表示烹调程序的实例。在该实例中,假定为欧洲标准的蒸汽烹调器,蒸汽产生加热器和气体升温加热器的总耗电功率有时超过1300W。
[0178] 首先,可设定下述程序:以加热模式A进行烹调前半阶段的主要加热,以加热模式B进行烹调后半阶段的主要加热。在烹调的种类中相当于“生食品的蒸汽烧烤”或“方便食品的蒸汽烧烤”。
[0179] 在选择“生食品的蒸汽烧烤”时,操作面板13中的显示部上显示“香肠”、“熏肉”、“鸡肉(大腿/其它部位)”、“汉堡”、“猪排”等选项,执行“预热1”、“预热2”、“烹调1”、“烹调2”四阶段构成的烹调程序。在“预热1”中,100%地利用气体升温加热器41的1300W功率,使加热室20的温度达到220℃。在“预热2”中,在100%地利用气体升温加热器的1300W功率的同时,50%地利用蒸汽产生加热器52的1000W功率,使加热室20的温度达到
250℃。在“烹调1”中,100%地利用气体升温加热器41的1300W功率,50%地利用蒸汽产生加热器52的1000W功率,而以总时间的70%继续进行将加热室20的温度保持在250℃下的运转。在“烹调2”中,100%地利用气体升温加热器41的1300W功率,停止向蒸汽产生加热器52通电,并以总时间的30%继续进行将加热室20的温度保持在250℃下的运转。 [0180] 在选择“方便食品的蒸汽烧烤”时,在操作面板13中的显示部上显示“炸鱼(冷冻)”、“炸鸡(冰冻)”、“炸鱼(冷却)”、“炸鸡(冷却)”的选项,执行“预热1”、“预热2”、“烹调1”三阶段构成的烹调程序。在“预热1”中,100%地利用气体升温加热器41的1300W功率,使加热室20的温度达到220℃。在“预热2”中,在100%地利用气体升温加热器的
1300W功率的同时,50%地利用蒸汽产生加热器52的1000W功率,使加热室20的温度达到
250℃。在“烹调1”中,100%地利用气体升温加热器41的1300W功率,50%地利用蒸汽产生加热器52的1000W功率,而以总时间的80%继续进行将加热室20的温度保持在250℃下的运转。进而,100%地利用气体升温加热器41的1300W功率,停止向蒸汽产生加热器52通电,而以总时间的20%继续进行将加热室20的温度保持在250℃下的运转。
[0181] 此外,可设定只以加热模式A为烹调主体的程序。在烹调的种类中相当于“蒸汽烘烤”或“方便食品的蒸汽烘焙”。尽管说成“只以加热模式A为烹调主体的烹调”,但在图18的程序实例中,在途中停止蒸汽的供给。这是因为受到水箱71容量的限制,如果能够无限制地供水,则也可以将用过热蒸汽进行的烹调维持到最后。
[0182] 在选择“蒸汽烘烤”时,操作面板13中的显示部上显示“烤鸡”、“烤猪肉”、“烤牛肉”的选项,执行“烹调1”、“烹调2”两阶段构成的烹调程序。在“烹调1”中,100%地利用气体升温加热器41的1300W功率,50%地利用蒸汽产生加热器52的1000W功率,将加热室20的温度保持在设定温度的运转持续30分钟。在“烹调2”中,100%地利用气体升温加热器41的1300W功率,停止向蒸汽产生加热器52通电,以从总时间中减去30分钟后的时间,继续将加热室20的温度保持在设定温度的运转。
[0183] 在选择“方便食品的蒸汽烘焙”时,操作面板13中的显示部上显示“匹萨(冷冻)”、“法式棍子面包(冷冻)”、“烤宽面条(冷冻)”等选项,执行“预热1”、“烹调1”、“烹调2”三阶段构成的烹调程序。在“预热1”中,100%地利用气体升温加热器41的1300W功率,使加热室20的温度达到设定温度。在“烹调1”中,100%地利用气体升温加热器的1300W功率,70%地利用蒸汽产生加热器52的1000W功率,将加热室20的温度保持在设定温度的运转进行30分钟。在“烹调2”中,100%地利用气体升温加热器41的1300W功率,停止向蒸汽产生加热器52通电,以从总时间中减去30分钟后的时间继续进行将加热室20的温度保持在设定温度的运转。
[0184] 还可设定以加热模式B进行烹调前半阶段的主要加热、以加热模式A进行烹调后半阶段的主要加热的程序。在烹调的种类中相当于“蛋糕的蒸汽烘焙”。在图18的程序实例中,在最后进行短时间的加热模式B。这是为了消除蒸汽所产生的特有味道、口感。 [0185] 在选择“蛋糕的蒸汽烘焙”时,在操作面板13中的显示部上显示“面包”、“油酥糕点”、“蛋糕”等选项,执行“预热1”、“烹调1”、“烹调2”、“烹调3”四阶段构成的烹调程序。在“预热1”中,100%地利用气体升温加热器41的1300W功率,使加热室20的温度达到220℃。在“烹调1”中,60%地利用气体升温加热器41的1300W 功率,停止向蒸汽产生加热器52通电,以总时间的45%继续将加热室20的温度保持为设定温度的运转。在“烹调2”中,60%地利用气体升温加热器41的1300W功率,30%地利用蒸汽产生加热器52的1000W功率,以总时间的45%继续将加热室20的温度保持为设定温度的运转。在“烹调3”中,60%地利用气体升温加热器41的1300W功率,停止向蒸汽产生加热器52通电,以总时间的10%继续将加热室20的温度保持为设定温度的运转。
[0186] 使用者可以通过操作面板13进行操作,而改变上述烹调程序的条件。因此,可进行更符合使用者喜好的烹调。
[0187] 同样,使用者可以通过操作面板13进行操作,而调整在烹调后半阶段进行主要加热的加热模式的持续时间。这样,可调整烧烤色。
[0188] 在程序中包括加热模式A和加热模式B两者的情况下,可以加热模式A的持续时间为调整对象进行设定。这样,可增强或减弱过热蒸汽的特点。
[0189] 操作面板13的作用是程序选择机构,也是加热时间设定机构或加热时间/加热温度设定机构。设定加热时间后,程序中加热模式的时间分配根据预先设定的条件确定,从而可以手动设定烹调的程序。
[0190] 此外,在设定以加热模式A进行整个烹调过程的程序时,可以调整加热模式A的持续时间,并可将加热模式A的控制温度设定为130℃以下。这样,可防止进行“加热”和“蒸制”时的误设定。
[0191] 再有,在设定以加热模式A为主体进行烹调的程序时,在操作面板13的显示部上直接显示出在微波加热时会因内压上升而可能破裂的被加热物(例如鸡蛋)、或有微波不能透过的包装的被加热物(例如,包装材料中包含金属膜的软罐头食品)的名称。即,显示部上出现“鸡蛋/软罐头食品”等文字。因此,可消除将因担心破裂或不能加热而常避免自动加热的食品交付利用蒸汽进行的自动烹调时的心理障碍。
[0192] 也可显示鸡蛋和软罐头食品的图标来代替文字。或者,也可同时显示文字和图标。 [0193] 对于厚度薄的食品例如牛排和汉堡等,适合采用以加热模式A进行烹调前半阶段的主要烹调并以加热模式B进行烹调后半阶段的主要烹调的加热方式。
[0194] 图19的曲线图表示仅以加热模式A持续加热厚度薄的食品的状 态。实线表示食品表面温度,虚线表示食品中心温度。该情况下,在食品表面温度接近100℃时,食品中心温度上升到作为最适当温度的70℃附近。在食品表面温度在100℃附近滞留期间,食品中心温度继续上升,食品表面进入干燥状态,在烧烤着色的温度带(180℃),食品中心温度超过合适温度而成为过加热状态。
[0195] 在使烹调后半阶段为加热模式B时,得到图20的曲线图所示的结果。在加热模式B中,食品表面在100℃附近滞留的时间缩短,另一方面,食品中心温度的上升梯度变缓。这样,可使对食品表面着上烧烤色的时刻和食品中心成为最适当温度的时刻一致,而且可实现总加热时间的缩短。
[0196] 对于厚重的食品例如烘烤食品等,适合采用以加热模式A进行整个烹调过程的加热方式。
[0197] 图21的曲线图表示仅以加热模式A持续加热厚重食品的状态。实线表示食品表面温度,虚线表示食品中心温度。在此种厚重食品的情况下,食品中心温度比食品表面温度上升得慢。这是因为来自表面的热传导和冷凝水的浸入花费时间。鉴于此,通过连续地利用过热蒸汽进行烹调,直至到达使表面着上烧烤色的温度带(180℃),可使得食品中心温度达到最适当温度(70℃)的时刻为最后时刻。此外,与仅以加热模式B进行加热的情况比较,能以更短时间结束烹调。
[0198] 对于原料配比细致微妙的食品,例如蛋糕等烘焙食品,适合采用以加热模式B进行烹调前半阶段的主要烹调并以加热模式A进行后半阶段的主要烹调的加热方式。 [0199] 图22的曲线图表示仅以加热模式A持续加热烘焙食品时食品表面温度和食品重量的变化。粗实线表示食品表面温度,细实线表示食品重量的变化。在食品表面温度接近100℃之前,冷凝水浸入食品,从而食品重量向“+”侧变化。在食品表面温度滞留在100℃附近期间,食品重量的变化梯度颠倒。进一步加热时,进入干燥区域,食品重量向“-”侧变化。
[0200] 原料配比细致微妙的食品如果在烹调初期水分增加,则最终制作效果会变差。于是,烹调初期以加热模式B在不施加水分的情况下加热,烹调后半阶段以加热模式A加热。这样,可同时实现良好的制作效果和加热时间的缩短。
[0201] 以上,虽然提出了三种代表性加热方式,但此外,可通过改变加热模式A、B的时间比例或在加热模式A、B前后附加不同的加热模式,而针对每种食品进行细微调整。 [0202] 过热蒸汽所进行的烹调具有如下特征:
[0203] a.食品内部温度的上升快。
[0204] b.冷凝水附着到食品上。
[0205] c.可进行低氧烹调(以过热蒸汽充满加热室内而排出空气后,氧气浓度从大气中的通常浓度即20%下降到百分之几以下)。
[0206] 上述特征对食品产生以下影响:
[0207] A.脱油效果
[0208] 通过食品内部温度的上升,食品所含的脂肪成分液化,渗出到食品表面。脂肪成分单独或与附着到食品表面上的冷凝水一起滴落。与其它烹调方法相比,脱油效果更好。 [0209] B.减盐效果
[0210] 附着到食品表面的冷凝水中溶解了食品表面附近所含的盐分,并与冷凝水一同滴落而从食品排出。与其它烹调法相比,减盐效果更好。
[0211] C.防止维生素和油脂成分氧化
[0212] 维生素C、E和油脂因氧化而劣化,会导致不能发挥本来的功能,或是颜色和香味变差,或是放出恶臭。过热蒸汽所进行的低氧烹调能有效防止氧化,而且,与其它防氧化烹调方法(例如真空烹调方法)相比可更容易地实现。
[0213] 如上所述,利用过热蒸汽进行的烹调可说是符合最近健康意识提高的潮流的烹调。另一方面,制作后的口感和味道与现有的烹调方法略有不同,有喜欢的人和也有不喜欢的人。于是,在想要更突出过热蒸汽特征的情况下,可以延长加热模式A的时间,而加速食品内部温度的上升或增加冷凝水的附着量而使特征突出。在不想将过热蒸汽的特征表现地明显的情况下,可以通过减小加热模式A的时间比例、增大加热模式B的时间比例,而实现目的。
[0214] 工业实用性
[0215] 本发明可用于以蒸汽进行烹调的所有烹调器,不管家庭用还是商业用都可以。