旋翼飞行器转让专利

申请号 : CN201110093437.0

文献号 : CN102173310B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 保罗·E·阿尔托恩大卫·J·阿尔托恩

申请人 : 保罗·E·阿尔托恩大卫·J·阿尔托恩

摘要 :

一种旋翼飞行器,包括非转动结构主干,耦合到所述非转动结构主干的第一转子系统,所述第一转子系统包括由第一转子轴支撑以围绕转动轴线转动的可变俯仰的第一转子叶片以及包括循环俯仰控制的第一叶片俯仰控制器,以及耦合到所述非转动结构主干的第二转子系统,所述第二转子系统包括由第二转子轴支撑以围绕转动轴线转动的第二转子叶片,其中所述第一叶片俯仰控制器沿着所述转动轴线与所述第一转子轴轴向地隔开。

权利要求 :

1.一种旋翼飞行器,包括:

非转动结构主干,具有沿转子转动轴线延伸的基本为圆柱形的外表面,耦合到所述非转动结构主干的第一转子系统,所述第一转子系统包括由第一转子轴支撑以围绕所述转子转动轴线转动的可变俯仰的第一转子叶片以及包括循环俯仰控制的第一叶片俯仰控制器,以及耦合到所述非转动结构主干的第二转子系统,所述第二转子系统包括由第二转子轴支撑以围绕所述转子转动轴线转动的第二转子叶片,其中所述第一叶片俯仰控制器沿着所述转子转动轴线与所述第一转子轴轴向地隔开。

2.如权利要求1所述的旋翼飞行器,其中所述第一转子轴被设置成与所述第二转子轴沿着所述转子转动轴线成轴向隔开关系。

3.如权利要求1所述的旋翼飞行器,其中所述第二转子叶片是由包括循环俯仰控制的第二叶片俯仰控制器来控制的可变俯仰的转子叶片,所述第二叶片俯仰控制器沿着所述转子转动轴线与所述第二转子轴轴向地隔开。

4.如权利要求3所述的旋翼飞行器,进一步包括固定在所述非转动结构主干的第一发动机以驱动所述第一转子叶片在第一转子转动面内围绕所述转子转动轴线转动,所述第一发动机与所述第一叶片俯仰控制器被设置在所述第一转子转动面的相对侧。

5.如权利要求4所述的旋翼飞行器,进一步包括固定在所述非转动结构主干的第二发动机以驱动所述第二转子叶片在第二转子转动面内围绕所述转子转动轴线转动,所述第二发动机与所述第二叶片俯仰控制器被设置在所述第二转子转动面的相对侧。

6.如权利要求3所述的旋翼飞行器,其中所述第一叶片俯仰控制器与所述第二叶片俯仰控制器通过公共的俯仰链接机构相连,所述公共的俯仰链接机构同时操作所述第一叶片俯仰控制器和所述第二叶片俯仰控制器。

7.如权利要求1所述的旋翼飞行器,其中所述第一叶片俯仰控制器沿着所述转子转动轴线与所述第二转子轴轴向地隔开。

8.如权利要求7所述的旋翼飞行器,其中所述第二转子叶片是由包括循环俯仰控制的第二叶片俯仰控制器来控制的可变俯仰的转子叶片,所述第二叶片俯仰控制器沿着所述转子转动轴线与所述第一转子轴轴向地隔开。

9.如权利要求5所述的旋翼飞行器,其中所述第一叶片俯仰控制器与所述第二叶片俯仰控制器位于所述第一转子转动面与所述第二转子转动面之间。

10.如权利要求5所述的旋翼飞行器,其中所述第一发动机与所述第二发动机位于所述第一转子的转动面与所述第二转子的转动面之间。

说明书 :

旋翼飞行器

[0001] 本申请是申请日为2005年4月14日、申请号为200580011484.9、题为“旋翼飞行器”的中国专利申请的分案申请。
[0002] 本申请要求了于2004年4月14日提交的第60/562,081号美国临时申请的优先权,该临时申请通过引用并入本申请。

技术领域

[0003] 本发明涉及飞行器,具体地,涉及无人驾驶飞行器(UAV)。更具体地,本发明涉及无人驾驶旋翼飞行器。

背景技术

[0004] 旋翼飞行器被用于多种应用。无人驾驶旋翼飞行器通常被军方、执法机构和商业组织所使用,用于航空勘察操作。

发明内容

[0005] 根据本发明的旋翼飞行器包括包括非转动结构主干,耦合到所述非转动结构主干的第一转子系统,所述第一转子系统包括由第一转子轴支撑以围绕转动轴线转动的可变俯仰的第一转子叶片以及包括循环俯仰控制的第一叶片俯仰控制器,以及耦合到所述非转动结构主干的第二转子系统,所述第二转子系统包括由第二转子轴支撑以围绕转动轴线转动的第二转子叶片,其中所述第一叶片俯仰控制器沿着所述转动轴线与所述第一转子轴轴向地隔开。
[0006] 对于本领域的技术人员来说,通过下面对目前所认识到的示意性实施方案(示例出执行本发明的最佳方式)进行的详细描述后,本发明的其他特征将变得显而易见。 附图说明
[0007] 具体参照附图进行详细描述,附图中:
[0008] 图1是根据本发明的旋翼飞行器的示意图,其示出了包括制导系统、耦合至机身的一对转子系统的飞行器,机身包括非转动的结构主干并携带有效载荷; [0009] 图2A是根据本发明的旋翼飞行器的立体图,其示出了垂直飞行模式下的反向转动的同轴转子系统;
[0010] 图2B是图2A的、具有反向转动的同轴转子系统以及固定翼部的助推器模块的旋翼飞行器在水平飞行模式下的立体图;
[0011] 图3是图2A的旋翼飞行器的侧部正视图,其为清晰显示而去除了外部主体板、电线以及助推器部分;
[0012] 图4是图2A的飞行器的局部剖开的侧部正视图,其示出了反向转动的同轴转子系统和电源;
[0013] 图5是图2A的飞行器局部剖开的放大立体图,其示出了飞行器上部的内部以及反向转动的同轴转子系统;
[0014] 图6是图2A的飞行器局部剖开的放大立体图,其示出了飞行器下部的内部以及反向转动的同轴转子系统;
[0015] 图7A是具有圆形截面和中空内部通道的核心管或主干的立体图,其被用作飞行器多个部分之间的管道,该图示出了通过中空内部延伸并在各种位置进出的电线; [0016] 图7B是具有一般为十字形截面的主干的立体图,主干具有在主干的长度上延伸、可用作飞行器多个部分之间的管道的外部通道;
[0017] 图8是第一环安装部件的放大立体图;
[0018] 图9是第二环安装部件的放大立体图,其示出了附接的链接机构和主体支撑机构;
[0019] 图10是图2A的飞行器局部剖开的中部内部的放大立体图,其示出了反向转动的同轴转子系统;
[0020] 图11A是具有多个转子叶片的转子模块的分解立体图,其中转子叶片具有可变的循环俯仰(cyclic pitch)和固定的集合俯仰(collectivepitch);
[0021] 图11B是具有多个转子叶片的转子模块的分解立体图,其中转子叶片具有可变的循环俯仰和可变的集合俯仰;
[0022] 图12A和12B是发动机安装部件的第一侧和第二侧的立体图;
[0023] 图13A和13B是转子毂的第一侧和第二侧的立体图;
[0024] 图14是沿图2B的线14-14获得的截面图,其示出了转子模块;
[0025] 图15是图2A的反向转动的同轴转子系统的侧部正视图,其中核心管依附于转子系统;
[0026] 图16A和16B是包括几个电池的单个能量模块的分解立体图;
[0027] 图17是图2B的助推器模块的正交视图,其示出了用于存储的一个折叠的翼部和飞行设置中的一个伸展的翼部;
[0028] 图18是示出了在飞行中与旋翼飞行器分离的助推器模块的正交视图; [0029] 图19是示出了依附于飞行器底部的吊放声纳或水听器组件的旋翼飞行器的正视图;
[0030] 图20A、20B和20C是示出了飞行器在紧急着陆到该旋翼飞行器下方的地面期间,以不等的长度折叠叶片操作的旋翼飞行器的连续视图;
[0031] 图21A和21B是示出了为了存储而折叠的飞行器的存储管和旋翼飞行器的侧部正视图;
[0032] 图22是根据本发明的旋翼飞行器的立体图,该飞行器将传感器或标记传递到所示的远程位置,用于对处于公海上的船只进行标示的目的;
[0033] 图23是为了存储于通过重力投放的炸弹的后部中的折叠的旋翼飞行器的侧部正视图;
[0034] 图24是来自通过重力投放的炸弹的后部的、在目标地点附近处展开的旋翼飞行器的立体图,其示出了通过重力投放的炸弹喷射出旋翼飞行器,旋翼飞行器被展开为垂直飞行模式而在目标区域中徘徊,从而为进攻部队提供通过重力投放的炸弹击中目标之后的实时战争毁坏评估;
[0035] 图25A是另一旋翼飞行器的示意图,其示出了具有能量和信号通 道的中心信息转移通路(buss)结构、制导系统以及耦合至机身的一对转子系统的飞行器,机身包括非转动的结构主干并携带有效载荷;以及
[0036] 图25B是图25A的旋翼飞行器的示意图,其示出了通过中心数据/能量信息转移通路与能量和数据通道连通的转子系统、控制系统以及能源系统。

具体实施方式

[0037] 如图1示意性所示,旋翼飞行器1顺序地包括第一模块2、第一和第二转子系统3和5、能量模块13和14、以及与沿着公共轴线7延伸的机身40以间隔方式相耦合的第二模块15。示例性地,机身40为伸长的中心主干,其可设置成中空核心或具有十字形截面。在操作中,第一转子3和第二转子5绕公共轴线7以相反方向转动,以形成方向24上的推力并产生方向24’上的提升,从而使得旋翼飞行器1能够受控飞行,如图2A所示。第一模块2适于包括多种制导系统50’、电子装置55或有效载荷15’。第二模块15适于包括有效载荷15’,或者,在某些实施方案中,包括多种制导系统50’以及电子系统55’。有效载荷15’可包括(但不限于)军需品、辐射传感器、化学检测传感器、生物制剂传感器、有源或无源收听装置、视频传感器、辅助能源、或者其它任务特殊设备。旋翼飞行器1因而为感兴趣的领域提供了用于移动勘察、观测的装置或测量监控设备,以通过这些设备获取信息。 [0038] 如图1、25A和25B所示,第一转子系统3包括第一发动机54、第一转子叶片20以及第一俯仰(pitch)控制器56。在示例性实施方案中,发动机54是电动机(例如图4-6所示)或其它的用于提供能量以使转子叶片20能绕公共轴线7转动的合适装置。第一转子系统3和第二转子系统5在结构和功能上彼此相似。第二转子系统5包括第二发动机61、第二转子叶片22以及第二俯仰控制器57。在示例性实施方案中,发动机61是电动机(例如图4-6所示)或其它的用于提供能量以使转子叶片22能绕公共轴线7转动的合适装置。
示例性地,电子组件通过电缆管道173和电缆管道174连接和连通,电缆管道173 和电缆管道174分别容纳电力线和信号线。虽然所示的旋翼飞行器1具有两个转子系统,但旋翼飞行器1可根据性能和任务需求而具有两个以上的转子系统。
[0039] 如图1和3所示,机身40是非转动的,其形成中心伸长的中空主干以接纳第一模块2、第一和第二转子系统3和5、能量模块13和14、以及第二模块15。示例性地,能量模块13和14在第二转子系统5与第二模块15之间被设置为彼此并排的关系。由于机身40是中空的,因而能量模块13和14可通过中空主干而电连接至发动机54和61。 [0040] 示例性地,俯仰控制器56是耦合至前/后伺服机构58和摇摆(roll)伺服机构59的旋转斜盘(swashplate)56’,以响应于来自控制器55的输入而改变转子叶片20的循环俯仰。在某些实施方案中,旋转斜盘56’进一步耦合至集合伺服机构98,以集合地改变转子叶片20的俯仰。同样地,俯仰控制器57是耦合至前/后伺服机构58和摇摆伺服机构59的旋转斜盘57’,以响应于来自控制器55的输入而改变转子叶片20的循环俯仰。在某些实施方案中,旋转斜盘57’还耦合至集合伺服机构98,以集合地改变转子叶片20的俯仰。在示例性实施方案中,控制器55是命令信号控制器(例如图3所示)或者其它的用于向伺服机构58、59或98和发动机54、61提供期望的电子或机械转向信号的合适装置。 [0041] 示例地,旋翼飞行器1具有固定俯仰转子系统,该转子系统具有用于控制飞行器俯仰(直升飞机类型的前后循环输入)或飞行器摇摆(直升飞机类型的左右循环输入)的两个伺服机构58、59。如果希望进行集合俯仰控制的话,则图1中以虚线框表示的伺服机构98可类似地安装至伺服机构58、59。在具有固定俯仰转子系统的实施方案中,转子系统3和5通过俯仰链接件119连接到旋转斜盘56’和57’。伺服机构58和59通过链接件125和126连接到旋转斜盘56’和57’。本发明的一个特征在于旋翼飞行器1可在具有非常少的一个或两个循环伺服致动器(伺服机构58、59)的情况下飞行。在“单伺服”飞行模式下,发动机54和61的差动转矩(differential torque)控制偏航(yaw)方向,而伺服机构58控制向前和向后飞行。在仅具有一个循环伺服机构的情况下,飞行器1可类似于仅由方向舵或提升器控制的飞机那样 飞行。在示例性的“双伺服”飞行模式下,伺服机构58和59提供前/后飞行器俯仰和左/右飞行器摇摆控制,而发动机54和61的差动转矩则提供偏航控制。
[0042] 在操作中,转子毂101以相反方向转动。伺服机构58和59由机上飞行控制电子装置来控制以使旋转斜盘56’和旋转斜盘57’同时倾斜,旋转斜盘56’和旋转斜盘57’随后循环地改变旋转转子叶片20的叶片俯仰角,从而使飞行器1在飞行器俯仰方向170和飞行器摇摆方向171的其中一个方向上倾斜。在具有集合俯仰的另一实施方案(参见图11B)中,设置有集合伺服机构98和第三俯仰链接件(未示出),从而通过电子装置——集合-循环俯仰混合器(CCPM)——来改变旋转斜盘56’和57’沿公共轴线7的轴向位置以及改变转子叶片20和22的集合俯仰。通过集合-循环俯仰混合伺服机构58、59和98,能够一致地倾斜旋转斜盘56’和57’以改变循环俯仰,以及一致地沿公共轴线7轴向移动旋转斜盘56’和57’以改变集合俯仰。
[0043] 该示例性实施方案采用差动的发动机速度而在垂直飞行设置中进行偏航(航向)控制。通常,同轴直升飞机使用可变的叶片俯仰和有差别的叶片角来控制飞行中的偏航运动。在本发明中,通过以不同速度操作发动机54和61、从而相对于飞行器1的固定本体产生的差动转矩将产生偏航力,以使偏航运动(即,绕公共轴线7的转动)稳定并对其进行控制。在这一方法中,发动机54的转矩(以及最终的速度)响应于旋翼飞行器1相对于垂直的公共轴线7的偏航运动而增加或减小。第二发动机61的转矩(速度)以与第一发动机54的转矩(速度)相反的方式,由容纳在控制器55中的机上计算机系统自动调节,以保持恒定的提升,从而使得旋翼飞行器1的高度既不增加也不减小。
[0044] 转子叶片20和22耦合至旋翼飞行器1,并被支撑为由转子毂101来转动。转子毂101进一步耦合为能够相对于内核部108枢轴运动,如图11A最清楚地示出。旋转轴109穿过转子毂101延伸,并由核部108接纳。核部108适于将一对转子叶片耦合至毂101,使其绕公共轴线7转动。核部108进一步耦合至一对链接件119的第一端。各个链接件119在其第二端上进一步耦合至旋转斜盘56’或57’的周边边缘。 因此,核部118通过来自旋转斜盘56’和57’的、响应于伺服机构58、59或98的线性运动输入的输入而旋转。作为响应,核部118的这一旋转运动随后使各个转子叶片20和22旋转,从而增加或减小了转子叶片20和22的转子叶片俯仰。
[0045] 如图2A和2B所示,旋翼飞行器1包括沿公共轴线7以间隔方式设置的上部2’、第一和第二转子3和5、中部4、下部6、第一和第二能源模块13和14以及有效载荷15。现在参照图2A-4,在飞行器1的上部2’和中部4内的内部机械和电子组件分别由薄壁的上部主体壳10和中部主体壳11包围。下部主体壳12覆盖下部6的一部分,但其可以延伸为覆盖全部下部6。本发明的一个特征在于主体壳10和11由诸如聚碳酸脂或ABS的塑性材料吹模形成,而主体壳10和11连同主干40一起形成了旋翼飞行器的结构,该旋翼飞行器的中心强度组件和较薄的外部覆盖组件都是刚性、坚固且易于制造的。
[0046] 如图3所示,根据本发明的旋翼飞行器1具有转子系统,该转子系统包括通过诸如齿轮106和107(图11)的传动装置而可操作地连接至转子叶片20的发动机54。诸如旋转斜盘56’(图10)的俯仰控制可操作地连接至转子叶片20,以响应于诸如伺服机构58和59(图3)的伺服致动器的输出,通过诸如链接件125和126(图10)的链接机构而改变转子叶片20的循环和/或集合俯仰。能源模块13中的能量(例如来自电池(未示出)的电能或来自存储罐(未示出)的燃料)从能量管道流过转子系统,并提供能量来操作控制器
55、发动机54以及伺服机构58和59。来自控制器55的控制信号沿着信号管道流动,并调整发动机54的速度和伺服机构58、59的定位输出。能量管道和信号管道通过在飞行器1的结构主干40中形成的通路96(图7A、7B和15)而在转子叶片20的输入侧和输出侧之间传导。
[0047] 在悬停飞行时,第一转子3和第二转子5绕公共轴线7以相反方向转动,从而迫使空气以方向24向下移动,并使得飞行器1以向上方向提升,如图2A所示。第一转子3具有配置成绕公共轴线7以方向21转动的转子叶片20,而第二转子5具有配置成绕公共轴线7以方向23转动的转子叶片22。由于第一转子叶片20和第二转子叶片22均配 备有循环俯仰控制,因此飞行器1被配置成以方向25定向飞行,其中公共轴线7具有基本垂直的朝向。
[0048] 现在参照图2B,所示的本发明的第二实施方案具有助推器模块8,助推器模块8在助推器接口9附加至下部6。助推器模块8例如包含辅助能源(未示出),以增加飞行器1中所携带的能量模块13和14中容纳的内部能源。示例地,辅助能源(未示出)和能量模块13和14是电池13和14。助推器模块8包括左翼16和右翼17来为以方向18定向飞行的飞行器1(其中,公共轴线7具有基本水平的朝向)提供附加的提升。
[0049] 机身40形成旋翼飞行器1的结构主干,并从上部2’通过旋翼飞行器1的中心向下部6大体垂直行进,如图4中最清晰地示出的。示例性地,机身40是具有中空的内通道96(图7A)的非转动的核心管,或具有外部通道的十字形杆97(图7B)。上部2’、中部4和下部6内的所有组件以及第一和第二转子模块3和5都耦合至机身40。现在参照图7A,非转动的中空核心管40进一步起到用于电线45、管路(未示出)以及机械链接机构(未示出)的管道作用,其连通在旋翼飞行器1的上部2’、中部4和下部6中的组件之间。纵向槽
46和47被设置作为用于布线45、管路和链接机构的入口点和出口点。由于非转动的中空核心管40和十字形杆在主体部分2、4和6之间是单一和连续的,因此飞行器1的刚性和重量轻的结构特性得以提高。示例性地,非转动的中空核心管40和十字形杆97优选由缠绕的或拉挤的碳石墨纤维、玻璃纤维或第7075号铝合金(或类似物)制成,并具有约0.5英寸(13毫米)的外直径(核心管40)或宽度尺寸(十字形杆)以及介于约0.03英寸(0.76毫米)与约0.05英寸(1.3毫米)之间的壁厚。
[0050] 旋翼飞行器1被设置为具有三个主体部分,如图3最清晰地示出的。上部2’被设置为具有水平传感器/稳定器50、电子陀螺稳定器51、耦合至核心管40的上端的陀螺仪安装台52、第一发动机速度控制器53、第一发动机54、无线电接收机以及控制器55。中部4包括第一旋转斜盘56’,第二旋转斜盘57’、前-后循环伺服机构58以及摇摆循环伺服机构59。下部6包括第二发动机速度控制器60、第二发动机61、 无线电设备电池62、第一和第二电池模块13和14以及有效载荷模块15。
[0051] 在所示的实施方案中,水平传感器/稳定器50是FMA公司的“FS8Copilot”型,陀螺稳定器是JR公司的“G500”型硅环陀螺仪(siliconering gyro),发动机54和61是Hacker公司的“B2041S”型,而发动机速度控制器53和60是Castle Creations公司的“Pegasus 35”型,“Pegasus 35”型是基于计算机的数字可编程速度控制器。旋翼飞行器1还配置成能接收配置为与上部2’耦合的GPS接收器/控制器和遥测系统(未示出)。 [0052] 旋翼飞行器1的内部组件通过如图8所示的环安装部件70耦合至核心管40。环安装部件70包括环状内部71,其与核心管40的环状外表面相符。环安装部件70包括径向延伸的安装臂72、73、74,安装臂72、73、74具有适于保持旋翼飞行器1的机械、电子和其它内部组件的凸缘75、76、77。环安装部件70配置成在凸缘75中支撑发动机54、在凸缘76上支撑发动机速度控制器53,以及在凸缘77上支撑无线电接收机55”。飞行器1的内部组件例如通过使用多种固定件(例如穿过孔78的尼龙带)或粘合剂而耦合至安装凸缘。环状部分71提供了用于将环安装部件70锁合至非转动中空核心管40的装置,以避免环安装部件70转动或沿非转动中空核心管40轴向滑动。用于将环安装部件70锁合至非转动中空核心管40的装置包括由固定螺钉接纳件79接纳的固定件(未示出)或多种粘合剂。如图9所示,第二环安装部件80包括环状圈81、臂82和83以及轴向凸起84和85,轴向凸起84和85用于支撑主体固定器86、87和88、旋转斜盘防转动臂90和91以及旋转斜盘链接件92和93。
[0053] 伺服模块81包括环安装部件80,以支撑俯仰伺服机构58、摇摆伺服机构59以及支撑中部主体壳11的通用主体固定器86和87(如Arlton的第60/525,585号美国临时专利申请,该申请并入本申请作为参考),例如图10所示。环安装部件70和80配置成并入并支撑旋翼飞行器1的许多结构特征。环安装部件70和80协助旋翼飞行器1的组装,这是因为环安装部件70和80和相关的内部组件可作为子部件 而预先组装,然后在最终制造步骤中连同其它模块一起组装至非转动中空核心管40。
[0054] 现在参照图11A、12A、12B、13A、13B和14,转子模块3包括转子安装部件100、具有内齿轮107的转子毂101、第一和第二球轴承102和103、环夹104、发动机54、行星齿轮箱105、小齿轮106、叶片核部108、旋转轴109、轴端盖110、扭簧111以及转子叶片20。发动机安装部件122能够接纳齿轮箱105,以使得发动机54耦合于转子安装部件100。在组装时,轴承102和103由环夹104保持,环夹104与从转子安装部件100延伸的凸台112上的槽108接合。叶片20由穿过盖110延伸的销子113和形成于轴109中的孔114保持在适当位置。轴109穿过形成于毂101的轴承孔117,并在由另一销子(未示出)保持时进入核部108的孔118中。链接件119将核部108耦合至旋转斜盘56’。
[0055] 如图11B所示,转子模块适于支撑可循环俯仰和可集合俯仰的转子叶片,转子模块包括集合转子毂201,集合转子毂201与毂101类似,并能够接纳通过固定件212耦合至凸台214的集合核心框架208,凸台214形成于毂201的内表面上。集合核心框架208支撑由转子叶片20通过推力轴承203而产生的径向飞行负载。链接件119将俯仰臂210耦合至旋转斜盘56’。
[0056] 示例性地,行星齿轮箱105具有约4∶1的减小的速度比。发动机54上的小齿轮具有9个齿并与转子毂101上的、具有6个齿的内齿轮107相接合,从而使得转子模块3的总的减速比为约26.7∶1(也就是说,对于转子毂101的每一转,发动机54的输出轴转动26.7转)。这一速度比的降低有利于使用在高电压和高速度下运行的高效电机。 [0057] 示例性地,发动机54是无刷电机。在某些应用中,尤其是在飞行次数较少而经济问题成为考虑因素的应用(例如,短程一次性军需品的应用)中,可使用几个低成本的有刷式电机(即,电机具有碳刷和转动换向器)代替一个高成本的无刷电机54来转动转子毂
101。在这种情况下,虽然所示的转子模块3具有一个电机54来驱动转子毂101,但在转子安装部件100的周围附近包括几个电机而不是仅一个电机来 驱动转子毂101也在本发明的范围之内。同样可以预期,转子毂100自身可配置有金属线圈和磁体而起到电机作用,从而无需单独的电机来驱动转子毂101相对于公共轴线7运动。
[0058] 在本实施方案中的转子叶片20是由聚碳酸酯塑料材料注模形成,并具有在Arlton的第5,879,131号美国专利中描述的类型,该申请并入本申请作为参考。在扭簧111上的调整片121接触俯仰轴109并阻止进一步振翼之前,转子叶片20可关于振翼轴线120自由地向上和向下摆动约6度。这意味着转子叶片20可在飞行中自由上下摆动约+/-6度,并可向上折叠90度和向下折叠90度用于存储,或者在紧急着陆时进行上述的向上、向下折叠。
[0059] 在附图中所示的实施方案中,转子安装部件100由热塑塑料材料(例如聚碳酸酯或尼龙)注模为单个部件。转子毂101由热塑塑料材料(例如尼龙或乙缩醛)注模为单个部件。转子叶片20在飞行中由转子毂101(其形成了飞行器1的外部主体壳的一部分)支撑,而不是由与公共轴线7重合的常规同心轴来支撑。这使得转子支承轴承103、104设置为与转子叶片20非常接近,并能将旋翼飞行器1的中心主体部分内部的空间释放用于其它的机械或电子组件。在固定俯仰转子系统(如图中所示)中,由转动的叶片20产生的径向飞行力由连接两个转子叶片20且包括围绕和分路核心管40的内部孔的内核部108支撑,从而不需要专门的推力轴承。
[0060] 现在参照图15,根据本发明的同轴转子系统包括核心管40、两个转子系统3和5、两个旋转斜盘56’和57’以及一个耦合至非转动的中空核心管40的伺服模块81,其中核心管40关于伺服模块81为镜面对称。虽然公开了具有两个转子的同轴转子系统,但旋翼飞行器1可配备附加的转子系统(未示出),附加的转子系统沿着非转动的中空核心管40的长度隔开,用于提供附加的推力或工作能力。
[0061] 在所示的实施方案中,旋翼飞行器1具有固定俯仰转子系统,固定俯仰转子系统仅需要两个伺服机构58和59用于飞行器俯仰(前后循环)和飞行器摇摆(左右循环)控制。如果需要集合俯仰控制,则可将第三集合伺服机构98以相似方式安装于例如中部4中。
[0062] 转子系统3和5通过俯仰链接件119连接至旋转斜盘56’和57’。伺服机构58和59通过链接件125和126连接至旋转斜盘56’和57’。在操作中,转子毂101以相反方向转动。伺服机构58和59由机上飞行控制电子装置55’控制,以使得旋转斜盘56’和旋转斜盘57’同时倾斜,旋转斜盘56’和旋转斜盘57’然后循环地改变转动的转子叶片20的叶片俯仰角,以使得飞行器1在飞行器俯仰方向和飞行器摇摆方向的其中一个方向上倾斜。
在具有集合俯仰的另一实施方案(参见图11B)中,设置有第三伺服机构和第三俯仰链接件(未示出),从而使用电子装置——集合-循环俯仰混合器(CCPM)——来改变旋转斜盘56’和57’沿公共轴线7的轴向位置以及改变转子叶片20和22的集合俯仰。以这种方式,使用设置为位于转子系统3和5之间的伺服机构以及使控制旋转斜盘56’和57’与链接机构直接耦合来控制同轴转子系统是本实施方案的一个特征。
[0063] 本发明的一个示例性特征是发动机54、61被设置为位于转子3和5(上、下侧)的相反侧,转子之间的能量输送是通过电线45而不是机械轴系来实现的,从而减小了机械复杂度和重量。在另一实施方案(未示出)中,电机54和61被设置为位于转子之间,而伺服致动器58和59被设置为以与转子3和5的位置相间隔的方式位于其间。由于转子系统的能量和控制在本质上完全是以电的方式进行的,因此旋翼飞行器1的整个控制系统可由数字计算机和固态电子装置来以电的方式操作,而无需机械链接结构或液压放大。在转子3和5的相反侧上、以及在伺服模块81的相反侧上设置两套发动机消除了转子之间设置同心转动轴系的需要,而是设置伺服机构58和59来直接驱动旋转斜盘56’和57’。 [0064] 本发明的特征在于飞行器1可在具有非常少的一个或两个循环伺服致动器(伺服机构58、59)的情况下飞行。在单伺服飞行模式下,发动机54和61的差动转矩控制偏航方向,而伺服机构58控制向前和向后飞行。在仅具有一个循环伺服机构的情况下,飞行器1可类似于仅由方向舵或提升器控制的飞机那样飞行。如图所示,在双伺服飞行模式下,伺服机构58和59提供前/后飞行器俯仰和左/右飞行器摇摆控制,而发动机54和61的差动转矩则提供偏航控制。
[0065] 在本发明的另一实施方案中,用以在飞行中驱动发动机54和61的能量由大容量电池130(例如锂聚合物或锂离子电池或燃料电池)来提供。现在参照图16A和16B,能量模块13具有6个可充电的锂离子电池130,锂离子电池130设置为围绕非转动中空核心管40的六边形形式,并被串联连接以产生约21.6伏特的电势。电池环安装部件131被形成为包括用以容纳非转动中空核心管40的中心孔(环)132以及用以保持电池130的凸缘133。
来自电池模块的能量线45在开口47(参见图7A)处进入非转动中空核心管40,并通过非转动中空核心管40到达发动机速度控制器53和60。
[0066] 如图25A中最清晰地示出的,设置多个能量模块13和14用于在飞行中提供附加的能量容量,多个能量模块13和14示例性地并联连接,以增加可用于发动机54和61的电流。旋翼飞行器1的飞行次数可通过调节飞行中携带的能量模块13和14的数目来调节。 [0067] 额外的锁合环(或者不具有径向臂的环安装部件)135设置在能量模块13和14的上方和下方,以有助于将能量模块13和14耦合于非转动中空核心管40,例如图4所示。由于能量模块13和14各自都比飞行器1的其它组件重,因此锁合环135能避免能量模块
13和14在旋翼飞行器1的紧急着陆期间沿非转动中空核心管40滑动。本发明的一个特征在于旋翼飞行器1适合于由模块制造和组装。转子模块、翼部模块、控制模块、能量模块、助推器模块、电子装置模块以及有效载荷模块被单独制造并滑动安装在核心管40上。用于连接的电子连接器穿过核心管40中的开口46、47,并与核心管40的表面齐平地安装,以有助于为了维护和修理而对飞行器1进行组装和拆卸。
[0068] 能量密度和动力密度是UAV设计中需要考虑的因素,并且能量密度和动力密度可以作为一个整体而应用于飞行器。具有较高的能量密度和动力密度的飞行器比具有较低的能量密度和动力密度的飞行器具有更好的整体性能。通常,能量密度和动力密度被定义为每单位重量可获得的能量和动力的量。例如,燃料或电池(也公知为“特殊能量”)的能量密度对应于(例如以Nm/Kg或ftlbs/slug度量的)燃料或电池的单位度量中所包含的能量的量。
[0069] 化学(液体)燃料往往比电池具有更高的能量密度。与电池电源相比,液体燃料动力的一个附加特征在于,在飞行过程中,以液体作为燃料的飞行器的重量随着燃料的燃烧而降低(60%)。因此,以液体作为燃料的飞行器的能量密度(即,飞行器每单位重量可获得的能量)在其飞行过程中缓慢下降,而动力密度(每单位重量可获得的动力)增大。这就意味着以液体作为燃料的飞行器的性能在飞行接近结束时实际上提高了。 [0070] 相反地,电动飞行器的总的动力密度在整个飞行过程中是不变的,因为电池的最大输出功率是几乎不变的,并且电池不会由于放电而重量减轻。能量密度也会很快降低,因为可获得的总的能量减少了。为了提高本发明的飞行器的能量密度和动力密度,设置了辅助的电子助推器模块或动力模块8,在飞行器的能量供给被耗尽之后,在飞行中可以将辅助的电子推进器模块8丢弃。因而,推进器模块8包括安装在公共轴7附近的附加的电池模块(未示出),以及使推进器模块8保持在旋转机翼飞行器1上的机构。
[0071] 在另一个实施方案中,推进器8包括内燃机(例如未示出的柴油机),所述内燃机驱动发电机(未示出)将化学燃料中所包含的化学能转换成电能。在本发明所预期的其他实施方案中,可以采用蜗轮发电机系统(未示出)来产生电能。对于包含例如燃气发电机的助推器模块8需要考虑的因素在于,在第一飞行阶段结束时可以丢弃所述模块、燃料系统以及发动机的总重量,从而留下相对较轻重量的旋转机翼飞行器1来完成第二飞行阶段。 [0072] 在示意性的实施方案中,助推器模块8包括可折叠的机翼16、17以增大旋转机翼飞行器1在水平飞行模式中的上升高度。如图17所示,为了紧凑的存储,围绕折叠轴140将机翼17折叠。机翼16、17在其“四分之一翼弦”的位置与枢轴(未示出)相连。当为了飞行而配置严格垂直于公共轴7(还参见图2)的枢轴时,机翼16围绕俯仰轴143自由转动,以寻找其自身最佳的攻击角度。由于机翼16、17在飞行中围绕其自身的俯仰轴自由地转动,因此附加物——诸如机翼16、17— —有时被称作“自由机翼”。应当注意,作为自由机翼的机翼16、17可以有效地工作在较宽的速度范围内,因为它们具有自动改变俯仰以满足即将来临的气流的能力。将这种自由机翼用于旋翼UAV是本发明的一个特征。
[0073] 在高速水平飞行时,公共轴7的方向是基本水平的,在水平方向18,其与转子模块3、5一起作为单一的反转推进器来推动旋翼飞行器1。机翼16、17帮助提升下部6和助推器模块8,以使转子模块3、5可以采用更多的动力来促进推进而采用较少的动力来促进垂直上升。
[0074] 还应当注意,本发明的飞行器不需要空气动力学控制表面(例如在机翼16、17上),因为当公共轴7为基本水平时,转子模块3、5的循环控制在飞行器俯仰(上升)方向144和飞行器偏航(航向)方向145为操纵提供了控制动力。高速水平飞行过程中的飞行器类型的摇摆控制(围绕公共轴7)通过转子模块3、5的差动转矩/速度来实现。用于旋翼UAV水平飞行的这种控制方法是示意性实施方案的一个特征。
[0075] 现在参照图18A和18B,当助推器模块8的能量被耗尽时,来自于旋翼飞行器1的机载控制器55的指令启动用于将助推器模块8与旋翼飞行器1分离的诸如插销(未示出)的机构,从而助推器模块8沿着方向19落下。在一种飞行模式下的旋翼飞行器1然后呈现更加垂直的取向,并像直升机那样飞行。
[0076] 在另一实施方案中,助推器模块8包括特定任务的有效载荷147,例如爆炸性军需品、吊放声纳、水听器、射频ID指示器或声纳浮标。如图19所示,一旦与旋翼飞行器1分离,助推器模块8便下落而将通过导线或光缆146与旋翼飞行器1相连的声纳或水听系统147或其他传感器留下,从而使旋翼飞行器1可以将有效载荷147从一个地方移动到另一个地方,将有效载荷147精确地释放到期望地点,并作为有效载荷147与远程接收器(未示出)之间的遥测链路。这可能是例如监测目标或采用远程射频ID标记器或其他标记设备标记海上船只的有效方法。
[0077] 图22图解说明了将包括例如传感器或标记设备(例如不能消除的 涂料或无线发射器)的标记器释放到远程地点的方法,在这种情况下,船位于开放海域157上。飞行器1被示出接近船只S(以框架形式示出),调整以接触船S,将所述标记器留在船S上(以框架形式示出)并退出所述区域(以框架形式示出)。该标记方法是本发明的一个特征,其允许在飞行器1离开局部区域之后对感兴趣的点进行监测。作为一种选择或结合,飞行器1可以在离开所述局部区域时保留例如可以对船S附近的空气进行采样的传感器,并传感器和样本送回远程处理点,以便于质谱仪、生物或放射测量装置或其他的这类装置(未示出)进行进一步分析。尽管在附图中感兴趣的点被示为船S,但是应当理解,船S可以是飞行器1易接近的任何其他的感兴趣的点,例如卡车、飞机、建筑物、塔、输电线或陆地的开放区域。 [0078] 图20A、20B和20C示出了本发明的另一实施方案,所述飞行器包括长度不等的可折叠的同轴的转子叶片148、149,其中上部叶片148的跨距大于下部叶片149的跨距。该特征被设置用来在飞行器紧急降落过程中,当上部叶片148在下部较短的叶片149之前接触底面155时,使得上部叶片148折叠起来而离开下部叶片149或者比下部叶片149更快地折叠起来,从而在高速旋转的同时,降低上部叶片148与下部叶片149彼此接触的可能性。如图中所示,下部叶片149的跨距约为20至22英寸(51cm至56cm)。
[0079] 用于紧凑存储和着陆的折叠能力是本发明的另一特征。如图21A和21B所示,旋翼飞行器1是足够紧凑的,从而可以安装到美国海军所使用的标准A尺寸的声纳浮标管中。本发明的独特的核心管结构不但允许旋翼飞行器1小型化而安装在声纳浮标管内,而且还可采用电荷激励装置(CAD)从例如海军P-3海上监视飞行器的飞行器中吸收发射力。 [0080] 在图21A中所建议的一个实施方案中,设置可丢弃的发射筒150来保护旋翼飞行器1的流线型表面,因为旋翼飞行器1是从在10,000到20,000英尺的高度上以150-250海里/小时的速度飞行的飞机上发射的。连接到筒150的降落伞(未示出)在较低的高度降低并稳定与旋翼飞行器1分离的筒150的下降速度。示意性地示出旋翼飞行器1是 按照比例绘制的,并且旋翼飞行器1具有约24英寸(51cm)的本体长度30、约2.25英寸(5.7cm)的上部直径31、约28英寸(71cm)的上部转子直径32以及约24英寸(61cm)或更小的下部转子直径33。助推器模块8具有约12英寸(30cm)的长度34。第一转子3和第二转子5在悬停中以1400RPM的速度旋转,而在垂直上升和高速调整过程中以大约2000RPM或2000RPM以上的速度旋转。
[0081] 本发明所预期的另一实施方案适合与军需品一起使用,以用于估计军需品所产生的目标破坏。如图23所示,飞行器1适合与军需品一起使用,在图中将所述军需品示意性地示为通过重力投放的炸弹160。炸弹160从例如飞机的发射台落下。在操作中,通过重力投放的炸弹160将飞行器1运输到目标地点附近,于是,飞行器1便被释放,从而离开炸弹160而下降,在炸弹160到达其目标之前,通过采用辅助的阻力降落伞162示意性地使飞行器1减速,或者通过爆炸性的电荷激励设备将飞行器1从炸弹160中喷射。飞行器1然后在碰撞地点附近的目标区域沿着轨道飞行或盘旋,以观察炸弹造成的破坏并将视频信息或其他信息发送给远程的操作员(未示出)。军需品破坏情况估计的这种方法是本公开的一个特征,其提供了直接的战斗破坏情况估计,而无需使发射台留在打击地带,从而在使人员的危险最小的同时,降低了随后打击相同目标的需要。
[0082] 本公开的一个特征在于非旋转的中空的核心管40或十字形杆结构的主干,在某些实施方案中,所述主干作为用于连线和探测的导管可以加倍。描述了将机械元件和电子元件组装到所述核心或主干的方法和系统,以增加采用基本模块套件组装各种UAV的简易性。
[0083] 另一特征在于,本发明的同轴系统的转子20、22中的每一个均由一个或多个独立的发动机驱动,并且所述发动机被设置成位于所述转子的相对侧,通过(穿过所述中空的核心的)电线而不是机械的轴系、离合器以及齿轮,来实现向所述转子传输能量或者在所述发动机之间传输能量。紧凑的转子组装支持转子转动而无需传统的旋转的同轴轴系。 [0084] 再一特征在于,为每个转子提供旋转斜盘控制系统和一个或多个 发动机,并且所述旋转斜盘控制系统和一个或多个发动机被设置成位于每个转子的相对侧,从而简化了驱动和控制转子所需的机械连接和电连接。转子模块被设置用来将转子系统快速并容易地组装到所述中空的核心。多个转子模块和旋转斜盘由容纳于模块中的单组伺服系统来控制。 [0085] 附加的特征在于,可折叠的转子叶片148、149的长度是不等的。在本发明中,可折叠的长度不等的转子叶片148、149利用反转的转子3和5,降低了紧急降落过程中叶片以较高的速度折叠起来时彼此接触的可能性。
[0086] 本公开的另一特征在于一种提高UAV上的能量密度和功率密度的方法,所述UAV可以包括在飞行中可与主体飞行器分离的助推器模块8。助推器模块8被设置用来在第一飞行阶段控制所述UAV。当所述第一飞行阶段结束时,所述助推器模块脱落,从而降低UAV的重量,以便于UAV在第二飞行阶段继续工作。在电动UAV上,所述能量模块可以包括具有或者不具有辅助的提升表面的电池组或者用于特殊任务的特定的有效载荷,当电池的电力被耗尽之后,在飞行中可以将所述电池组丢弃。