一种基于反力矩旋转机构的倒立摆系统转让专利

申请号 : CN201110123423.9

文献号 : CN102237006B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 阮晓钢朱晓庆左国玉侯旭阳王昱峰戴丽珍赵秉辉李亚磊高静欣

申请人 : 北京工业大学

摘要 :

基于反力矩旋转机构的倒立摆系统,包括基座,导轨,滑块直流伺服电机,驱动轮,从动轮,皮带,摆杆支座,连接杆,摆杆,球形关节,飞轮,飞轮驱动电机、飞轮驱动电机角度编码器、传感器盒、控制单元、飞轮转动内圈、阻尼器、飞轮固定外圈,直流伺服电机角度编码器。本倒立摆系统具有前后方向和侧向两个方向自由度,侧向平衡主要使用基于阻尼器技术的产生反力矩辅助以一个惯性飞轮实现,前后方向平衡用滑块沿导轨前后运动实现。本发明系统设计简单可靠,结构清晰明了,为独轮机器人等研究提供实验平台,同时也扩展了已有的倒立摆实验仪功能,在控制领域可用于检验某种理论或方法的正确性。

权利要求 :

1.基于反力矩旋转机构的倒立摆系统,包括基座(1)、导轨(2)、滑块(3)直流伺服电机(4)、驱动轮(5)、从动轮(6)、皮带(7)、摆杆支座(8)、连接杆(9)、摆杆(10)、球形关节(11)、飞轮(12)、飞轮驱动电机(13)、飞轮驱动电机角度编码器(14)、传感器盒(15)、控制单元(16)、飞轮旋转内圈(17)、阻尼器(18)、飞轮固定外圈(19),直流伺服电机角度编码器(20);其特征在于:基座(1)上固定有两条平行的导轨(2),滑块(3)穿过两导轨(2)并可在导轨上运动,直流伺服电机(4)与驱动轮(5)连接,且位于基座(1)一端,从动轮(6)位于基座另一端,皮带(7)绕过驱动轮(5)和从动轮(6)并穿过滑块(3)并与可与皮带同步运动的滑块(3)固定连接;摆杆支座(8)固定在滑块(3)上并与连接杆(9)相连,连接杆(9)与摆杆(10)通过球形关节(11)连接,摆杆(10)上端固定有飞轮驱动电机(13)和飞轮驱动电机角度编码器(14),飞轮驱动电机(13)与飞轮(12)连接,直流伺服电机(4)亦与直流伺服电机角度编码器(20)相连,摆杆(10)上位置安放传感器盒(15),传感器盒(15)内安装有前后方向倾角传感器、前后方向倾斜角速度传感器、左右方向倾角传感器、左右方向倾斜角速度传感器,检测摆杆(10)各个方向的摆动位置;控制单元(16)安放在基座(1)的一端,分别与传感器盒(15)内四个传感器、飞轮驱动电机角度编码器(14)、直流伺服电机角度编码器(20)和直流伺服电机(4)、飞轮驱动电机(13)连接,飞轮旋转内圈(17)嵌在飞轮固定外圈(19)内侧,阻尼器(18)在飞轮旋转内圈(17)和飞轮固定外圈(19)中间;

所述的控制单元(16)为单片机芯片,DSP芯片或ARM芯片,或为微机。

2.根据权利要求1所述的基于反力矩旋转机构的倒立摆系统,其特征在于:用于摆杆(10)与连接杆(9)连接的球形关节具有前后方向和侧向两个方向自由度。

3.根据权利要求1所述的基于反力矩旋转机构的倒立摆系统,其特征在于:所述的阻尼器(18)有两种结构,一种是在飞轮旋转内圈(17)和飞轮固定外圈(19)之间填充粘滞度大的粘滞液体,所述的粘滞液体包括甘油;另一种结构是若干根弹簧对称地连接飞轮旋转内圈(17)和飞轮固定外圈(19),弹簧一端和飞轮旋转内圈(17)相连,另一端和飞轮固定外圈(19)相连。

4.根据权利要求1所述的基于反力矩旋转机构的倒立摆系统,其特征在于:所述的球形关节(11)前后和两侧四个方向挖有四个槽,槽的宽度大于摆杆直径。

说明书 :

一种基于反力矩旋转机构的倒立摆系统

技术领域

[0001] 本发明涉及科学研究或教学的实验系统,尤其涉及一种基于反力矩旋转机构的倒立摆系统,该系统在控制领域用来检验某种理论或方法的正确性与可行性。

背景技术

[0002] 随着控制理论的不断发展,机器人学科也飞速发展,世界上诞生了各种各样的机器人,对于其中占地体积小的两轮机器人和独立机器人尤为引人关注。两轮机器人和独轮机器人本质上都涉及倒立摆平衡问题。由于科研人员对倒立摆系统的研究不断深入,截至2011年5月10日,在国家知识产权局上进行专利检索仅倒立摆的关键词就检索到发明专利
10条,实用新型专利18条,其中多级倒立摆已有4级,但现有的倒立摆系统都是在一个方向控制平衡。控制平衡方法上,多数倒立摆系统通过小车往复运动控制平衡。这些倒立摆系统对两轮机器人的研究是非常有帮助的,因为两轮机器人只涉及一个方向的平衡问题。不过对于独轮机器人要同时涉及两个方向平衡问题,现有的倒立摆系统显然不能满足要求。申请号为201010151221.0的发明专利提出了一种基于飞轮的倒立摆平衡控制系统,该倒立摆系统用一个惯性飞轮控制倒立摆侧向平衡,是一种新的控制倒立摆平衡的方法,给控制侧向平衡提供一种有效的方法。但由于利用惯性飞轮产生反转扭矩反方向拉起倒立摆,为了产生较大的反转扭矩就需要把飞轮的质量做得较大,但这又增加了倒立摆系统的质量,就需要更大的反转扭矩,当参数设置不合理或控制方法不当时,要做到平衡难度较大;而且系统质量的笨重不堪。
[0003] 针对上述存在的问题,本发明提出一种基于反力矩旋转机构的倒立摆系统,本倒立摆系统具有两个方向平衡自由度,更重要的是在侧向平衡技术上使用了阻尼技术,使得系统轻巧灵活。

发明内容

[0004] 本发明提供一种可同时进行两个方向自由度平衡研究的倒立摆实验系统,为独轮机器人等研究提供实验平台,同时也扩展了已有的倒立摆实验仪功能。
[0005] 本发明采用如下技术方案,参照图1,基于反力矩旋转机构的倒立摆系统,包括基座1,导轨2,滑块3直流伺服电机4,驱动轮5,从动轮6,皮带7,摆杆支座8,连接杆9,摆杆10,球形关节11,飞轮12,飞轮驱动电机13,飞轮驱动电机角度编码器14、传感器盒15、控制单元16、飞轮转动内圈17、阻尼器18、飞轮固定外圈19,直流伺服电机角度编码器20。基座
1上固定有两条平行的导轨2,滑块3穿过两导轨2并可在导轨上运动,直流伺服电机4与驱动轮5连接,且位于基座1一端,从动轮6位于基座另一端,皮带7绕过主动轮5和从动轮6并穿过滑块3并与可与皮带同步运动的滑块3固定连接;摆杆支座8固定在滑块3上并与连接杆9相连,连接杆9与摆杆10通过球形关节11连接,摆杆10上端固定有飞轮驱动电机13和飞轮驱动电机角度编码器14,飞轮驱动电机13与飞轮12连接,直流伺服电机
4亦与直流伺服电机角度编码器14相连,摆杆10上位置安放传感器盒15,传感器盒15内安装有前后方向倾角传感器、前后方向倾斜角速度传感器、左右方向倾角传感器、左右方向倾斜角速度传感器,检测摆杆10各个方向的摆动位置;控制单元16安放在基座1的一端,分别与传感器盒15内四个传感器、飞轮驱动电机角度编码器14、直流伺服电机角度编码器
20和直流伺服电机4、飞轮驱动电机13连接,飞轮旋转内圈17嵌在飞轮固定外圈19内侧,阻尼器18在飞轮旋转内圈17和飞轮固定外圈19中间。
[0006] 所述的控制单元16为单片机芯片,DSP芯片或ARM芯片,或为微机。
[0007] 用于摆杆10与连接杆9连接的球形关节具有前后方向和侧向两个方向自由度。
[0008] 所述的阻尼器18有两种结构,一种是在飞轮旋转内圈17和飞轮固定外圈19之间填充粘滞度大的粘滞液体,所述的粘滞液体包括如甘油;另一种结构是若干根弹簧对称地连接飞轮旋转内圈17和飞轮固定外圈19,弹簧一端和飞轮旋转内圈17相连,另一端和飞轮固定外圈19相连。
[0009] 所述的球形关节11前后和两侧四个方向挖有四个槽,槽的宽度略大与摆杆直径。
[0010] 所述的阻尼器18是一种可以产生阻尼作用的装置,可产生阻尼力阻碍物体的运动,且该阻尼力产生的反力矩可以使物体反方向运动,包括粘滞阻尼器,液压阻尼器,电磁阻尼器,弹簧阻尼器。
[0011] 侧向平衡主要使用基于阻尼器技术的产生反力矩辅助以一个惯性飞轮实现;前后方向平衡用滑块沿导轨前后运动实现。利用飞轮转动或倒立摆倾斜使液体、弹簧产生形变或磁通量改变产生阻尼力,从而产生阻力力矩。
[0012] 本发明可以取得如下有益效果:本倒立摆系统具有前后方向和侧向两个方向自由度,侧向平衡主要使用基于阻尼器技术的产生反力矩辅助以一个惯性飞轮实现,前后方向平衡用滑块沿导轨前后运动实现。由于本倒立摆系统采用阻尼技术产生反力矩,惯性飞轮只起到辅助作用,故飞轮质量和体积都可以做得很小,这样使得倒立摆系统十分轻巧灵活。

附图说明

[0013] 图1一种基于反力矩旋转机构的倒立摆系统的结构示意图;
[0014] 图2一种基于反力矩旋转机构的倒立摆系统的控制系统连接示意图;
[0015] 图3一种基于反力矩旋转机构的倒立摆系统的控制系统前后方向运动平衡正向示意图;
[0016] 图4一种基于反力矩旋转机构的倒立摆系统的控制系统左右方向或侧向平衡前视示意图;
[0017] 图5一种基于反力矩旋转机构的倒立摆系统的控制系统粘滞液体阻尼反力矩侧向平衡示前视意图;
[0018] 图6一种基于反力矩旋转机构的倒立摆系统的控制系统弹簧阻尼反力矩侧向平衡示前视意图;
[0019] 图7一种基于反力矩旋转机构的倒立摆系统的控制系统球形关节改造示意图;
[0020] 图中:1基座,2导轨,3滑块,4直流伺服电机,5驱动轮,6从动轮,7皮带,8摆杆支座,9连接杆,10摆杆,11球形关节,12飞轮,13飞轮驱动电机,14飞轮驱动电机角度编码器,15传感器盒,16控制单元,17飞轮转动内圈,18阻尼器,19飞轮固定外圈,20直流伺服电机角度编码器

具体实施方式

[0021] 下面结合附图和具体实施方式对于本发明作进一步的说明。
[0022] 如图1所示,一种基于反力矩旋转机构的倒立摆系统,本发明采用如下技术方案,参照图2,基于反力矩旋转机构的倒立摆系统,包括基座1,导轨2,滑块3直流伺服电机4,驱动轮5,从动轮6,皮带7,摆杆支座8,连接杆9,摆杆10,球形关节11,飞轮12,飞轮驱动电机角度编码器14、传感器盒15、控制单元16、飞轮转动内圈17、阻尼器18、飞轮固定外圈19,直流伺服电机角度编码器20。基座1上固定有两条平行的导轨2,滑块3穿过两导轨2并可在导轨上运动,直流伺服电机4与驱动轮5连接,且位于基座1一端,从动轮6位于基座另一端,皮带7绕过主动轮5和从动轮6并穿过滑块3并与可与皮带同步运动的滑块3固定连接;摆杆支座8固定在滑块3上并与连接杆9相连,连接杆9与摆杆10通过球形关节11连接,摆杆10上端固定有飞轮驱动电机13和飞轮驱动电机角度编码器14,飞轮驱动电机13与飞轮12连接,直流伺服电机4亦与直流伺服电机角度编码器14相连,摆杆10上位置安放传感器盒15,传感器盒15内安装有前后方向倾角传感器、前后方向倾斜角速度传感器、左右方向倾角传感器、左右方向倾斜角速度传感器,检测摆杆10各个方向的摆动位置;控制单元16安放在基座1的一端,分别与传感器盒15内四个传感器、飞轮驱动电机角度编码器14、直流伺服电机角度编码器20和直流伺服电机4、飞轮驱动电机13连接,飞轮旋转内圈17嵌在飞轮固定外圈19内侧,阻尼器18在飞轮旋转内圈17和飞轮固定外圈19中间;
[0023] 所述的控制单元16为单片机芯片,DSP芯片或ARM芯片,或为微机。
[0024] 用于摆杆10与连接杆9连接的球形关节具有前后方向和侧向两个方向自由度。
[0025] 侧向平衡主要使用基于阻尼器技术的产生反力矩辅助以一个惯性飞轮实现;前后方向平衡用滑块沿导轨前后运动实现。所述的阻尼器是一种可以产生阻尼作用的装置,可产生阻尼力阻碍物体的运动,且该阻尼力产生的反力矩可以使物体反方向运动,包括粘滞阻尼器,液压阻尼器,电磁阻尼器,弹簧阻尼器。本实施例中阻尼器18有两种结构,一种是在飞轮旋转内圈17和飞轮固定外圈19之间填充粘滞度大的粘滞液体,所述的粘滞液体包括如甘油;另一种结构是若干根弹簧对称地连接飞轮旋转内圈17和飞轮固定外圈19,弹簧一端和飞轮旋转内圈17相连,另一端和飞轮固定外圈19相连。
[0026] 图2所示为本系统的控制模块示意图,主要由控制单元,传感器,执行机构三部分构成。传感器盒15中的前后方向倾角传感器、前后方向倾斜角速度传感器、左右方向倾角传感器和左右方向倾斜角速度传感器,直流伺服电机角度编码器20,飞轮角度编码器14,直流伺服电机4,飞轮驱动电机13分别与控制单元相连。控制单元负责控制协调整个系统工作,它接收传感器的测量数据并进行运算依据PID控制算法或其他智能算法给出控制量,执行结构接收该控制量并执行。
[0027] 前后方向平衡实现方法如图3所示,前后方向倾角传感器将检测到当前的倾斜角信息送给控制单元,控制单元16依据PID控制算法或其他智能算法控制滑块沿导轨前后方向运动,如当系统球形关节11以上部分构成的整体(简称倒立摆)倒向后方时滑块向后方向运动,倒立摆下端因为跟滑块3连接所以随着滑块3向后运动,但倒立摆上端由于惯性作用位置临时保持不变,这样摆杆就被树立起来了;当倒立摆超调后倒向前方时滑块3再反方向远动,调节倒立摆直立原理同前;当倒立摆完全直立时系统到达一个平衡点于是倒立摆在前后方向上就立起来了;倒立摆前后方向摆动的倾斜角速度信息由前后方向倾斜角速度传感器测量并送给控制单元16,以便于控制单元16更快地将摆杆在前后方向上到达平衡点。
[0028] 左右方向平衡实现方法如图4所示,左右方向倾角传感器将检测到当前的倾斜角信息送给控制单元16,控制单元依据PID控制算法或其他智能算法控制飞轮转动,如当倒立摆倒向左边时,飞轮12逆时针转动,惯性飞轮12逆时针转动会对倒立摆产生一个顺时针方向的力矩,在该力矩左右下倒立摆顺时针摆动,这样倒立摆在左右方向上就被摆动起来了;当倒立摆超调后倒向右方时飞轮12再顺时针方向转动,对倒立摆产生一个逆时针方向力矩使倒立摆调节摆杆直立原理同前;当倒立摆完全直立时系统到达一个平衡点于是倒立摆在前后方向上就立起来了;摆杆前后方向摆动的倾斜角速度信息由前后方向倾斜角速度传感器测量并送给控制单元16,以便于控制单元16更快地将摆杆在前后方向上到达平衡点。
[0029] 为减轻惯性飞轮12的质量将倒立摆做得轻巧,本发明的侧向平衡主要利用阻尼反力矩实现.飞轮的轮子主要由三部分构成:固定外圈,旋转内圈和阻尼器。飞轮旋转内圈17嵌在飞轮固定外圈19内侧,阻尼器18在飞轮旋转内圈17和飞轮固定外圈19中间。本实施例1中的阻尼器使用粘滞液体甘油,实施例2中使用弹簧。
[0030] 使用粘滞液体情况如图5所示,当检测倒立摆右偏时,使用微分观点分析,将液体分层飞轮旋转内圈17顺时针转动将带动内圈附近层的液体顺时针转动,由于液体间的粘滞阻力较大,故外层液体将会对内层液体产生一个逆时针旋转的力,依次类推每一个外层的液体都会对与之相邻的内层产生一个逆时针力矩,最外层的液体受到的逆时针力矩由飞轮固定外圈19产生。宏观表现是粘滞液体在内圈带动下顺时针转动,在液体间粘滞阻力作用下,液体对倒立摆产生一个逆时针旋转的力矩,使倒立摆逆时针转动,回到平衡位置。同理可对倒立摆左偏进行分析。调节阻尼系数大小,可改变倒立摆平衡时的超调量,调节时间和响应速度。
[0031] 使用弹簧时请参照图6,若干根弹簧对称地连接飞轮旋转内圈17和飞轮固定外圈19,弹簧一端和飞轮旋转内圈17相连,另一端和飞轮固定外圈19相连,图中仅画出其中一条用于解释实施方式,当倒立摆平衡时,弹簧处于松弛状态不产生弹力,当倒立摆右偏时,飞轮旋转内圈17右转,弹簧被拉伸产生形变,于是对飞轮旋转内圈17产生一个逆时针方向的力,这样就使得倒立摆逆时针转动,回到平衡位置。同理可对倒立摆左偏进行分析。调节阻尼系数大小,可改变倒立摆平衡时的超调量,调节时间和响应速度。
[0032] 由于采用球形关节,所以倒立摆可倒下的方向较多,但无论向哪个方向倒,该方向都可以通过分解,分别分解至前后方向和左右方向。为了降低控制难度本发明设计球形关节亦可替换成如图6所示装置,在球形关节的前后和两侧四个方向挖有四个槽,槽的宽度略大与摆杆直径,这样就限制了摆杆倒下的方向,降低控制难度。
[0033] 最后要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案;因此尽管本说明书参照上述实施例已经进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离发明精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围当中。