可重新定位的腔内支撑结构及其应用转让专利

申请号 : CN200980136513.2

文献号 : CN102245129B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 詹妮弗·K·怀特

申请人 : 詹妮弗·K·怀特

摘要 :

一种腔内支撑结构(10),包括由回转接头(15)互相连接而形成一系列相连结的剪式机构的支杆件(11)。该结构可被远程致动以通过在一运动范围内调节剪式接头而压缩或扩展其形状。特别地,该支撑结构可在身体内腔中被重新定位或从内腔取回。可采用该支撑结构将人工瓣膜(100)引入和支撑在身体内腔中。

权利要求 :

1.一种生物相容的支撑装置,包括:

多个支杆件,所述多个支杆件包括:

分离的长形的内支杆件;和

分离的长形的外支杆件,

其中所述长形的外支杆件由多个回转接头与所述多个长形的内支杆件互相连结,并且其中所述多个支杆件形成包括压缩取向和扩展取向的成形结构;

其中,每个长形的内支杆件与所述多个支杆件中的三个外支杆件互相连结且没有长形的内支杆件与其它长形的内支杆件互相连结;并且其中,每个长形的外支杆件与所述多个支杆件中的三个内支杆件互相连结且没有长形的外支杆件与其它长形的外支杆件互相连结。

2.根据权利要求1的装置,其特征在于,还包括致动机构以在一运动范围内驱使所述回转接头。

3.根据权利要求1的装置,其特征在于,回转接头与长形的内支杆件和长形的外支杆件形成剪式机构。

4.根据权利要求3的装置,其特征在于,所述长形的内支杆件和所述长形的外支杆件被布置为一系列相连结的剪式机构。

5.根据权利要求1的装置,其特征在于,还包括联接到所述成形结构的人工瓣膜。

6.根据权利要求5的装置,其特征在于,所述人工瓣膜包括:联接到所述多个支杆件的第一结构件;

可相对于所述第一结构件转动的第二结构件;和

多个柔性的瓣膜件,所述瓣膜件将所述第一结构件与所述第二结构件连接,以使得所述第二结构件相对于所述第一结构件的转动在打开状态和闭合状态之间驱使所述瓣膜件。

7.根据权利要求6的装置,其特征在于,所述第二结构件的转动响应于生物流体的自然流动。

8.根据权利要求5的装置,其特征在于,所述人工瓣膜包括在两个支杆件的相交处具有连合部的多个柔性的瓣膜叶片。

9.根据权利要求8的装置,其特征在于,所述人工瓣膜包括联接到所述支杆件的筒罩材料。

10.根据权利要求1的装置,其特征在于,所述成形结构为筒形、锥形或沙漏形中的一种。

11.根据权利要求1的装置,其特征在于,在每个回转接头,所述长形的内支杆件比所述长形的外支杆件离所述装置的中心轴线更近。

12.一种医用支架,包括:

多个支杆件,其包括长形的内支杆件和长形的外支杆件;和回转接头,所述回转接头连接所述长形的内支杆件与所述长形的外支杆件,以使得:每个长形的内支杆件包括与所述多个支杆件中的三个外支杆件的回转接头;

没有长形的内支杆件包括与其它长形的内支杆件的回转接头;

每个长形的外支杆件包括与所述多个支杆件中的三个内支杆件的回转接头;并且没有长形的外支杆件包括与其它长形的外支杆件的回转接头。

13.根据权利要求12的支架,其特征在于,所述回转接头与所述长形的内支杆件和所述长形的外支杆件形成剪式机构。

14.根据权利要求13的支架,其特征在于,至少一个回转接头平分长形的内支杆件和长形的外支杆件。

15.根据权利要求13的支架,其特征在于,所述多个支杆件被布置为一系列相连结的剪式机构。

16.根据权利要求12的支架,其特征在于,至少一个回转接头将长形的内支杆件的第一端与长形的外支杆件的第一端互相连接。

17.根据权利要求12的支架,其特征在于,还包括调节机构而施加力以绕所述回转接头在一运动范围内驱使所述多个支杆件。

18.根据权利要求12的支架,其特征在于,所述长形的内支杆件和外支杆件是非直线形的。

19.根据权利要求12的支架,其特征在于,还包括联接到所述多个支杆件的人工瓣膜。

20.根据权利要求19的支架,其特征在于,所述人工瓣膜包括:联接到所述多个支杆件的第一结构件;

可相对于所述第一结构件转动的第二结构件;和

多个柔性的瓣膜件,所述瓣膜件将所述第一结构件与所述第二结构件连接,以使得所述第二结构件相对于所述第一结构件的转动在打开状态和闭合状态之间驱使所述瓣膜件。

21.根据权利要求20的支架,其特征在于,所述第二结构件的转动响应于生物流体的自然流动。

22.根据权利要求19的支架,其特征在于,所述人工瓣膜包括在两个支杆件的相交处具有连合部的多个柔性的瓣膜叶片。

23.根据权利要求22的支架,其特征在于,所述人工瓣膜包括联接到所述多个支杆件的筒罩材料。

24.根据权利要求12的支架,其特征在于,所述多个支杆件被设置成形成筒形、锥形或沙漏形中的一种。

25.根据权利要求17的支架,其特征在于,所述调节机构是螺旋机构。

26.根据权利要求25的支架,其特征在于,所述螺旋机构永久地附接于所述多个支杆件。

27.根据权利要求12的支架,其特征在于,所述支架联接到导管。

28.根据权利要求12的支架,其特征在于,在长形的外支杆件和长形的内支杆件之间的每个回转接头,当所述支架呈最大扩展取向时,所述长形的内支杆件比所述长形的外支杆件离所述支架的中心轴线更近。

29.一种制造可植入在生物内腔中的支撑装置的方法,包括:用多个回转接头将多个支杆件互相连结,其中所述多个支杆件包括长形的内支杆件和长形的外支杆件,使得每个长形的内支杆件与所述多个支杆件中的三个外支杆件互相连结且没有长形的内支杆件与其它长形的内支杆件互相连结,并且每个长形的外支杆件与所述多个支杆件中的三个内支杆件互相连结且没有长形的外支杆件与其它长形的外支杆件互相连结,以使得所述回转接头与所述多个支杆件协作以在压缩取向和扩展取向之间可调节地限定一成形结构。

30.根据权利要求29的方法,其特征在于,还包括联接致动机构以在一运动范围内驱使所述回转接头。

31.根据权利要求29的方法,其特征在于,还包括将人工瓣膜联接到所述成形结构。

32.根据权利要求31的方法,其特征在于,所述人工瓣膜包括:联接到所述支杆件的第一结构件;

可相对于所述第一结构件转动的第二结构件;和

多个柔性的瓣膜件,所述瓣膜件将所述第一结构件与所述第二结构件连接,以使得所述第二结构件相对于所述第一结构件的转动在打开状态和闭合状态之间驱使所述瓣膜件。

说明书 :

可重新定位的腔内支撑结构及其应用

[0001] 相关申请
[0002] 本申请要求由Jennifer K.White于2008年7月21日提交且题为“Prosthetic Valve with Rotating Leaflets and Retrievable Support”的 美 国 临 时 申 请No.61/082,489的权益。上述申请的全部教导并入于此作为参考。

背景技术

[0003] 腔内支架可被植入患者的脉管或管、道内以帮助维持打开的内腔。支架也可被用作支撑假体修复装置或输送治疗剂的框架。支架可通过开放式手术或封闭式手术来植入。当可以选择时,通常优选创伤性较小的封闭式手术,因为支架可经身体内腔如股动脉被引导到其期望位置。封闭式手术通常使用两种技术之一。
[0004] 一种封闭式手术采用囊袋导管插入术,其中可扩展的支架包围可充填的囊袋。在该手术中,通过对囊袋进行充填来植入支架,囊袋的充填致使支架扩展。支架的实际定位直到囊袋放泄之后才能被确定,并且如果错放了支架,则无法逆转该过程来重新定位支架。
[0005] 另一种封闭式手术采用由可移除的壳套包封的压缩支架。在该手术中,由形状记忆合金如镍钛诺制成的支架被壳套保持为压缩状态。通过撤回壳套来植入支架,从而使支架扩展至其名义形状。同样,如果支架错放,则无法逆转该过程来重新定位支架。
[0006] 当支架被用于支撑心脏瓣膜时定位差错是特别危险的。由于使用可获得的支架安装的瓣膜将瓣膜错误定位在体内的植入部位,已发生过严重的并发症和患者死亡。瓣膜的错误定位导致大的瓣周漏、装置移动和冠状动脉梗塞。这些并发症大部分是无法避免的,而是在手术时被发现。然而,由于不能将装置重新定位或取回,所以不可能在手术期间逆转或缓解这些问题。

发明内容

[0007] 根据本发明的特定实施例的腔内支撑结构或支架解决了在现有技术中发现的特定缺陷。特别地,该支撑结构可在身体内腔内被重新定位或从内腔取回。
[0008] 本发明的一个特定实施例包括一种可植入在生物内腔中的支撑装置。该支撑装置可包括由多个回转接头互相连结的多个长形的支杆件,其中回转接头可与支架件协作配合以在压缩取向和扩展取向之间可调节地限定一成形结构。
[0009] 更具体地,该成形结构可为筒形、锥形或沙漏形中的一种。回转接头可与第一支杆件和第二支杆件形成剪式机构。此外,支杆件可被布置为一系列相连结的剪式机构。该装置还可包括致动机构以在一运动范围内驱使回转接头。
[0010] 该装置还可包括联接到成形结构的人工瓣膜。
[0011] 本发明的另一特定实施例可包括一种可植入在生物内腔中的医用支架。该医用支架可包括多个长形的支杆件--其包括第一支杆件和第二支杆件,以及连接第一支杆件和第二支杆件的回转接头。
[0012] 特别地,回转接头可与第一支杆件和第二支杆件形成剪式机构。回转接头可平分第一支杆件和第二支杆件。回转接头可将第一支杆件的第一端与第二支杆件的第一端互相连接。
[0013] 所述多个支杆件可被布置为一系列相连结的剪式机构。支杆件也可以是非直线形的。支杆件可被设置为形成筒形、锥形或沙漏形中的一种。
[0014] 该支架还可包括调节机构而施加力以绕回转接头在一运动范围内驱使支杆件。
[0015] 该支架可包括联接到支杆件的人工瓣膜。
[0016] 本发明的特定实施例可包括可转动的或常规的人工瓣膜。
[0017] 可转动的人工瓣膜可包括联接到支杆件的第一结构件、可相对于第一结构件转动的第二结构件和多个柔性的瓣膜件,所述瓣膜件将第一结构件与第二结构件连接,以使得第二结构件相对于第一结构件的转动可在打开状态和闭合状态之间驱使瓣膜件。特别地,第二结构件的转动可响应于生物流体的自然流动。
[0018] 常规的人工瓣膜可包括多个柔性的瓣膜叶片(瓣叶),所述瓣膜叶片在两个支杆件的相交处具有连合部(commissure)。该人工瓣膜还可包括联接到支杆件的筒罩材料。
[0019] 根据本发明实施例的支撑结构的一个特定优点在于其能够使得人工瓣膜易于被取回并在体内重新定位。如果在展开之后瓣膜被错误定位或被认为其功能失常,则该支撑结构允许瓣膜易于在新的植入部位被重新定位或重新展开,或者完全从身体移除。此装置的该特征可通过能够实现对体内的错误定位装置的修复而防止严重的并发症和拯救生命。

附图说明

[0020] 从下面对如附图中所示的本发明的具体实施例的更具体的描述将清楚看到本发明的上述及其它目的、特征和优点,在附图中,各不同视图中相似的附图标记表示相同的部分。附图不一定成比例,而是着重于示出本发明的原理。
[0021] 图1是一特定的腔内支撑结构的透视图。
[0022] 图2是图1的支架的四个支杆区段的透视图。
[0023] 图3是图1的被压缩的支撑结构的透视图。
[0024] 图4是处于完全扩展状态的图1的支撑结构的透视图。
[0025] 图5是具有一特定致动机构的图2的支撑结构的透视图。
[0026] 图6是具有另一特定致动机构的图2的支撑结构的透视图。
[0027] 图7是可与图5和6的致动机构结合使用的一特定的支撑结构和控制导管组件的透视图。
[0028] 图8是一特定的转动式人工瓣膜组件的透视图。
[0029] 图9是图8的瓣膜组件正在闭合时的透视图。
[0030] 图10是图8的瓣膜组件完全闭合时的透视图。
[0031] 图11是与图1的支撑结构结合的图8-10的瓣膜的透视图。
[0032] 图12是处于打开位置的图11的瓣膜的透视图。
[0033] 图13是安装在图1的支撑结构上的传统组织瓣膜的透视图。
[0034] 图14是具有完整内筒罩的图13的瓣膜结构的透视图。
[0035] 图15是具有完整外筒罩的图13的瓣膜结构的透视图。
[0036] 图16是处于锥形支撑结构构型的支杆件布置的透视图。
[0037] 图17是沙漏形支撑结构构型的透视图。

具体实施方式

[0038] 本发明的具体实施例包括腔内支撑结构(支架)和人工瓣膜。
[0039] 图1是一特定的腔内支撑结构的透视图。如图所示,支撑结构10是包括由多个回转接头15互相连接的多个纵向支杆件11的医用支架。特别地,回转接头15允许互相连接的支杆件11相对于彼此转动。如图所示,有十八个支杆11。
[0040] 支杆件11由刚性或半刚性的生物相容性材料制成,例如塑料或其它聚合物和金属合金,包括不锈钢、钽、钛、镍-钛合金(例如镍钛诺)和钴-铬合金(例如,ELGILOY)。各支杆的尺寸可根据其期望用途来选择。在一个特定实施例中,各支杆件由厚0.005-0.020英寸的不锈钢制成。更特别地,各支杆为厚0.010英寸的300系列不锈钢。虽然所有支杆
11都被示出为具有均匀的厚度,但支杆的厚度可跨一支杆变化,例如厚度沿支杆的长度逐渐增大或减小。此外,在同一支撑结构中各单个支杆在厚度上可与其它各单个支杆不同。
[0041] 如图所示,各支杆件11呈棒状并具有前表面11f和后表面11b。然而,支杆件也可具有不同的几何形状。例如,代替均匀的宽度,支杆的宽度可沿其长度变化。此外,在同一支撑结构中一单个支杆可具有与另一个支杆不同的宽度。类似地,在同一支撑结构中支杆长度可各不相同。可基于植入部位选择具体的尺寸。
[0042] 此外,支杆可为非扁平结构。特别地,支杆可包括曲率,例如与支架结构的内径相关地呈凹入或凸出的方式。支杆也可扭转。支杆的非扁平或扁平可以是构成它们的材料的特性。例如,支杆可对各种状态期间的支杆呈现形状记忆或热响应性的形状变化。这些状态可由处于压缩或扩展构型的支架来限定。
[0043] 此外,支杆件11可具有平滑或粗糙的表面纹理。特别地,麻面可为支杆提供抗拉强度。另外,粗糙度或麻点可提供额外的摩擦以帮助将支撑结构固定在植入部位,并通过组织生长促进支撑结构10的不规则包封以随着时间推移将支撑结构10进一步稳定在植入部位。
[0044] 在特定情况下,支架可包括这样的支杆,它们是彼此堆叠的多个部件。在同一支架内,一些支杆可包括以多层构型彼此堆叠的长形部件,而其它支杆可以是由单一厚度部件构成的单层。在单个支杆内,可存在部件单层和多层分层的区域。
[0045] 各支杆件11还包括沿支杆件11的长度隔开的多个孔口13。在前表面11f上,孔口为沉孔17以接纳紧固件的头部。在一特定实施例中,有十三个沿各支杆件11的长度等距隔开的孔口13,但也可使用更多或更少的孔口。孔口13被示出为沿着支杆件11具有均匀的直径和均匀的间距,但这都不是必须的。
[0046] 支杆件11被设置为四杆联动装置链。支杆件11由延伸穿过对准的孔口13的可回转的枢轴紧固件25如铆钉互相连接。应当理解,可采用其它可回转的紧固件25,例如螺钉、螺栓、球窝结构、钉子或孔眼,并且紧固件可一体地形成在支杆11中,例如与缺口或孔口互相作用的平头半球,或插入-承插式联接器。除了接纳紧固件之外,孔口13还提供用于组织生长的附加路径以随着时间推移稳定并包封支撑结构10。
[0047] 图2是图1的支架的四个支杆区段的透视图。如图所示,两个外支杆件11-1、11-3与两个内支杆件11-2、11-4交迭,而它们的后表面彼此连通。
[0048] 特别地,第一支杆件11-1利用铆钉25-1通过中间回转接头15-1可回转地连接到第二支杆件11-2,铆钉25-1利用平分支杆件11-1、11-2的孔口13。类似地,第三支杆件11-3利用铆钉25-7通过中间回转接头15-7可回转地连接以平分第四支杆件11-4。应当理解,中间回转接头15-1、15-7用作剪式联动装置或机构中的剪式接头。如图所示,所得到的剪臂具有相等的长度。还应当理解,中间接头15-1、15-7无需平分相接合的支杆件,而是可利用与支杆件的纵向中心偏离的孔口13,从而形成不相等的剪臂长度。
[0049] 除了中间剪式接头15-1之外,第一支杆件11-1通过位于支杆件11-1、11-3的远端附近的远端锚固回转接头15-5可回转地连接到第三支杆件11-3。类似地,第一支杆件11-1通过位于支杆件11-1、11-4的近端附近的近端锚固回转接头15-3可回转地连接到第四支杆件11-4。为了减小锚固铆钉25-3、25-5上的应力,支杆11的远端和近端可弯曲或扭曲以提供相接合的支杆之间的齐平界面。
[0050] 如可以看到的那样,通过将一串链的剪式机构连结在一起而制成支撑结构10(图1)。然后卷绕该链以使链中的最后一个剪式机构与第一剪式机构接合。通过致动联动装置,链节可被打开或闭合,这使得支架10扩展或压缩(图1)。
[0051] 返回图1,利用回转接头15,支架的直径可被压缩以便经生物内腔如动脉插入到选定位置。然后可使支架扩展以将支架固定在内腔内的选定位置。此外,在扩展之后,支架可被重新压缩以便从身体移除或在内腔内重新定位。
[0052] 图3是图1的经压缩的支撑结构的透视图。当被压缩时,支架10处于其最大长度和最小直径。最大长度由支杆件的长度限制,其在一特定实施例中为15mm。最小直径由支杆件的宽度限制,其在一特定实施例中为0.052英寸。
[0053] 图4是处于完全扩展状态的图1的支撑结构的透视图。如图所示,完全扩展的支撑结构10形成一环,该环可被用作瓣膜成形环。
[0054] 特别地,如果支架周边的一端连接在组织上,则支架的压缩将能够拉紧(cinch)组织。由于支架能够进行渐增且可逆的压缩或扩展,所以该装置可用于提供对组织的个体化的拉紧以增强心脏瓣膜的能力。这可用于治疗二尖瓣病症,例如二尖瓣回流或二尖瓣脱垂。
[0055] 虽然支撑结构10可在开放式手术期间植入患者体内,但封闭式手术常常会更希望。这样,支撑结构10可包括致动机构以允许外科医生从远离植入部位的位置扩展或压缩支撑结构。由于卷绕成筒体的剪式联动装置(图1)的特性,致动机构可做功以通过增大相邻剪式接头之间的距离或减小锚固接头之间的距离来扩大支架直径。
[0056] 图5是具有特定致动机构的图2的支撑结构的透视图。如图所示,致动机构30包括安设在支撑结构10(图1)的内侧的双头螺纹杆32。然而,应当理解,致动机构30可改为安设在支撑结构10的外侧。不论是安设在内侧还是外侧,致动机构30都以相同的方式操作。
[0057] 该杆包括位于其近端的右旋螺纹34R和位于其远端的左旋螺纹34L。杆32利用一对带螺纹的薄断面(窄轮廓,low-profile)支撑安装件35-3、35-5安装在锚固点15-3、15-5。杆32的各端终止于用于接纳六角螺丝刀(未示出)的六角头37-3、37-5。如应当理解的那样,使杆32沿一个方向转动将驱使锚固点25-3、25-5向外以压缩联动装置,而使杆
32沿相反方向转动将驱使锚固点25-3、25-5向内以扩展联动装置。
[0058] 图6是具有另一特定致动机构的图2的支撑结构的透视图。如图所示,致动机构30’包括安设在支撑结构10(图1)的内侧的单头螺纹杆32’。杆32’在其一端包括螺纹
34’。杆32’利用一对支撑安装件35’-3、35’-5--其中之一带有螺纹以与杆螺纹34’匹配--安装在薄断面锚固点15-3、15-5。杆32’的未带螺纹端包括抵靠支撑安装件35’-5以压缩支撑结构的保持止挡39’。杆32’的各端终止于用于接纳六角螺丝刀(未示出)的六角头37’-3、37’-5。同样,使杆32’沿一个方向转动将驱使锚固点25-3、25-5向外以压缩联动装置,而使杆32’沿相反方向转动将驱使锚固点25-3、25-5向内以扩展联动装置。
[0059] 此外,由于支杆交迭,所以可加入棘齿机构以在一个支杆相对于另一个支杆滑动期间利用。例如,该支架可由于作为各个支杆的一体部分的特征的相互作用而锁定于递增的各直径处。此类特征的一个例子是一个支杆表面上的插入式部件(例如突起),其在两个支杆滑过彼此时与相邻支杆表面的表面上的承插式部件(例如孔)匹配。此类结构可被制成为具有一取向,使得它们在支架扩展时将支架递增地锁定在扩展构型。可利用通常的囊袋或本申请中描述的其它致动机构来扩展这种支架。
[0060] 由于图5和图6的支撑结构10意图在封闭式外科手术期间植入,所以致动机构由外科医生远程控制。在通常的手术中,使用被栓系的(tethered)腔内导管经身体内腔如股动脉植入支撑结构10。这样,可经由导管控制致动机构30。
[0061] 图7是可与图5和图6的致动机构结合使用的特定的支撑结构和控制导管组件的透视图。控制导管40的尺寸被设定成连同支撑结构一起经生物内腔如人体动脉插入。如图所示,控制导管40包括柔性的驱动线缆42,线缆42在其远端具有驱动器44,该驱动器与致动机构的六角头37、37’(图5和图6)可拆分地配合。线缆42的近端包括六角头46。在操作中,外科医生使用拇指轮或其它适当的操纵器(未示出)使线缆42的近端六角头46转动。六角头46的转动由线缆42传递至驱动器头44而转动致动杆30、30’(图5和图6)。
[0062] 线缆42由柔性的外壳套48包住。外壳套48的远端包括成形为与支撑结构10接合的唇缘或突出部49。当线缆42被转动时,外壳套唇缘49与支撑结构10互相作用以抵消所产生的转矩。
[0063] 通过采用螺纹,杆自锁以将支撑结构维持在期望的直径。在一特定实施例中,杆32、32’具有1.0mm的直径和240圈/英寸的螺纹数。虽然描述了螺纹杆和驱动机构,但可根据具体的外科手术应用采用其它技术来致动联动装置。例如,致动机构可布置在支杆件的厚度内,而不是支架的内侧或外侧。例如,如本领域中所公知,可采用蜗轮或齿条和小齿轮机构。本领域的技术人员应当认识到其它的腔内致动技术。在其它情况下,支撑结构可在开放式手术期间植入,这可能不需要外部致动机构。
[0064] 虽然所述的支撑结构有其它用途,例如药物输送,但一特定实施例支撑人工瓣膜。特别地,该支撑结构与例如用于主动脉瓣膜置换的人工瓣膜结合使用。
[0065] 图8是一特定的转动式人工瓣膜组件的透视图。人工瓣膜100包括示为处于打开位置的三叶片构型。叶片由生物相容性材料得到,例如动物心包(例如牛、猪、马)、人心包、经化学处理的心包、经戊二醛处理的心包、组织工程材料、用于组织工程材料的托架(scaffold)、自体心包、尸体心包、镍钛诺、聚合物、塑料、PTFE或本领域中已知的任何其它材料。
[0066] 叶片101a、101b、101c连接到固定不动的筒状部件105和非固定的筒状部件107。各叶片101的一侧连接到非固定的筒状部件107。各叶片101的相对侧连接到固定不动的筒状部件105。各叶片101的连接部处在与筒状部件105、107的纵向轴线大致垂直的方向上。在此实施例中,各叶片101是柔性的,形状大致为矩形,并且在其与固定部件105和非固定部件107的连接部之间具有180度的扭转。各叶片101具有内边缘102和外边缘103,图中标示出了一个叶片101c的边缘102c、103c。如本领域中所公知,叶片可由生物材料或非生物材料或这两者的组合制成。
[0067] 一种致动瓣膜使之闭合的方式是利用由正常血流施加的力或心动周期的压力变化。更具体地,心脏沿图8所示的箭头的方向经完全打开的瓣膜喷射血液。此后不久,远侧或下游的血液压力开始跨瓣膜相对于近侧压力升高,从而在瓣膜上形成背压。
[0068] 图9是图8的瓣膜组件正在闭合时的透视图。沿着箭头方向的背压使得叶片101和非固定部件107朝固定不动的筒状部件105轴向移位。随着叶片101相对于纵向轴线从竖直平面移至水平平面,净逆时针转矩力施加到非固定部件107和叶片101上。转矩力在叶片101上施加向心力。
[0069] 图10是图8的瓣膜组件在完全闭合时的透视图。如图所示,瓣膜100的完全闭合发生在叶片101移位至瓣膜中心且非固定的筒状部件107抵靠在固定部件105上时。
[0070] 瓣膜100打开的作用可通过观察瓣膜闭合步骤的反转来理解,即按照从图10至图8的图序。
[0071] 在考虑瓣膜100作为主动脉瓣膜置换物的情况下,其将如图10所示保持闭合,直到心脏进入收缩。在心脏收缩期间,随着心肌强制收缩,施加在瓣膜的近侧(最靠近心脏的一侧)上的血液压力大于闭合的瓣膜的远侧(下游)上的压力。该压力梯度致使叶片101和非固定的筒状部件107沿轴向平面移离固定部件105。瓣膜100短暂地呈现图9所示的半闭合过渡状态。
[0072] 随着叶片101沿轴向平面从水平取向伸长至竖直取向,净转矩力施加在叶片101和非固定的筒状部件107上。由于瓣膜100打开,所以与闭合相反,为打开瓣膜而施加的转矩力与为闭合瓣膜而施加的转矩力相反。假定为图9所示的实施例的构型,则打开瓣膜的转矩力将为顺时针方向。
[0073] 转矩力致使叶片101与非固定部件107一起绕瓣膜100的纵向轴线转动。这又在各叶片101上施加离心力。叶片101进行离开中心的径向移位,有效地打开瓣膜并允许血液沿图8中的箭头所示的方向离开心脏流动。
[0074] 总之,瓣膜通过连结三个力而被动地起到提供单向血液流动的作用。轴向、转矩和径向力以相继和可逆的方式转换,同时对先前运动的方向性进行编码。首先,血液流的轴向力及压力使得叶片101和非固定部件107相对于固定部件105沿轴向平面移位。这被转换成叶片101和非固定部件107上的转动力。转矩力又使叶片101沿径向平面朝向或离开瓣膜中心移位,这闭合或打开瓣膜100。瓣膜100根据由心动周期首先施加给瓣膜的轴向力的方向而被动地采取打开或闭合路径。
[0075] 在体内,固定不动的筒状部件105可在植入部位被保持和固定就位,而非固定部件107和叶片101的远端能沿轴向平面自由移位。在使用该人工瓣膜作为主动脉瓣膜置换物时,固定部件105将被紧固在主动脉根中。随着来自心脏的血液压力或流量增大,瓣膜100从其闭合构型变为打开构型,而血液经瓣膜100喷射。
[0076] 图8-10的转动式瓣膜连同其它实施例的具体优点在以上并入的原临时专利申请中进行了描述。
[0077] 图11是与图1的支撑结构结合的图8-10的瓣膜的透视图。如在闭合位置所示,瓣膜的固定部件105连接在支撑结构10上。瓣膜的非固定部件107未连接在支撑结构10上。这使得非固定部件107在瓣膜打开或闭合期间能够与叶片101一起沿轴向平面移位。在该特定实施例中,如图所示,瓣膜100占据更靠近支撑结构10一端的位置。
[0078] 图12是处于打开位置的图11的瓣膜的透视图。如上所述,非固定部件107未连接在支撑结构10上,并由此能与叶片101一起沿轴向平面自由移位。在该特定实施例中,在完全打开期间,非固定部件107和叶片101保持在支撑结构10的界限内。
[0079] 带支架的瓣膜110可如上所述在封闭式手术期间被植入。然而,由于非固定部件在支架的体部之内的操作,使支架压缩和扩展的致动机构将不会布置在支架之内。
[0080] 带支架的瓣膜110的其它实施例、瓣膜在体内的定位和用于植入的手术在以上并入的原临时专利申请中进行了描述。此外,组织瓣膜可盖在支撑结构上。别的实施例对于本领域的技术人员来说应当是显而易见的。
[0081] 图13是安装在图1的支撑结构上的传统组织瓣膜的透视图。如图所示,带支架的瓣膜120包括连接在例如上述的支撑结构10上的人工组织瓣膜121。
[0082] 组织瓣膜121包括三个柔性的半圆形叶片121a、121b、121c,它们可由如参照图8所述的生物相容性材料得到。相邻的叶片成对地连接到支撑结构10上的连合部123x、
123y、123z。特别地,连合部123x、123y、123z与支撑结构10上的隔开的远端锚固点13x、
13y、13z对应。在18个支杆的支架中,连合部在每个第三远端锚固点经由相应的紧固件25连接到结构10上。
[0083] 叶片的侧边从连合部连接到相邻的斜对(diagonal)支杆。即,第一叶片121a的侧边分别缝合在支杆11-Xa和11-Za上;第二叶片121b的侧边分别缝合在支杆11-Xb和11-Yb上;第三叶片121c的侧边分别缝合在支杆11-Yc和11-Zc上。这些缝合部终止于斜对支杆上的剪式枢转点处。
[0084] 在所示的构型中,相邻的支杆11以在支架的端部形成多个拱128的方式互相连接。通过将相邻的叶片连接在限定出适当的拱128x、128y、128z的各支杆上而形成用于叶片连接的支柱或连合部。在所示的构型中,有三个叶片121a、121b、121c,它们的每一个沿着其相对的边界中的两个连接到支杆上。连合部由支架中的三个等距的拱128x、128y、128z形成。
[0085] 一支杆相对于其相邻支杆的成角度的取向使得叶片121a、121b、121c能够以三角形构型连接到支架上。该三角形构型模拟了原生主动脉叶片的成角度的连接。在原生瓣膜中,这在叶片之间形成已知为叶片间三角(inter-leaflet trigone)的解剖学结构。由于解剖学上的叶片间三角被认为向人体内的原生主动脉叶片提供结构完整性和耐久性,所以在人工瓣膜中模拟该结构是有利的。
[0086] 一种将叶片连接在支杆上的方法是将叶片夹在多层支杆之间。然后通过缝线将所述多层保持在一起。将叶片夹在支杆之间有助于分散叶片上的力并防止缝线经叶片撕开。
[0087] 各叶片121a、121b、121c的其余侧边如由叶片接缝所示地跨中间的支杆件被环状地缝合。支杆之间的其余开放空间被生物相容的筒罩125遮盖,以帮助使瓣膜靠在植入部位上密封并由此限制瓣周漏。如图所示,筒罩125被成形为覆盖支架在瓣膜叶片下方和之间的那些部分。
[0088] 更具体地,位于瓣膜基底的筒罩125是与支架壁对齐的材料薄层。筒罩材料可以是心包组织、聚酯、PTFE或其它材料或适合于接纳生长的组织的材料的组合,包括经化学处理的材料,以促进组织生长或抑制感染。筒罩层起到减少或消除瓣膜周围的泄漏或“瓣周漏”的作用。为此,存在许多将筒罩材料层连接到支架上的方式,包括:
[0089] ●筒罩层可位于支架的内侧或外侧;
[0090] ●筒罩层可占据支架的下部;
[0091] ●筒罩层可占据支架的下部和上部;
[0092] ●筒罩层可仅占据支架的上部;
[0093] ●筒罩层可占据限定连合支柱的支杆之间的区域;
[0094] ●筒罩层可与叶片材料连续;
[0095] ●筒罩层可缝合于支杆或多个部位;或者
[0096] ●筒罩层可固定在支架的下部,并且在于体内展开期间被向上拉或推以覆盖支架的外侧。
[0097] 以上所列不必构成限制,因为本领域的技术人员可认识到针对具体应用的替换遮盖技术。
[0098] 图14是具有完整内筒罩的图13的瓣膜结构的透视图。带支架的瓣膜120’包括人工组织瓣膜121’,其具有连接在支撑结构10上的三个叶片121a’、121b’、121c’。筒罩层125’覆盖支架10的内表面。这样,瓣膜叶片121a’、121b’、121c’被缝合在筒罩层125’上。
[0099] 图15是具有完整外筒罩的图13的瓣膜结构的透视图。带支架的瓣膜120”包括人工组织瓣膜121”,其具有连接在支撑结构10上的三个叶片121a”、121b”、121c”,例如图13中所示的。筒罩层125”覆盖支架10的外表面。
[0100] 组织瓣膜结构120、120’、120”也可如上所述在封闭式手术期间植入。然而,压缩和扩展支架的致动机构将被连接成避开连合点并限制对筒罩层125、125’、125”的损害,例如通过将致动机构安装在支架10的外表面上。
[0101] 虽然上述实施例以具有直线形支杆和等长剪臂的支撑结构为特征,但也可采用其它几何形状。所得到的形状将不同于筒状并且在特定应用中可具有更好的性能。
[0102] 图16是支杆件以锥形支撑结构构型布置的透视图。在锥形结构10’中,除了中间剪式枢转接头未平分支杆以外,支杆件11如图2所示地布置。特别地,中间剪式枢转接头(例如15’-1、15’-7)将相接合的支杆件(例如11’-1、11’-2和11’-3、11’-4)分成5/12和7/12长度的不等部段。当完全组装好时,所得到的支撑结构由此在扩展时呈锥形。为了说明的目的,支架10’被示出为带有单头螺纹致动杆32’(图6),但它对于该支架实施例来说不是必要的元件。
[0103] 也可通过对包括支架10’的各单个支杆件11施加凸的或凹的曲率而使支架10’在其扩展构型下呈锥形。这可利用具有记忆性的材料如形状记忆或温度敏感镍钛诺来实现。
[0104] 瓣膜可被定向在锥形支架10’内,使得瓣膜的基底处在锥形支架的较窄部分中,而瓣膜的非基底部分处在锥体的较宽部分中。或者,瓣膜的基底可位于支架的最宽部分中,而瓣膜的非基底部分处在支架的次宽部分中。
[0105] 锥形支架10’在体内的取向可朝向或离开血液流。在其它身体内腔(例如,呼吸道或胃肠道)内,支架可关于轴向平面定向为任意方向。
[0106] 图17是沙漏形支撑结构构型的透视图。在该构型中,中间枢转点15”-1、15”-7、15”-9(腰部)周围的周长小于在支架10”的任一端的周长。如图所示,与前面的实施例相比,沙漏形支撑结构10”是通过将支杆件11”的数量减小到六个并缩短支杆件11”而实现的。由于缩短,每个支杆件11”存在更少的孔口13”。由于支杆件和几何形状,各支杆件
11”在沿着三个纵向平面的点19”包括扭曲部。扭曲部提供相接合的支杆15”-3之间的齐平接合。
[0107] 也可通过在各单个杆11”中施加凹的或凸的曲率来实现沙漏支架构型。该曲率可为材料(例如,形状记忆或热敏镍钛诺)的特性。该曲率可在压缩支架状态下不存在而在支架处于其扩展状态时出现。
[0108] 应当注意,上述支撑结构中的任一者在支架两端的任一端可延伸超过锚固接头。通过以端对端链接方式联接一系列支架,可形成附加的支架长度和几何形状。特别地,可通过使两个锥形支架在它们的窄端接合来实现沙漏形支架。也可通过如图14所示偏心地组装中间剪式枢转接头而改变沙漏形状。
[0109] 本发明的特定实施例较现有技术而言提供了明显的优点,包括它们的结构和应用。虽然下面归纳了某些优点,但该归纳不一定是完整的罗列,因为还存在另外的优点。
[0110] 该装置允许使用者能留意在经皮心脏瓣膜植入期间可能发生的严重并发症。由于装置在植入体内期间可取回且可重新定位,所以外科医生可避免由于瓣膜在植入期间的错误定位或移动而引起的严重并发症。这些并发症的例子包括冠状动脉梗塞、大瓣周漏或心律失常。
[0111] 该装置还可由于装置的窄插入断面而减少脉管接近并发症。该装置的断面薄,部分是由于其独特的几何形状,这允许支架中相邻的支杆在支架压缩期间交迭。装置的薄断面通过消除囊袋或壳套的必要性而得以进一步增强。装置的窄断面提供了拓宽患者体内的脉管接近路线选择的优点。例如,该装置能够实现经患者腿部的动脉--该患者先前已穿过胸腔壁进行了更具创伤性的开路--输送人工瓣膜。该装置因此旨在减少与在脉管接近通路不佳的患者体内使用大断面装置有关的并发症。
[0112] 所述组织瓣膜实施例可通过允许将叶片连接在柔性的连合支柱上而提供改善的耐久性。柔性支柱允许分散由心动周期施加在叶片上的应力和应变。多层支杆的应用能够使叶片被夹在支杆之间,这增强了叶片连接并防止了缝线撕开。所述瓣膜还采用了理想的叶片形态,这进一步减小了叶片上的应力和应变。即,叶片成角度地连接在支架上类似于原生的人体主动脉瓣膜的叶片间三角样式。这些特性显著改善了经皮心脏瓣膜置换疗法的寿命。
[0113] 该装置可缓解或消除由于支架的逐渐扩展或压缩而引起的心律失常并发症。支架可采用用于展开的螺旋机构,其使得支架能够在所有半径自锁或解锁。这能够实现更加受控的展开和在各个患者体内进行个体化的装置扩展或压缩的可能性。由于装置的扩展或压缩在手术期间的任何阶段都是可逆的,所以外科医生可容易地逆转装置的扩展以减轻心律失常。此外,如果在植入期间检测到心律失常,则可重新定位该装置以进一步消除问题。
[0114] 该装置可由于装置能够被精确定位及在必要时重新定位而减少或消除瓣周漏。这可大大减少瓣周漏的发生和严重性。
[0115] 该装置消除了与囊袋有关的并发症。螺旋展开机构利用了螺旋件的机械增益。这提供了支架的强力扩大。由支架的剪式联动装置中支杆的枢转形成的杠杆臂将进一步的扩展力传递到支架。支架无需囊袋即可扩展。此外,装置被强力扩大的能力减少或消除了在患者体内进行植入手术期间对囊袋预膨胀或囊袋后膨胀的需求。
[0116] 该装置由于支架在压缩和扩展位置间的高度差小而在体内具有更易预测和精确的定位。这种“缩减式省略”有助于外科医生将装置定位在体内的期望位置。在体内重新定位该装置的能力进一步提供了在各个个体内定位该装置的能力。
[0117] 除了机械增益之,该装置能够通过以创伤更小的手段进行瓣膜置换而使更广大的患者群体得到治疗。例如,该装置能够为不能进行开胸外科手术瓣膜置换的具有共病现象的患者提供治疗选择。该装置采用窄断面的能力还能为由于脉管接近通路不佳(例如曲折、钙化或小的动脉)而先前无法治疗的患者提供治疗选择。瓣膜的耐久性应当将创伤性更小的手术的应用扩展至其它方面健康的患者群体,否则他们要进行开胸外科手术瓣膜置换。该装置被强力扩展或采用沙漏形或锥形的能力潜在地将该装置的应用扩展至对被诊断患有主动脉瓣闭锁不全及主动脉瓣狭窄的患者的治疗。
[0118] 该装置也可通过提供“瓣膜套瓣膜”手术而为具有先前植入的退化假体的患者提供创伤性更小的治疗。该装置可精确地定位在失效的瓣膜内而不必移除患者的退化假体。其将通过提供功能性瓣膜置换而不存在“重做”操作及其相关风险而帮助患者。
[0119] 虽然已参照具体实施例特别地示出和描述了本发明,但本领域的技术人员应当理解,在不脱离由所附权利要求涵盖的本发明的范围的情况下,可对所述实施例作出各种形式和细节上的改变。