催化剂辅助化学气相生长装置转让专利

申请号 : CN200880132278.7

文献号 : CN102245803B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 大园修司桥本征典浅利伸

申请人 : 株式会社爱发科

摘要 :

本发明提供一种有助于延长丝状催化剂使用寿命的催化剂辅助化学气相生长装置。对催化剂辅助化学气相生长装置(1),在钽丝表面形成其硼化物层而制成丝状催化剂(6),由于金属钽的硼化物(硼化钽)硬度比金属钽的高,所以将表面形成有其硼化物层的钽丝用作丝状催化剂时,可降低丝状催化剂的受热伸长量,从而提高其机械强度,进而有助于延长其使用寿命。另外,因通过连续通电而对丝状催化剂(6)进行通电加热,因而更有助于延长丝状催化剂(6)的使用寿命。

权利要求 :

1.一种催化剂辅助化学气相生长装置,其特征在于,具有:反应室;

在上述反应室的内部设置有基板支承机构,由该基板支承机构来支承被处理基板;

气体导入源,由其向上述反应室内导入含有形成薄膜所需元素的原料气体;

丝状催化剂,在钽丝表面形成硼化钽层而制成该丝状催化剂,该丝状催化剂与设置在上述反应室内的上述被处理基板面对设置;

加热源,由其使上述丝状催化剂加热,以将因催化反应或热分解反应而产生的上述原料气体的分解物沉积在上述被处理基板上,在向上述反应室内导入上述原料气体之前使上述硼化钽层形成于上述钽丝表面。

2.根据权利要求1所述的催化剂辅助化学气相生长装置,其特征在于,还具有控制机构,上述加热源对上述丝状催化剂进行通电加热,该控制机构控制上述加热源使其连续通电。

说明书 :

催化剂辅助化学气相生长装置

技术领域

[0001] 本发明涉及一种催化剂辅助化学气相生长装置,所述催化剂辅助化学气相生长装置是通过向设置在反应室内并被加热的丝状催化剂提供原料气体,并使产生的分解物沉积在上述反应室内的被成膜加工的基材上实现成膜的装置。

背景技术

[0002] 催化剂辅助化学气相生长法(CAT-CVD:catalytic-Chemical Vapor Deposition)是如下一种成膜加工方法:向例如被加热到1500~2000℃的丝状催化剂提供反应气体,利用反应气体的催化反应或者热分解反应使产生的分解物(沉积物)沉积在被成膜加工的基材上。
[0003] 催化剂辅助化学气相生长法,是将反应气体的分解物沉积在基材上而进行成膜加工,这一点类似于等离子CVD法。但由于催化剂辅助化学气相生长法是,利用在高温丝状催化剂上的反应气体的催化反应或热分解反应而产生分解物,所以与产生等离子由其使反应气体产生分解物的等离子CVD法相比,前者具有以下优点:不存在因等离子产生的表面损伤,而且原料气体的利用率也较高。
[0004] 在形成硅(Si)系薄膜时使用催化剂辅助化学气相生长法。现有技术的催化剂辅助化学气相生长法中广泛使用钨(W)丝作为丝状催化剂(例如参照专利文献1)。但是钨和硅易于产生合金化反应(硅化现象)。当钨产生硅化现象时,会在表面产生裂纹而降低其机械强度,因此会缩短丝状催化剂的使用寿命。
[0005] 作为比钨的硅化速度慢的材料具有钽(Ta)。在现有技术中有使用由钽丝制成丝状催化剂的硅薄膜形成方法(例如参照专利文献2)。
[0006] 【专利文献1】日本发明专利公开公报特开2003-303780号
[0007] 【专利文献2】日本发明专利公开公报特开2003-247062号
[0008] 但钽比钨的机械强度低,尤其在高温环境中使用时其蠕变强度低。因此,将金属钽用作丝状催化剂时存在以下问题:被加热时会受热而伸长,从而线径会变小,其阻抗增大而出现温度上升,因此易于熔断。这无助于提高生产效率。
[0009] 另外,在专利文献2中公开有在钽丝表面涂覆有氮化硼(BN)的丝状催化剂,但是利用氮化硼涂层也不能较好地延长丝状催化剂的使用寿命,所以人们期待着对其进一步进行改进。

发明内容

[0010] 鉴于上述技术问题,本发明的目的是提供一种有助于延长丝状催化剂使用寿命的催化剂辅助化学气相生长装置。
[0011] 为了实现上述目的,本发明一个实施方式所述的催化剂辅助化学气相生长装置具有反应室、气体导入源、丝状催化剂、加热源。
[0012] 从上述气体导入源向上述反应室导入原料气体。
[0013] 在钽丝表面形成其硼化物层而制成上述丝状催化剂,该丝状催化剂与设置在上述反应室内的被处理基板面对设置。
[0014] 由上述加热源加热上述丝状催化剂。

具体实施方式

[0015] 本发明一个实施方式所述的催化剂辅助化学气相生长装置具有反应室、气体导入源、丝状催化剂、加热源。
[0016] 从上述气体导入源向上述反应室导入原料气体。
[0017] 在钽丝表面形成其硼化物层而制成上述丝状催化剂,该丝状催化剂与设置在上述反应室内的被处理基板面对设置。
[0018] 由上述加热源加热上述丝状催化剂。
[0019] 采用上述结构时,由于金属钽的硼化物(硼化钽)的硬度比金属钽的高,所以利用表面形成有其硼化物层的钽丝作为丝状催化剂时,可以降低丝状催化剂的受热伸长量,提高其机械强度,从而有助于延长其使用寿命。另外,采用上述结构时,与在钽丝表面涂覆氮化硼或碳的结构相比,前者有助于延长丝状催化剂的使用寿命。
[0020] 作为在钽丝表面形成其硼化物层的方法,其为:在反应室内设置钽丝,一边向反应室内导入乙硼烷(B2H6)气体一边对钽丝通电加热。对硼化物层的膜厚没有特殊限定,可根据钽丝加热温度、乙硼烷气体浓度、反应时间等适当调整。
[0021] 上述催化剂辅助化学气相生长装置还可具有控制机构,由该控制机构通过连续通电而使上述加热源对上述丝状催化剂进行通电加热。
[0022] 采用上述结构时,将表面形成有其硼化物层的钽丝用作丝状催化剂,对其进行通电加热而进行成膜加工。此时,由于设置有控制机构,以通过连续通电而对丝状催化剂进行通电加热,从而可在成膜加工过程中对丝状催化剂连续进行通电加热,所以,本发明能缓和对丝状催化剂的热冲击,从而能遏制硼化物层产生裂纹,进而有助于延长丝状催化剂的使用寿命。
[0023] 下面参照附图说明本发明的实施方式。
[0024] 图1是表示本发明实施方式所述的催化剂辅助化学气相生长装置的大致结构图。催化剂辅助化学气相生长装置1具有真空室3,所述真空室3的内部形成有反应室2。真空泵4与真空室3相连接,由该真空泵4排出反应室2内的气体以使其具有规定数值的真空度。反应室2形成于设置在真空室3的内部的防附着板5的内侧。
[0025] 在被防附着板5包围的反应室2的内部,设置有多条丝状催化剂6。该丝状催化剂6由钽(Ta)丝构成。在本实施方式中,多条丝状催化剂6以沿上下方向横穿反应室2的内部且相互平行的方式设置。另外,丝状催化剂6的设置方式并不局限于上述纵向方向,也能以沿横向方向横穿反应室2的方式设置。
[0026] 各丝状催化剂6以贯穿形成于防附着板5的顶面和底面的通孔5a、5b的方式设置,两端部与设置于真空室3的外部的控制部8(控制机构)相连接。控制部8包含对丝状催化剂6进行通电加热的加热源。通过控制部8的控制使丝状催化剂6连续通电而进行通电加热,该控制部8由对电流供应源和供应电流进行调整的计算机等构成。
[0027] 在反应室2的内部设置有作为被成膜加工的基材的基板S。基板S例如使用矩形玻璃基板。在本实施方式中,如图2所示,两张基板S隔着丝状催化剂6而面对设置。这里,基板S设置在反应室2的内部,其长边方向与丝状催化剂6的延伸方向垂直相交。另外,基板S由未图示的基板支承机构支承。所述基板支承机构采用内置有加热源的结构,由该加热源将基板S加热到规定数值的温度。
[0028] 防附着板5大致呈长方形形状,其四边部分别设置有气体导入管7。由气体导入管7将原料气体或乙硼烷(B2H6)气体导入反应室2中,气体导入管7经气体供应管道与设置于真空室3的外部原料气体供应部9a和乙硼烷气体供应部9b相连接。从气体导入管7中喷出的原料气体或者乙硼烷气体主要被导入两张基板S之间。另外,由原料气体供应部9a和乙硼烷气体供应部9b构成气体导入源。
[0029] 催化剂辅助化学气相生长装置1具有上述结构。接下来说明使用该催化剂辅助化学气相生长装置1的本实施方式中的催化剂辅助化学气相生长法。
[0030] 首先使真空泵4工作以排出真空室3的内部的气体并使其呈真空状态,此时可使反应室2内减压至规定数值的真空度(例如1Pa)。接着一边从乙硼烷气体供应部9b向反应室2内导入乙硼烷气体一边由控制部8向各丝状催化剂6通电而将其加热到规定数值的温度(例如1700℃)以上。此时,由于乙硼烷气体与丝状催化剂6的表面接触而在该丝状催化剂6的表面形成作为反应生成物的硼化钽层。
[0031] 如上所述,由于表面形成有其硼化物层的钽丝的硬度比金属钽的高,将表面形成有其硼化物层的钽丝用作丝状催化剂时,可降低丝状催化剂6的受热伸长量,从而提高其机械强度,进而有助于延长其使用寿命。另外,对硼化物层的膜厚没有特殊限定,可根据钽丝加热温度、乙硼烷气体浓度、反应时间等适当调整。
[0032] 另外,在该钽丝表面形成其硼化物层的工序,可以在真空室3的内部设置了基板S之后进行,也可以在设置基板S之前进行。还有,对无法设置乙硼烷气体供应管道的真空室,也可以将已经预先形成有硼化物层的硼化钽丝状催化剂移至其中。
[0033] 接下来,在停止导入乙硼烷气体之后,再从原料气体供应部9a向反应室2内导入原料气体。在本实施方式中,作为原料气体,采用硅烷(SiH4)和氢气(H2)的混合气体,从而在基板S的表面形成硅(Si)薄膜。另外,形成在基板S的表面的薄膜也可以为:由硅烷、氢气、氨气(NH3)形成的氮化硅(SiN)薄膜;由三甲基硅烷基胺((SiH3)3N)、氨气、氢气形成的氮化硅薄膜;由六甲基二硅烷((CH3)3SiNHSi(CH3)3、简称HMDS)形成的氮化硅薄膜;由硅烷、氢气、氧气(O2)或一氧化二氮(N2O)形成的一氧化硅(SiO)薄膜;由硅烷、正硅酸乙酯(Si(OC2H5)4、简称TEOS)形成的一氧化硅薄膜;由硅烷、氢气、磷化氢(PH3)或乙硼烷形成的掺磷硅薄膜(n+Si薄膜)或掺硼硅薄膜(p+Si薄膜);由硅烷、氢气、乙炔或甲烷形成的碳化硅薄膜;由硅烷、氢气、锗烷形成的锗化硅薄膜;由六氟环氧丙烷(简称HFPO)形成的聚四氟乙烯(注册商标:特氟龙)薄膜。另外,当使用氢气进行加氢处理时,可以实现去除硅薄膜中的缺陷和自然氧化膜的目的。还有,使用氨气进行氮化处理时有助于使硅氮化。
[0034] 具体地讲,在基板S的成膜工序中,由控制部8对丝状催化剂6加载直流电压并将丝状催化剂6加热到例如1700℃以上的高温。另外,此时将基板S加热到规定数值的温度(例如300℃左右)。原料气体从气体导入管7导入互相面对设置的两张基板S之间。之后与被加热到高温状态的丝状催化剂6接触,因催化反应或热分解反应而产生的反应气体的分解物沉积在基板S上而形成薄膜。
[0035] 这里,通过加载电流的通/断操作而对丝状催化剂6进行通电加热时,由于作用于丝状催化剂6的热冲击(因加热而伸长或因解除加热而缩短)变大,所以在丝状催化剂6的表面易于产生裂纹,因而其机械强度会降低。对此,在本实施方式中对基板S进行成膜加工时,由控制部8一边对丝状催化剂6进行通电加热一边控制该丝状催化剂6的加热温度,由此来降低作用于丝状催化剂6的热冲击。
[0036] 作为由控制部8实现的对丝状催化剂所进行的通电控制方法,除连续控制电流量而将丝状催化剂6加热到规定数值的温度并维持的方法之外,还可列举分多个步骤使丝状催化剂6升温降温(类似于逐级增减光强)的方法。采用这些方法时,可遏制形成于丝状催化剂6的表面上的硼化物层产生裂纹,因而有助于提高其机械强度。
[0037] 如上所述,采用本实施方式时,将表面形成有其硼化物层的钽丝用作丝状催化剂6,可降低丝状催化剂6的受热伸长量,由此提高其机械强度和延长其使用寿命,同时还有助于提高生产效率。另外,由于丝状催化剂以钽为主要材料而构成,所以能够遏制其与原料气体之间的合金化反应(硅化现象),从而能平稳地进行成膜加工。
[0038] 另外,当采用本实施方式时,在成膜加工过程中对丝状催化剂6连续进行通电加热,所以,本发明能缓和对丝状催化剂的热冲击,从而能遏制硼化物层产生裂纹,进而有助于延长丝状催化剂的使用寿命。图3中(A)、(B)是表示表面上形成有硼化物层的丝状催化剂的侧面SEM(电子扫描显微镜)照片。其中,图3中(A)表示断续(通过通/断操作)进行通电加热时的例子,其中明显显示有产生了表面裂纹。另外,图3中(B)表示连续进行通电加热时的例子,其未产生表面裂纹。
[0039] 【第二实施方式】
[0040] 下面说明本发明第二实施方式中的催化剂辅助化学气相生长法。
[0041] 在反应室2的内部设置有基板S和作为丝状催化剂6的钽丝。然后使真空泵4工作以排出真空室3的内部的气体并使其呈真空状态,此时可使反应室2内减压至规定数值的真空度(例如1Pa)。接着一边从原料气体供应部9a和乙硼烷气体供应部9b经气体导入管7向反应室2内导入原料气体和乙硼烷气体,一边由控制部8对各丝状催化剂6通电而将其加热到规定数值的温度(例如1700℃)以上。
[0042] 被导入反应室2的乙硼烷气体与丝状催化剂6接触并分解,由此在丝状催化剂6的表面形成硼化物(硼化钽)层。因此可硬化丝状催化剂6的表面并降低其受热伸长量,从而可以提高其机械强度,进而有助于延长其使用寿命。
[0043] 另外,被导入反应室2的原料气体与丝状催化剂6接触并分解,其反应生成物(分解物)沉积在基板S的表面上。因此可在基板S的表面形成硅薄膜。另外,作为原料气体的分解物的硅的蒸汽压力比硼(B)的低,所以,在1Pa的真空环境和1700℃以上的高温状态下,其不会附着在丝状催化剂6上,即使附着也会立即蒸发。因此在丝状催化剂6的表面不会沉积硅薄膜,不会给形成于丝状催化剂6的表面的硼化物层带来任何影响。
[0044] 另外,在本实施方式中,也由控制部8对丝状催化剂6连续进行通电加热。因此,可在丝状催化剂6上形成硼化物层的工序和成膜工序中遏制丝状催化剂6产生表层裂纹,从而能提高丝状催化剂6的机械强度和耐久性,进而有助于提高生产效率。
[0045] 当采用本实施方式时,也能获得同于上述实施方式的技术效果。尤其是采用本实施方式时,由于在进行丝状催化剂表面的硼化物层形成工序的同时实施基板S的硅薄膜成膜工序,所以,本实施方式更有助于提高生产效率。
[0046] 【实施例】
[0047] 用结构不同的三种丝状催化剂进行了硅(Si)薄膜成膜实验并评价了各丝状催化剂的耐久性。其结果表示在图4中。图中的纵轴为显示器输出值(电压值),横轴为累计膜厚。即,图4中表示丝状催化剂的伸长量和时间的关系。
[0048] 实验用到加工成日文片假名“コ”字形且直径为1mm、长度为3000mm的以下三种丝状催化剂。即:由金属钽丝(纯度为99.5%)构成的Ta丝状催化剂(样本1);对上述钽丝表面进行硼化处理而得的B-Ta丝状催化剂(样本2);用氮化硼涂覆上述钽丝表面而得的BN-Ta丝状催化剂(样本3)。作为丝状催化剂的通电方法,对样本1进行断续通电(ON-OFF通电),对样本2进行连续通电和断续通电,对样本3进行连续通电。
[0049] 样本2的初始硼化条件如下。
[0050] 【初始硼化条件】
[0051] 乙硼烷(B2H6)气体流量:160sccm
[0052] 加载电力:3kW(显示器电流值:约30A)
[0053] 压力:2Pa
[0054] 成膜实验条件如下。
[0055] 【成膜实验条件】
[0056] 单硅烷(SiH4)气体流量:32sccm
[0057] 氢气(H2)气体流量:16sccm
[0058] 加载电力:3kW(显示器电流值:约30A)
[0059] 压力:2Pa
[0060] 如图4所示,样本1(Ta丝状催化剂)从形成薄膜开始出现急剧伸长以至于产生断裂,其伸长量超过20%。
[0061] 相对于此,与样本1相比,样本2(B-Ta丝状催化剂)的耐久性得到大幅提高。尤其对其连续通电时,从形成薄膜开始几乎没有产生变形。但对其断续通电时,从形成薄膜开始逐渐伸长以至于最终产生断裂。其原因可能是当电流ON-OFF时受热冲击影响而在表面产生了裂纹。虽然其断裂时的伸长量超过了10%,但与样本1相比,耐久性提高了5倍以上。
[0062] 接下来,对于样本3(BN-Ta丝状催化剂),其从形成薄膜开始逐渐伸长以至于最终产生断裂。虽然其断裂时的伸长量超过了10%,但与样本1相比,耐久性提高了近3倍。但是与断续通电时的样本2相比,其耐久性较差。其与断续通电时的样本2的伸长变动情况出现的不同,可能是相比于样本2的表面硬度较低的缘故。
[0063] 以上结果表明,与纯钽丝(样本1)和表面形成有氮化硼的钽丝(样本3)相比,在钽丝表面形成有硼化物层的丝状催化剂(样本2)的耐久性得以大幅提高。另外,从以上结果得知,对丝状催化剂连续通电而进行通电加热时能遏制表层裂纹的产生,从而这有助于延长丝状催化剂的使用寿命。
[0064] 以上说明了本发明的实施方式,当然本发明并不局限于上述实施方式,可根据本发明的技术思路对其进行各种变型。
[0065] 例如在上述实施方式中,作为原料气体而使用了硅烷以及氢气的混合气体,但是原料气体并不局限于此,可根据成膜材料的种类适当改变。
[0066] 另外,在上述实施方式中,举例说明了反应室2具有以下结构:其内部以相互面对的方式设置有两张基板S,沿着纵向方向在这两张基板S之间设置有多条丝状催化剂6。但是,反应室2的结构并不局限于上述例子。
[0067] 还有,可用本发明所述的催化剂辅助化学气相生长装置形成太阳能电池的P型层、N型层。
[0068] 作为一个例子,太阳能电池按以下方法制造:首先,采用溅射法或热CVD法在玻璃、铝等基板上形成由Mo薄膜等构成的金属电极薄膜,再分别形成P型层(例如CuInSe2薄膜)、N型层(例如CdS薄膜),其上再形成由ZnO等构成的透明电极薄膜。可用上述装置形成该例子中的作为P型层的CuInSe2薄膜、作为N型层的CdS薄膜。

附图说明

[0069] 图1是表示本发明实施方式所述的催化剂辅助化学气相生长装置的大致结构图。
[0070] 图2是表示图1中所示装置的反应室的大致情况的立体图。
[0071] 图3是表示设置在反应室内的丝状催化剂表面状态的侧面图(SEM:电子扫描显微镜)照片,图3中(A)表示产生了表面裂纹的状态,图3中(B)表示未产生表面裂纹的状态。
[0072] 图4是表示用来说明本发明实施例中各种丝状催化剂样本的耐久性的图。
[0073] 【附图标记说明】
[0074] 1,催化剂辅助化学气相生长装置;2,反应室;3,真空室;4,真空泵;5,防附着板;6,丝状催化剂;7,气体导入管;8,控制部;9a,原料气体供应部;9b,乙硼烷气体供应部