少动鞘氨醇单胞菌的crtZ基因、crtG基因及其应用转让专利

申请号 : CN201110183602.1

文献号 : CN102286495B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吴雪昌朱亮李欧

申请人 : 浙江大学

摘要 :

本发明提供了一种少动鞘氨醇单胞菌(Sphingomonas sp.)的β-胡萝卜素羟化酶基因(crtZ)和2,2′-β羟化酶基因(crtG)的DNA序列和该两种酶缺失的重组菌株、2,2′-β羟化酶缺失的重组菌株及其这两株菌株的应用。所述crtZ基因具有SEQ ID NO.1所示的核苷酸序列;crtG)基因具有SEQ ID NO.2所示的核苷酸序列。本发明提供的少动鞘氨醇单胞菌β-胡萝卜素羟化酶基因和2,2′-β羟化酶基因的DNA序列为少动鞘氨醇单胞菌类胡萝卜素生物合成途径进行遗传改造奠定基础。另外,本发明通过基因敲除的方法构建的少动鞘氨醇单胞菌重组菌株与野生型菌株相比,结冷胶产量基本不变,可以在发酵产结冷胶的同时联产β-胡萝卜素或玉米黄质。同时,该菌株还可以应用于进一步的基因敲除或代谢工程改造。

权利要求 :

1.少动鞘氨醇单胞菌(Sphingomonas sp.)的β-胡萝卜素羟化酶基因,核苷酸序列如SEQ ID NO.1所示。

2.少动鞘氨醇单胞菌(Sphingomonas sp.)的2,2′-β羟化酶基因,核苷酸序列如SEQ ID NO.2所示。

3.一种β-胡萝卜素羟化酶基因和2,2′-β羟化酶基因缺失的重组鞘氨醇单胞菌,由少动鞘氨醇单胞菌经基因敲除去除SEQ ID NO.1所示的β-胡萝卜素羟化酶基因和SEQ ID NO.2所示的2,2′-β羟化酶基因获得。

4.如权利要求3所述的重组鞘氨醇单胞菌,其特征在于所述基因敲除借助SEQ ID NO.3和SEQ ID NO.4所示的核苷酸片段进行。

5.一种2,2′-β羟化酶基因缺失的重组鞘氨醇单胞菌,由少动鞘氨醇单胞菌经基因敲除去除SEQ ID NO.2所示的2,2′-β羟化酶基因获得。

6.如权利要求5所述的重组鞘氨醇单胞菌,其特征在于所述基因敲除借助SEQ ID NO.4所示的核苷酸片段进行。

7.如权利要求3所述的重组鞘氨醇单胞菌在微生物发酵制备结冷胶和β-胡萝卜素中的应用。

8.如权利要求5所述的重组鞘氨醇单胞菌在微生物发酵制备结冷胶和玉米黄质中的应用。

说明书 :

少动鞘氨醇单胞菌的crtZ基因、crtG基因及其应用

(一)技术领域

[0001] 本发明涉及动鞘氨醇单胞菌的β-胡萝卜素羟化酶基因(crtZ)和2,2′-β羟化酶基因(crtG)、基因敲除的重组菌株及应用。(二)背景技术
[0002] 结冷胶是由少动鞘氨醇单胞菌产生的新型微生物胞外多糖。与同类产品相比,结冷胶具有很多优越性能,如用量少;形成的凝胶透明度高;凝固点、熔点、弹性等可调;耐酸、耐碱、耐高温;良好的水溶性、呈味性、保湿性等。其诸多优良特性决定了其广阔的市场前景。目前,结冷胶已被用作乳化剂、悬浮剂、增稠剂、稳定剂、凝胶剂、缓释剂、成膜材料等广泛应用于食品和医药行业。此外,结冷胶还可与其他食品胶复配使用,以满足食品最佳的感官、质构和稳定性要求。结冷胶应用前景广阔,然而较高的生产成本限制了其进一步地推广应用。
[0003] 少动鞘氨醇单胞菌是具单极鞭毛的革兰氏阴性菌,其在发酵产结冷胶的同时产生黄色类胡萝卜素-念珠藻黄素。类胡萝卜素合成途径已被广泛研究并取得了巨大进展,大量关键酶基因得到克隆。所有的类胡萝卜素均通过类异戊二烯化合物或萜类化合物途径合成。IPP(异戊烯焦磷酸)是合成途径的前体物质。IPP在IPP异构酶作用下生成DMAPP(二甲基丙烯基二磷酸),然后再与3个IPP分子缩合生成GGPP(牻牛儿基牻牛儿基焦磷酸)。2分子GGPP在八氢番茄红素合成酶作用下形成第一个无色的类胡萝卜素-八氢番茄红素。八氢番茄红素经过连续的脱氢步骤生成番茄红素。番茄红素在不同环化酶的作用下分别生成α-胡萝卜素、β-胡萝卜素,并在羟化酶、酮化酶的作用下引入酮基和(或)羟基。β-胡萝卜素在β-胡萝卜素羟化酶的作用下生成玉米黄质,进而在2,2′-β羟化酶的作用下生成念珠藻黄素。
[0004] β-胡萝卜素是维生素A的前体,具有清除自由基、抗氧化和抑制肿瘤形成的生理作用。目前,其主要用作食品添加剂、调色剂、营养增补剂和化妆品助剂。另外β-胡萝卜素还作为药物、治疗红细胞生成性原卟啉症、维生素缺乏症以及抑制肿瘤形成的抗癌药物。人体自身无法合成β-胡萝卜素,需要从外界补充。作为功能性天然色素,β-胡萝卜素在食品、保健品、化妆品和医药等方面的应用日趋广泛,需求量越来越大,市场前景广阔。
[0005] 玉米黄质(3,3′-二羟基β-胡萝卜素)是β-胡萝卜素的衍生物,具有淬灭单线态氧、清除自由基等抗氧化活性。流行病学研究显示,玉米黄质在视觉保护、降低患癌症、心血管疾病和增强免疫功能等方面具有独特的生理功效。目前,玉米黄质作为天然着色剂、抗氧化剂已被应用于食品、保健品、化妆品、医药及饲料等行业。
[0006] 目前尚未有少动鞘氨醇单胞菌β-胡萝卜素羟化酶基因和2,2′-β羟化酶基因序列以及利用基因敲除技术在少动鞘氨醇单胞菌中敲除该两种基因从而结冷胶发酵联产所需类胡萝卜素的报道。(三)发明内容
[0007] 本发明的目的是提供少动鞘氨醇单胞菌的β-胡萝卜素羟化酶基因、2,2′-β羟化酶基因的DNA序列和两种酶都缺失的重组菌株、2,2′-β羟化酶缺失的重组菌株及其这两株菌株的应用。
[0008] 本发明采用的技术方案是:
[0009] 少动鞘氨醇单胞菌(Sphingomonas sp.)的β-胡萝卜素羟化酶基因(crtZ),核苷酸序列如SEQ ID NO.1所示。该序列长度为501bp,编码一个由166个氨基酸组成的蛋白质。
[0010] 少动鞘氨醇单胞菌(Sphingomonas sp.)的2,2′-β羟化酶基因(crtG),核苷酸序列如SEQ ID NO.2所示。该序列长度为798bp,编码一个由265个氨基酸组成的蛋白质.[0011] 一种crtZ基因和crtG基因缺失的重组鞘氨醇单胞菌,由少动鞘氨醇单胞菌经基因敲除去除SEQ ID NO.1所示的crtZ基因和SEQ ID NO.2所示的crtG基因获得。所述基因敲除借助SEQ ID NO.3和SEQ ID NO.4所示的核苷酸片段进行。
[0012] 一种crtG基因缺失的重组鞘氨醇单胞菌,由少动鞘氨醇单胞菌经基因敲除去除SEQ ID NO.2所示的crtG基因获得。所述基因敲除借助SEQID NO.4所示的核苷酸片段进行。
[0013] 基因敲除为本领域常规技术,在已知被敲除的基因序列情况下,本领域普通技术人员可根据常识选择常规方法进行基因敲除操作。具体可按如下进行:
[0014] 1、以少动鞘氨醇单胞菌基因组为模板,利用PCR方法扩增目的基因的上、下游片断,分别将上、下游片断插入常规敲除载体pLO3(来自德国的Oliver Lenz博士)构建目的基因敲除载体;
[0015] 2、将目的基因敲除载体通过三亲接合方法导入少动鞘氨醇单胞菌中;
[0016] 3、第一次同源重组时整个敲除质粒插入基因组中的同源位点、四环素抗性筛选得到阳性重组子,并用PCR方法扩增sacB基因鉴定。将筛选得到的同源重组第一次交换阳性重组子接种入预培养培养基中传代三次,然后涂布在含8%蔗糖的筛选平板上以筛选第二次同源重组交换体。筛选得到的第二次同源重组体影印至含四环素的抗性平板并用PCR方法进一步鉴定,从而获得目的基因缺失的少动鞘氨醇单胞菌。
[0017] 本发明中,crtZ基因的敲除借助SEQ ID NO.3核苷酸片断经两次同源重组敲除去除SEQ ID NO.1所示的核苷酸片段获得,具体是分别将SEQID NO.3中上游(SEQ ID NO.3第240~784位碱基)下游(SEQ ID NO.3第1250~762位碱基)片断插入敲除载体pLO3构建crtZ基因敲除载体pLO3-ΔZ;然后将crtZ基因敲除载体pLO3-ΔZ通过三亲接合方法导入少动鞘氨醇单胞菌中,经筛选得到crtZ基因缺失的重组少动鞘氨醇单胞菌。SEQ ID NO.3的DNA序列包括crtZ基因在内共1773bp,由如下方法获得:通过与少动鞘氨醇单胞菌亲缘关系较近的9种菌的β-胡萝卜素羟化酶基因(crtZ)的氨基酸序列进行比对分析,分析保守序列,设计CODEHOP简并引物,利用PCR的方法扩增出少动鞘氨醇单胞菌ATCC31461 crtZ的部分序列,进而通过SiteFinding-PCR技术获得包括crtZ基因的完整序列及基因敲除所需的部分侧翼序列。
[0018] crtG基因的敲除借助SEQ ID NO.4核苷酸片断经两次同源重组敲除去除SEQ ID NO.2所示的核苷酸片段获得,具体是分别将SEQ ID NO.4中上游(SEQ ID NO.4第617~1260位碱基)下游(SEQ ID NO.4第2041~2446位碱基)片断插入敲除载体pLO3构建crtG基因敲除载体pLO3-ΔG;然后将crtG基因敲除载体pLO3-ΔG通过三亲接合方法导入少动鞘氨醇单胞菌中,经筛选得到crtG基因缺失的重组少动鞘氨醇单胞菌。SEQ ID NO.4的DNA序列包括crtG基因在内共2471bp,由如下方法获得:根据少动鞘氨醇单胞菌ATCC 31461 crtY的部分序列(NCBI登录号:HQ202920)设计基因特异性引物,进而通过SiteFinding-PCR技术获得包括crtG基因的完整序列及基因敲除所需的部分侧翼序列。
[0019] 本发明还涉及所述的crtZ基因和crtG基因缺失的重组鞘氨醇单胞菌在微生物发酵制备结冷胶和β-胡萝卜素中的应用。
[0020] 本发明还涉及所述的crtG基因缺失的重组鞘氨醇单胞菌在微生物发酵制备结冷胶和玉米黄质中的应用。
[0021] 具体的,所述应用为:将所述重组少动鞘氨醇单胞菌菌株经活化、种子培养后,接种至适用于少动鞘氨醇单胞菌的发酵培养基,28~32℃、pH6.8~7.2摇床培养32~60h,获得含有所需胡萝卜素的黄色发酵液。
[0022] crtZ和crtG基因缺失的重组少动鞘氨醇单胞菌β-胡萝卜素含量为13.12~14.08mg/l,crtG基因缺失的重组少动鞘氨醇单胞菌玉米黄质含量为11.58~12.08mg/l。
[0023] 本发明提供的少动鞘氨醇单胞菌β-胡萝卜素羟化酶基因(crtZ)和2,2′-β羟化酶基因(crtG)的DNA序列为少动鞘氨醇单胞菌类胡萝卜素生物合成途径进行遗传改造奠定基础。另外,本发明通过基因敲除的方法构建的重组少动鞘氨醇单胞菌重组菌株与野生型菌株相比,结冷胶产量基本不变并产所需的类胡萝卜素,从而可以结冷胶发酵联产β-胡萝卜素或玉米黄质,同时,该菌株还可以应用于进一步的代谢工程改造。(四)附图说明
[0024] 图1为pLO3质粒的结构示意图;
[0025] 图2为PCR法鉴定crtZ基因敲除的电泳图:1以构建的crtZ基因和crtG基因缺失的少动鞘氨醇单胞菌基因组为模板(796bp),2以野生型少动鞘氨醇单胞菌基因组为模板作对照(1255bp);
[0026] 图3为PCR法鉴定crtG基因敲除的电泳图:1以野生型少动鞘氨醇单胞菌基因组为模板作对照(1690bp),2以构建的crtZ基因和crtG基因缺失的少动鞘氨醇单胞菌基因组为模板(916bp),3以构建的crtG基因缺失的少动鞘氨醇单胞菌基因组为模板(916bp)。(五)具体实施方式
[0027] 下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
[0028] 实施例1:少动鞘氨醇单胞菌crtZ基因DNA序列的获得
[0029] 对来自少动鞘氨醇单胞菌所属Sphingomonadales目的Erythrobacter gaetbuli、Erythrobacter litoralis HTCC 2594、Erythrobacter sp.NAP1、Brevundimonas sp.SD 212、Brevundimonas bacteroides、Brevundimonas vesicularis、Aurantimonas manganoxydans SI85-9A1、Xanthobacter autotrophicus Py2共8种菌的β-胡萝卜素羟化酶蛋白序列(数据来自NCBI蛋白数据库)采用Block Maker(http://blocks.fhcrc.org/blocks/make_blocks.html)比对分析,设计多条CodeHop简并引物。其中如下1对引物能扩增出一致性较好,特异性较强的条带。
[0030] 上游引物:
[0031] crtZ sense:5′-GCCTGGTCGATGCACAAGTAYRTNATGCAYG-3′
[0032] 下游引物:
[0033] crtZ anti:5′-CGGCGTGGTGCAGCYKRTGNGCYTG-3′
[0034] 从少动鞘氨醇单胞菌Sphmgomonas paucimobilis ATCC 31461(从ATCC购买)中提取基因组DNA(使用AxyPrep细菌基因组DNA小量制备试剂盒)作为PCR模板利用上述的简并引物扩增出少动鞘氨醇单胞菌crtZ基因的部分序列。PCR反应程序为:95℃预变性5min进入循环过程;94℃变性30sec,55℃退火30sec,72℃延伸30sec,30个循环;最后以
72℃延伸10min。1%琼脂糖凝胶电泳分析。
[0035] 扩增出的条带(大小约为322bp),割胶回收(使用AxyPrep DNA凝胶回收试剂盒)后连接到pMD19-T(Takara)载体上,转化大肠杆菌Top10感受态细胞,挑取氨苄抗性克隆,菌落PCR鉴定pMD19-T中是否插入回收的PCR片段。对阳性克隆测序(Invitrogen公司测定),并用BLAST程序对序列进行同源性分析。该片段与Sphingobium japomcum UT26S β-胡萝卜素羟化酶基因的同源性为85%,初步确定它是少动鞘氨醇单胞菌β-胡萝卜素羟化酶基因的DNA片段。
[0036] crtZ基因完整序列及侧翼未知序列的获取采用SiteFinding-PCR方法。根据已知的该段序列分别在上下游设计了两条基因特异性引物进行SiteFinding-PCR。所用的基因特异性引物、SiteFinder、SFP引物序列如下:
[0037] 上游序列特异性引物:
[0038] up1:5′-CAGGTCGTGAAAGGCGAAATAGA-3′
[0039] up2:5′-GAACGACGGCACCGCAAAGA-3′
[0040] 下游序列特异性引物:
[0041] down1:5′-AAACTGGGAGCTGAACGACCTG-3′
[0042] down2:5′-TCCATTTCGGCTTTCACGACCTG-3′
[0043] SiteFinder:
[0044] SiteF1:
[0045] 5′-CACGACACGCTACTCAACACACCACCACGCACAGCGTCCTCAANNNNNNCATGG-3′[0046] SiteF2:
[0047] 5′-CACGACACGCTACTCAACACACCACCACGCACAGCGTCCTCAANNNNNNCATGC-3′[0048] SiteF3:
[0049] 5′-CACGACACGCTACTCAACACACCACCACGCACAGCGTCCTCAANNNNNNGCCT-3′[0050] SiteF4:
[0051] 5′-CACGACACGCTACTCAACACACCACCACGCACAGCGTCCTCAANNNNNNGCCACG-3′[0052] SFP引物:
[0053] SFP1:5′-CACGACACGCTACTCAACAC-3′
[0054] SFP2:5′-ACTCAACACACCACCACGCACAGC-3′
[0055] 扩增得到的目标DNA片断经类似的克隆和测序后作BLAST分析,发现得到的上游目标DNA片段(848bp)包含起始密码子,下游目标DNA片段(659bp)包含终止密码子,将上述序列与crtZ基因的部分序列拼接后获得一段长1773bp的DNA序列,如SEQ ID No.3所示,其中包含的crtZ基因(SEQ ID No.1)全长为501bp(SEQ ID No.3第758位~第1258位碱基)。
[0056] 实施例2:少动鞘氨醇单胞菌crtG基因DNA序列的获得
[0057] 根据少动鞘氨醇单胞菌ATCC 31461 crtY的部分序列(NCBI登录号:HQ202920)设计上游基因特异性引物,通过几次SiteFinding-PCR方法获得包括crtG基因的完整序列及基因敲除所需的部分侧翼序列。所用的基因特异性引物根据已知序列设计,SiteFinder、SFP引物序列同上。
[0058] 将所得到的序列拼接后获得包含crtG基因在内的序列,如SEQ ID No.4所示,其中包含的crtG基因(SEQ ID No.2)全长为798bp(SEQ ID No.4第1255位碱基~第2052位碱基)。
[0059] 实施例3:β-胡萝卜素羟化酶和2,2′-β羟化酶两种酶缺失的少动鞘氨醇单胞菌重组菌株及2,2′-β羟化酶缺失的少动鞘氨醇单胞菌重组菌株的构建
[0060] 1、基因敲除载体pLO3-ΔZ、pLO3-ΔG的构建
[0061] 根据获得的DNA序列设计引物。从少动鞘氨醇单胞菌Sphingonmonas paucimobilis ATCC 31461(ATCC购买)中提取基因组DNA(使用AxyPrep细菌基因组DNA小量制备试剂盒)作为PCR模板。Z1、Z2为引物Taq酶(Takara)扩增crtZ基因上游同源序列,PCR反应程序为95℃预变性5min进入循环过程;94℃变性30sec,63℃退火30sec,72℃延伸45sec,30个循环,最后以72℃延伸10min。Z3、Z4为引物Taq酶(Takara)扩增crtZ基因下游同源序列,PCR反应程序为:95℃预变性5min进入循环过程;94℃变性30sec,63℃退火30sec,72℃延伸45s,30个循环,最后以72℃延伸10min。上述引物序列如下:
[0062] Z1:5′-GACGAGCTCATCGATCCCGGCTATTAT-3′下划线为SacI酶切位点[0063] Z2:5′-GGCTCTAGACAGCAAAAAGGCGTTGAG-3′下划线为XbaI酶切位点[0064] Z3:5′-TGTCTAGACCGGATTGAGGGCCATCC-3′下划线为XbaI酶切位点[0065] Z4:5′-TGCTGCAGGTGGTCGATTACAGGCTC-3′下划线为PstI酶切位点[0066] PCR产物1%琼脂糖凝胶电泳,然后用AxyPrep DNA凝胶回收试剂盒割胶回收。
[0067] 回收的上游片断(SEQ ID NO.3第240~784位碱基)、基因敲除质粒pLO3经SacI、XbaI 37℃双酶切过夜后,上游片断PCR清洁回收(使用AxyPrep PCR清洁回收试剂盒),质粒1%琼脂糖凝胶电泳并割胶回收后T4DNAligase 4℃连接过夜,转化大肠杆菌S17-1感受态细胞。LB平板(添加25μg/ml的四环素)筛选阳性克隆。筛选所得阳性克隆菌落PCR验证,提取质粒进一步酶切验证并测序。通过验证的克隆提取质粒,命名为pLO3-Z1。
[0068] pLO3-Z1、回收的下游片段(SEQ ID NO.3第1250~1762位碱基)经XbaI、PstI37℃双酶切过夜后进行类似的克隆和验证,构建好的基因敲除载体命名为pLO3-ΔZ。
[0069] crtG基因敲除载体pLO3-ΔG的构建过程与pLO3-ΔZ基本相同,所不同的是:由于上游片段包含有PstI酶切位点,因此先连接下游片断(SEQ ID NO.4第2041~2446位碱基),再连接上游片断(SEQ ID NO.4第617~1260位碱基)。所用的引物序列如下:
[0070] G1:5′-GCTGAGCTCGTTGATGAAGGGAGTCTA-3′下划线为SacI酶切位点[0071] G2:5′-TATCTAGAGTTCATGCGCCGATCTGC-3′下划线为XbaI酶切位点[0072] G3:5′-GCATCTAGAGCTGGAGCTTGATTTCACC-3′下划线为XbaI酶切位点[0073] G4:5′-TACTGCAGCAGACGATCAGAAACCCC-3′下划线为PstI酶切位点[0074] 2、基因敲除载体转化
[0075] 基因敲除载体采用三亲接合方法导入少动鞘氨醇单胞菌ATCC 31461和DSM 6314中。三亲接合过程需要三种细菌:①含有敲除载体的大肠杆菌供体菌(按前述方法可得);②含有常规辅助质粒pRK2013的大肠杆菌“协助”(helper)菌HB101/pRK2013(来自中国科学院遗传研究所);③少动鞘氨醇单胞菌ATCC 31461或者DSM 6314(来自菌种保藏中心DSM)(受体菌)。当三种菌混合时,协助质粒pRK2013游动进入大肠杆菌内,提供游动(mob)和转移(tra)功能,把供体的重组质粒转移进入少动鞘氨醇单胞菌内。该系统中重组载体质粒需要带有一个特定的转移起始点(oirT),以使协助质粒的tra和mob基因对它起作用,被驱动转移。pLO3质粒为四环素抗性,含有蔗糖反向筛选标记sacB基因、pBR322_origin复制起点和oriT_RP4转移起点。该质粒能够在大肠杆菌中复制,但不能在少动鞘氨醇单胞菌中复制,因此pLO3质粒进入少动鞘氨醇单胞菌时,只能经同源同组整合入染色体,和染色体一起复制,而不能以游离形式存在于染色体外。利用pLO3质粒的这些特点,将欲敲除基因两侧的同源片断克隆入pLO3质粒从而定位pLO3质粒的整合位点。利用同源性DNA片断可发生重组的原理,构建基因缺失菌株。三亲接合具体方法如下所述:
[0076] 少动鞘氨醇单胞菌于预培养培养基中30℃、200rpm培养过夜。以10%接种量转接预培养培养基30℃、200rpm培养8h。供体菌、HB101/pRK2013于加相应抗生素的LB液体培养基(抗生素添加量:四环素25μg/ml、卡那霉素50μg/ml)中37℃培养过夜。取供体菌、HB101/pRK2013菌液各2ml离心收集菌体(3000rpm、5min);取少动鞘氨醇单胞菌5ml,6000rpm离心5min,弃上清,分别用无菌去离子水洗涤两次,离心。将上述3种菌合并,用
5ml无菌去离子水重悬混匀后用0.45μm孔径直径5cm的滤膜抽滤。滤膜菌体朝上贴在LB平板中,37℃静置培养7h后用5ml无菌去离子水将滤膜上的菌体洗下,梯度稀释至合适浓度后涂布含25μg/ml链霉素、5μg/ml四环素的YM平板。所用的培养基组成如下:
[0077] 预培养培养基:酵母膏0.2%,牛肉膏0.3%,蛋白胨0.5%,NaCl 0.1%,葡萄糖0.5%,溶剂为蒸馏水,pH7.2;
[0078] YM固体培养基:酵母粉0.3%,麦芽粉0.3%,蛋白胨0.5%,葡萄糖1%,琼脂粉1.5%,溶剂为蒸馏水,pH7.2;
[0079] 注:本发明中培养基浓度均指质量体积百分比浓度,某组分浓度1%表示100mL培养基中含有1g该物质。
[0080] 3、少动鞘氨醇单胞菌重组菌株的筛选
[0081] 第一次同源重组时,质粒整合入基因组。四环素抗性筛选得到的克隆提取基因组,sacB引物PCR扩增sacB基因鉴定阳性重组子。PCR反应程序为:95℃预变性5min进入循环过程;94℃变性30sec,50℃退火30sec,72℃延伸90sec,30个循环,最后以72℃延伸10min。PCR产物为1151bp片断的为阳性重组子。
[0082] 上述验证引物序列如下:
[0083] sacBsense:5′-CGAACCAAAAGCCATATAAG-3′
[0084] sacBanti:5′-AGCGAAGTGTGAGTAAGTAA-3′
[0085] 第二次同源重组质粒脱离基因组DNA,产生两种交换类型:缺失突变菌株和野生型菌株。第一次同源重组筛选得到的阳性克隆接种入预培养培养基中传代三次,然后涂布在8%蔗糖筛选平板上以筛选第二次同源重组交换体。由于sacB基因编码的蔗糖果聚糖酶能使蔗糖转化为果聚糖。果聚糖对细胞有毒性,在高浓度蔗糖存在下只有丢失sacB基因才能生长。因此能利用高浓度蔗糖可反向筛选得到去除整合敲除质粒的野生型菌株或者缺失突变菌株。筛选得到的第二次交换体影印含有5μg/ml四环素的YM平板培养基,以进一步确认第二次交换抗性标记已丢失。
[0086] 随机选择第二次同源重组交换体用PrimeSTAR HS DNA Polymerase酶(Takara)PCR进一步确认目的基因是否已敲除。PCR反应程序为:95℃预变性5min进入循环过程;98℃变性10sec,59℃退火15sec,72℃延伸2min,30个循环。同时以野生型菌株基因组为模板作PCR对照,电泳结果如图2和图3所示,敲除crtZ基因时(以Z5、Z6为引物),以野生型菌株基因组为模板的PCR产物为1255bp,而以构建的crtZ基因和crtG基因缺失的少动鞘氨醇单胞菌基因组为模板的PCR产物为796bp。敲除crtG基因时(以G5、G6为引物),以野生型菌株基因组为模板的PCR产物为1690bp,而以构建重组少动鞘氨醇单胞菌基因组为模板的PCR产物为916bp。所用的引物序列如下
[0087] Z5:5′-CGCGCCTGCCGGAACTGA-3′
[0088] Z6:5′-CGTGGAACTGCTCGGGGGAG-3′
[0089] G5:5′-TGGCGACCACTCCCAACAG-3′
[0090] G6:5′-CGGAATGCCCATGAAGGTG-3′
[0091] 实施例4:重组少动鞘氨醇单胞菌菌株产胶能力的测定
[0092] 1、野生型菌株(Sphingomonas paucimobilis ATCC 31461)、crtZ和crtG基因缺失的少动鞘氨醇单胞菌(ΔZG1~ΔZG7,其中ΔZG1~ΔZG4来源于少动鞘氨醇单胞菌ATCC 31461,而ΔZG5~ΔZG7则来源于少动鞘氨醇单胞菌DSM 6314)、crtG基因缺失的少动鞘氨醇单胞菌(ΔG1~ΔG7,其中ΔG1~ΔG4来源于少动鞘氨醇单胞菌ATCC31461,而ΔG5~ΔG7则来源于少动鞘氨醇单胞菌DSM 6314)接YM培养基斜面上,30℃培养72h;
[0093] 2、一级种子培养:分别将斜面种子接入50ml一级种子培养基(盛于250ml三角瓶),于30℃,200rpm振荡培养24h,即为一级种子液;
[0094] 3、二级种子培养:分别将一级种子液以5%体积比的接种量接入100ml二级种子培养基(盛于500mL三角瓶),于30℃,200rpm振荡培养12h,即为二级种子液;
[0095] 4、发酵:将二级种子液以5%体积比的接种量接入100ml级发酵培养基中(盛于500mL三角瓶),于30℃,200rpm振荡发酵48h;
[0096] 5、分别测定对照(野生型菌株)和重组少动鞘氨醇单胞菌的发酵液的粘度及出胶率,结果如表1:
[0097] 表1、野生菌株和突变菌株发酵48h出胶率、粘度
[0098]
[0099] 与对照相比,重组少动鞘氨醇单胞菌出胶率和粘度并没有明显的变化,出胶率相对于对照菌株处于同一水平,因此可以选用ΔZG、ΔG作为生产菌株,结冷胶产量不会降低,并且可以结冷胶发酵联产β-胡萝卜素或玉米黄质。所用培养基组成为:
[0100] 一级种子培养基:酵母膏0.20%;牛肉膏0.30%;蛋白胨0.50%;氯化钾0.10%,溶剂为蒸馏水,pH7.2;
[0101] 二级种子培养基:葡萄糖1.50%;酵母膏.0.50%;蛋白胨0.50%;磷酸二氢钾0.06%;磷酸氢二钾0.06%;硫酸镁0.06%,溶剂为蒸馏水,pH7.2;
[0102] 发酵培养基:葡萄糖3.00%;酵母膏0.05%;蛋白胨0.30%;磷酸二氢钾0.06%;磷酸氢二钾0.10%;硫酸镁0.06%;溶剂为蒸馏水,pH7.2。实施例5:重组少动鞘氨醇单胞菌高酰基结冷胶的制备工艺及所需类胡萝卜素的提取工艺
[0103] 1、发酵液预处理:发酵液100L,用10%(v/v)的HCl调pH6.0,升温至60℃,保温1h;
[0104] 2、蛋白杂质去除:降温至40℃时,用10%(w/v)NaOH调pH7.0,加入50g的溶菌酶(20万U/g,庞博生物)及100g的碱性蛋白酶(2万U/g,庞博生物),保温2h;
[0105] 3、结冷胶絮凝沉淀,分离及所需类胡萝卜素提取:经过预处理及蛋白去杂处理后的发酵液中加入501乙醇丙酮溶液(v/v=2∶1~1∶2,优选1∶1)40℃避光搅拌提取2h。提取4次之后板框压滤,收集滤液,加入适量BHT。
[0106] 4、结冷胶干燥、粉碎:压滤所得纤维料90℃干燥2h后粉碎,制得高酰基结冷胶成品,为乳白色粉末,含氮量为0.05~0.30%。
[0107] 5、滤液用旋转蒸发仪35℃真空浓缩至500mL,大孔吸附树脂吸附类胡萝卜素,用丙酮对吸附了类胡萝卜素的大孔树脂在常温下洗脱。
[0108] 6、将得到的洗脱液浓缩至一定体积,放入45℃真空干燥箱中干燥,得到β-胡萝卜素晶体或玉米黄质晶体。
[0109] 7、将得到的β-胡萝卜素晶体或玉米黄质晶体溶于适量丙酮,过滤重结晶,得到类胡萝卜素晶体。crtZ和crtG基因缺失的少动鞘氨醇单胞菌得到1.32gβ-胡萝卜素晶体,高效液相色谱检测番茄红素纯度为98%。crtG基因缺失的少动鞘氨醇单胞菌得到1.18g玉米黄质晶体,高效液相色谱检测番茄红素纯度为97%。