硅量子点掺杂纳米二氧化钛薄膜复合材料的制备方法转让专利

申请号 : CN201110289193.3

文献号 : CN102352487A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 何芳李小青黄远刘贵高王玉林

申请人 : 天津大学

摘要 :

本发明公开了一种离子注入及离子束溅射辅助在纳米二氧化钛中制备硅量子点的制备方法。该方法过程包括:将基片和靶材清洗,置入溅射室内,在真空和氩气的保护条件下,预溅射清洗;以一定的引出电流、电压的氩离子束对二氧化钛进行溅射,在基片上沉积二氧化钛薄膜,经退火后,得到纳米二氧化钛薄膜;再以一定的能量、注入剂量进行三次硅离子的注入,得到硅掺杂的二氧化钛薄膜,经退火后,得到硅量子点掺杂的纳米二氧化钛薄膜。本发明的优点在于,方法简单条件温和,过程中能通过调节离子注入工艺来自由调节硅量子点的含量、尺寸、形态及分布,并且克服了量子点时易团聚的缺点,从而调节了掺杂的二氧化钛薄膜的光吸收特性。

权利要求 :

1.1)基片、靶材的清洗:首先用丙酮对石英的或硅的基片清洗10~15min,再用无水乙醇进行超声清洗10~15min,最后用去离子水反复清洗,晾干备用;用无水乙醇对质量纯度为99.99%以上的二氧化钛靶材表面擦拭干净,备用;

2)将经步骤1)清洗干净的基片和靶材分别置入离子束溅射室内的基盘和靶位上,-4 -4抽真空使其本底真空度达到2.0×10 ~9.0×10 Pa,接着向溅射室内通入质量纯度为-2 -2

99.99%以上的氩气工作气体,使溅射室内压强为2.0×10 ~2.5×10 Pa,调整溅射室温度为20~200℃;

3)采用引出电流为50mA,引出电压为2.0kV的氩离子束分别对靶材和基片各进行

5-10min的预溅射清洗;

4)薄膜制备:首先以引出电流为10~40mA,引出电压为0.5kV~3kV的氩离子束对二氧化钛靶材进行连续轰击200~320min,在基片上得到厚度为65-110nm的二氧化钛薄膜;

5)将经步骤4)制的纳米二氧化钛薄膜,以升温速率为2℃/min升温至400-600℃进行退火,保温1-3小时,然后随炉温冷却至室温;

-4

6)采用离子注入设备,抽真空使本底真空度达到5.0-9.0×10 Pa,在质量纯-2度为99.99%以上的氩气保护下、工作真空度为2.0-2.5×10 Pa及衬底温度为

25-200℃条件下对步骤5)制备的二氧化钛薄膜,首先以注入能量为60-80keV,注入

16 17 -2

剂量为1×10 -3×10 cm 进行第一次硅离子注入;然后以注入能量为40-60keV,注

16 17 -2

入剂量为1×10 -3×10 cm 进行第二次离子注入;最后以30-40keV,注入剂量为

16 17 -2

1×10 -3×10 cm 进行第三次硅离子注入;

7)将步骤6)制备的硅掺杂的纳米二氧化钛薄膜,在空气中或氮气中,以升温速率

2-10℃/min升至温度为500-1000℃退火0.5-2h,然后随炉温冷却至室温得到硅量子点掺杂的纳米二氧化钛薄膜复合材料。

说明书 :

硅量子点掺杂纳米二氧化钛薄膜复合材料的制备方法

技术领域

[0001] 本发明涉及一种硅量子点掺杂纳米二氧化钛薄膜复合材料的制备方法,特别涉及一种通过离子注入及离子束溅射辅助在二氧化钛薄膜中制备硅量子点的方法,属于光电和光催化技术领域。

背景技术

[0002] 二氧化钛(TiO2)具有光稳定性好、氧化能力强、无公害以及廉价等优点,且在光电及催化方面具有一些特殊性能。但是它的禁带宽度为3.0-3.2eV,只能吸收波长小于400nm的紫外光,且光生载流子利用效率较低,因而光电转换效率低,从而限制了其在光电转换方面的应用。目前提高TiO2光电转换效率的有效方法是对其进行量子点掺杂或敏化。因为半导体量子点具有的量子限制效应可以改变材料光学性质和电学性质,因而得到很多科学家的关注。硅是一种良好的半导体材料,是地球上储存量第二大的元素,而且性能稳定、无毒,具有高的空穴迁移率和电子迁移率,同时禁带宽度小,是理想的掺杂材料。然而,至今很多人在二氧化钛纳米薄膜中掺杂硅由于没找到合适的工艺并没有形成硅量子点。
[0003] 目前,制备量子点掺杂纳米薄膜的方法有很多,包括溶胶-凝胶法、化学气相沉积、脉冲激光沉积、射频磁控溅射法等。与这些方法相比,离子注入方法能够根据薄膜厚度控制注入的深度、注入的离子数目,并且注入的离子纯度高。通过调控离子注入条件和后处理工艺,可自由调节量子点的含量、尺度、形态及分布,因此是制备硅量子点掺杂二氧化钛薄膜的理想方法。该方法在光电转换材料制备方面具有重要的实际应用价值。

发明内容

[0004] 本发明的目的在于提供一种硅量子点掺杂纳米二氧化钛薄膜复合材料的制备方法。该方法过程简单,所制得的硅量子点掺杂的纳米二氧化钛薄膜复合材料具有很强的光吸收性能和广阔的应用前景。
[0005] 本发明是通过以下技术方案加以实现的,一种硅量子点掺杂纳米二氧化钛薄膜复合材料的制备方法,其特征在于包括以下步骤:
[0006] 1)基片、靶材的清洗:首先用丙酮对石英的或硅的基片清洗10~15min,再用无水乙醇进行超声清洗10~15min,最后用去离子水反复清洗,晾干备用;用无水乙醇对质量纯度为99.99%以上的二氧化钛靶材表面擦拭干净,备用;
[0007] 2)将经步骤1)清洗干净的基片和靶材分别置入离子束溅射室内的基盘和靶位-4 -4上,抽真空使其本底真空度达到2.0×10 ~9.0×10 Pa,接着向溅射室内通入质量纯度为-2 -2
99.99%以上的氩气工作气体,使溅射室内压强为2.0×10 ~2.5×10 Pa,调整溅射室温度为20~200℃;
[0008] 3)采用引出电流为50mA,引出电压为2.0kV的氩离子束分别对靶材和基片各进行5-10min的预溅射清洗;
[0009] 4)薄膜制备:首先以引出电流为10~40mA,引出电压为0.5kV~3kV的氩离子束对二氧化钛靶材进行连续轰击200~320min,在基片上得到厚度为65-110nm的二氧化钛薄膜;
[0010] 5)将经步骤4)制的纳米二氧化钛薄膜,以升温速率为2℃/min升温至400-600℃进行退火,保温1-3小时,然后随炉温冷却至室温;
[0011] 6)采用离子注入设备,抽真空使本底真空度达到5.0-9.0×10-4Pa,在质-2量纯度为99.99%以上的氩气保护下、工作真空度为2.0-2.5×10 Pa及衬底温度为25-200℃条件下对步骤5)制备的二氧化钛薄膜,首先以注入能量为60-80keV,注
16 17 -2
入剂量为1×10 -3×10 cm 进行第一次硅离子注入;然后以注入能量为40-60keV,
16 17 -2
注入剂量为1×10 -3×10 cm 进行第二次离子注入;最后以30-40keV,注入剂量为
16 17 -2
1×10 -3×10 cm 进行第三次硅离子注入;
[0012] 7)将步骤6)制备的硅掺杂的纳米二氧化钛薄膜,在空气中或氮气中,以升温速率2-10℃/min升至温度为500-1000℃退火0.5-2h,然后随炉温冷却至室温得到硅量子点掺杂的纳米二氧化钛薄膜复合材料。
[0013] 本发明的优点在于,采用较为简单和温和的方法制备了硅量子点掺杂的纳米二氧化钛薄膜复合材料。该方法可以通过调节离子注入工艺调节硅的量子点的大小,使其小于硅量子波尔半径,并且克服了溶液法制备量子点时易团聚的缺点,因此有望在光电转换材料领域得到广泛的应用。

附图说明

[0014] 图1为实例1制备的硅量子点掺杂的纳米二氧化钛薄膜复合材料透射形貌照片。

具体实施方式

[0015] 实例1
[0016] 本发明薄膜制备过程所采用的设备为IBAD-600多功能离子注入与离子束溅射系统;
[0017] 离子注入制备过程所采用的设备为FM2000纳米多层膜复合机。
[0018] 制备硅量子点掺杂的纳米二氧化钛薄膜复合材料过程如下:将2cm×2cm方形石英基片浸泡在丙酮溶液中清洗15min,再用无水乙醇超声清洗10min,最后用大量的去离子水清洗;用无水乙醇对质量纯度为99.99%的二氧化钛靶材(10cm×10cm)表面擦拭干净。然后将清洗干净的石英基片以及二氧化钛分别固定于溅射真空室内的基盘和靶位上,抽真-4
空使本底真空度达到8×10 Pa,接着向溅射室内通入纯度为99.99%的氩气,使溅射室内-2
压强为2.0×10 Pa,调整溅射室内温度为25℃。在溅射薄膜之前,采用引出电流为50mA,引出电压为2.0kV的氩离子束分别对靶材和基片各进行5-10min的预溅射清洗。首先以引出电流为20mA,引出电压为0.7kV的氩离子束对二氧化钛靶材轰击320min使其在基片上溅射沉积一层TiO2薄膜,薄膜厚度大约为110nm,随后对薄膜进行热处理,以升温速率为
2℃/min升温至500℃进行退火,保温1小时,然后随炉温冷却至室温。运用离子注入设备,-4
抽真空使本底真空度达到6.0×10 Pa,注入时环境保护气体为高纯的氩气,工作真空度为-3
1.0×10 Pa,衬底温度为25℃;接着,对所制备的二氧化钛薄膜首先以注入能量为70keV,
17 -2
注入剂量为1×10 cm 进行第一次硅离子注入,使得所注入的硅离子集中在所述二氧化钛
17 -2
薄膜的底部;然后以注入能量为45keV,注入剂量为1×10 cm 进行第二次离子注入,使得
17 -2
所注入的硅离子集中在中部;最后再以30keV,注入剂量为1×10 cm 进行第三次硅离子注入,使得所注入的硅离子集中在顶部。然后将所得到的硅掺杂的纳米二氧化钛薄膜在950℃的氩气保护退火炉中退火1h,升温速率为10℃/min,然后随炉温冷却至室温,即得到硅量子点掺杂的二氧化钛薄膜。其微观结构如图1所示。
[0019] 实例2
[0020] 制备硅量子点掺杂的纳米二氧化钛薄膜复合材料所需二氧化钛薄膜的制备过程同实例1。
[0021] 运用离子注入设备,抽真空使本底真空度达到8.0×10-4Pa,注入时环境保护气体-2为高纯的氩气,工作真空度为2.0×10 Pa,衬底温度为25℃;接着,将所制备的二氧化钛薄
16 -2
膜首先以注入能量为70keV,注入剂量为1×10 cm 进行第一次硅离子注入,使得所注入的
16 -2
硅离子集中在所述二氧化钛薄膜的底部;然后以注入能量为50keV,注入剂量为1×10 cm进行第二次离子注入,使得所注入的硅离子集中在中部;最后再以30keV,注入剂量为
16 -2
1×10 cm 进行第三次硅离子注入,使得所注入的硅离子集中在顶部。然后将所得到的硅掺杂的纳米二氧化钛薄膜在950℃的氩气保护退火炉中退火1h,升温速率为10℃/min,然后随炉温冷却至室温,即得到硅量子点掺杂的二氧化钛薄膜。
[0022] 实例3
[0023] 制备硅量子点掺杂的纳米二氧化钛薄膜复合材料所需二氧化钛薄膜的制备过程同实例1。
[0024] 运用离子注入设备,抽真空使本底真空度达到9.0×10-4Pa,注入时环境保护气-2体为高纯的氩气,工作真空度为1.0×10 Pa,衬底温度为200℃;接着,将所制备的二氧
17 -2
化钛薄膜首先以注入能量为60keV,注入剂量为3×10 cm 进行第一次硅离子注入,使得所注入的硅离子集中在所述二氧化钛薄膜的底部;然后以注入能量为40keV,注入剂量为
17 -2
3×10 cm 进行第二次离子注入,使得所注入的硅离子集中在中部;最后再以30keV,注入
17 -2
剂量为3×10 cm 进行第三次硅离子注入,使得所注入的硅离子集中在顶部。然后将所得到的硅掺杂的纳米二氧化钛薄膜在750℃的氩气保护退火炉中退火1h,升温速率为10℃/min,然后随炉温冷却至室温,即得到硅量子点掺杂的二氧化钛薄膜。