由电磁和测功机混合动态加载的机床主轴可靠性试验装置转让专利

申请号 : CN201110313367.5

文献号 : CN102384844B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨兆军呼烨陈菲方杰王凯朱岩侯雨辰马宇鹏何佳龙

申请人 : 吉林大学

摘要 :

本发明公开了一种由电磁和测功机混合动态加载的机床主轴可靠性试验装置,包括加载部分与支撑部分,加载部分包括扭矩加载机构、轴向力加载机构、径向力加载机构和陶瓷测试棒。径向力加载机构包括电磁铁、螺栓、S型拉压力传感器与连接块。电磁铁包括铁芯、线圈、铝座、铝座盖和挡块。缠绕有线圈的铁芯装入铝座内,挡块插入铝座上的矩形通孔内,铝座盖采用螺钉固定在铝座的左端面上,铁芯的左端从铝座盖上的通孔中伸出。连接块的两端通过连接螺栓和铝座的前固定凸台与后固定凸台连接,螺栓的一端与连接块的中间位置连接,另一端与S型拉压力传感器的一端连接。所述的轴向力加载机构包括1号电磁激振器和导磁装置,导磁装置由圆环筒体和圆环盘组成。

权利要求 :

1.一种由电磁和测功机混合动态加载的机床主轴可靠性试验装置,包括加载部分与支撑部分,所述的加载部分包括扭矩加载机构、轴向力加载机构、径向力加载机构和陶瓷测试棒(5),其特征在于,所述的径向力加载机构即2号电磁激振器(3),2号电磁激振器(3)包括电磁铁、螺栓(23)、S型拉压力传感器(24)与连接块(25),所述的电磁铁包括铁芯(18)、线圈(29)、铝座(21)、2个结构相同的铝座盖(19)和挡块(22);

缠绕有线圈(29)的铁芯(18)装入铝座(21)内,挡块(22)插入铝座(21)上的矩形通孔内,使挡块(22)的右端面和铁芯(18)右端的左侧相切,2个结构相同的铝座盖(19)采用螺钉固定在铝座(21)的左端面上,铁芯(18)的左端从2个结构相同的铝座盖(19)上的通孔中伸出;

中间位置加工有圆通孔的连接块(25)的两端通过连接螺栓固定在铝座(21)前后端面的右侧设置的前耳环与后耳环上,螺栓(23)的一端连接于连接块(25)中间位置的圆通孔上,另一端连接于S型拉压力传感器(24)的一端。

2.按照权利要求1所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的铝座(21)为一个长方体形的结构件,铝座(21)的左端设置一个放置线圈(29)的横截面为矩形的水平设置的长方形凹槽,放置线圈(29)的长方形凹槽的底部或者说右端面上设置有放置铁芯(18)中垂直杆的水平设置的扁长方形凹槽,扁长方形凹槽和放置线圈(29)的长方形凹槽的水平对称面共面,铝座(21)上还设置有和扁长方形凹槽水平对称面垂直的安装挡块(22)的矩形通孔,矩形通孔的位置使插入矩形通孔的挡块(22)的右端面和铁芯(18)中垂直杆的左侧相切,在铝座(21)前后端面的右侧设置有结构相同的前耳环与后耳环,前耳环与后耳环上水平设置有安装螺栓的通孔。

3.按照权利要求1所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的铁芯(18)为由三段直线杆组成的U形结构件,即由两个相互平行的等长的直线杆和一段与两个相互平行的等长的直线杆相垂直的垂直杆组成,铁芯(18)的材料选用1J22软磁合金,铁芯(18)中两个相互平行的等长的直线杆的工作端的端面设置成弧形面,弧形面的曲率半径和轴向力加载机构的导磁装置(4)中的圆环筒体的外圆柱面的曲率半径相等。

4.按照权利要求1所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的轴向力加载机构包括1号电磁激振器(14)和导磁装置(4),其中:1号电磁激振器(14)属于标准件;

所述的导磁装置(4)由用于径向力加载的圆环筒体和用于轴向力加载的圆环盘组成,圆环盘与圆环筒体一端的端面成固定连接,圆环筒体和圆环盘的回转轴线共线,导磁装置(4)采用的材质为烧结铁氧化性磁铁。

5.按照权利要求1或4所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的扭矩加载机构包括交流电力测功机(10)、弹性联轴器(6)、转速扭矩传感器(8)、逆变器与法兰盘(9);

交流电力测功机(10)的输出端通过法兰盘(9)与转速扭矩传感器(8)的一端连接,转速扭矩传感器(8)的另一端和弹性联轴器(6)的右端连接;

所述的支撑部分包括主轴基座、轴向力加载支座(15)、径向力加载支座(26)、转速扭矩传感器支座(13)和交流电力测功机基座(12);所述的主轴基座包括主轴底座(17)、调整垫片(16)和抱夹机构(2),调整垫片(16)和抱夹机构(2)依次叠置在主轴底座(17)的上端面上并采用螺栓固定;

主轴基座、轴向力加载支座(15)、转速扭矩传感器支座(13)和交流电力测功机基座(12)通过螺栓由左至右依次安装在地平铁(11)上,径向力加载支座(26)安装在轴向力加载支座(15)正后方的地平铁(11)上。

6.按照权利要求5所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的径向力加载支座(26)由上安装顶板、下安装底板与组合支撑筋板组成;

上安装顶板、下安装底板与处于中间位置的组合支撑筋板采用焊接或铸造方式将三者连接成一体,下安装底板上即组合支撑筋板的左右侧设置有长条形通孔(28),下安装底板的一端设置有U型槽(27),上安装顶板由顶板和侧壁板组成,顶板和侧壁板互相垂直,侧壁板位于顶板的一端,侧壁板顶端面的中间位置设置有顶端U型槽。

7.按照权利要求5所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的轴向力加载支座(15)由上安装板、下安装板与支撑筋板组组成;

上安装板、下安装板与处于中间位置的支撑筋板组采用焊接或铸造方式将三者连接成一体,下安装板上前后对称地设置有U型槽,上安装板由平板和左垂直壁组成,左垂直壁位于平板的左端,左垂直壁与平板互相垂直,左垂直壁的左端面与平板的上端面之间固定链接有呈直角三角形的加强筋板,左垂直壁的前后两端设置有通孔。

8.按照权利要求5所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,其特征在于,所述的扭矩加载机构中的弹性联轴器(6)的左端与陶瓷测试棒(5)的右端连接,陶瓷测试棒(5)的左端与安装在抱夹机构(2)上的被测的机床主轴(1)的右端固定连接,交流电力测功机(10)输出轴的回转轴线、弹性联轴器(6)的回转轴线、陶瓷测试棒(5)的回转轴线与被测的机床主轴(1)的回转轴线共线;

导磁装置(4)套装在陶瓷测试棒(5)上为固定连接,1号电磁激振器(14)设置在导磁装置的(4)正下方并处于导磁装置(4)中的圆环盘左侧的轴向力加载支座(15)的上安装板上,并通过螺栓和上安装板中的左垂直壁固定连接,1号电磁激振器(14)的对称面和导磁装置(4)的回转轴线为空间垂直交叉,1号电磁激振器(14)的激振端面与导磁装置(4)中圆环盘的左端面之间应有大于零小于0.5mm的间隙;

所述的径向力加载机构即2号电磁激振器(3)中的电磁铁通过铝座(21)固定在径向力加载支座(26)中的上安装顶板的和侧壁板相对的一端的顶板上,2号电磁激振器(3)中的S型拉压力传感器(24)的另一端通过连接螺栓固定在径向力加载支座(26)中的上安装顶板的侧壁板上,2号电磁激振器(3)位于导磁装置(4)中的圆环盘的左侧,2号电磁激振器(3)中的铁芯(18)的两个相互平行的等长的直线杆的回转轴线和导磁装置(4)的回转轴线垂直相交处于同一水平面内,铁芯(18)中两个相互平行的等长的直线杆的工作端的弧形端面与导磁装置(4)中的圆环筒体的外圆柱面之间具有大于零小于0.5mm的间隙。

说明书 :

由电磁和测功机混合动态加载的机床主轴可靠性试验装置

技术领域

[0001] 本发明涉及一种机床主轴的试验装置,更确切地说,本发明涉及一种由电磁和测功机混合动态加载的机床主轴可靠性试验装置。

背景技术

[0002] 机床主轴作为机床的关键功能部件,尤其电主轴作为现代高速加工技术的核心技术之一,其在高性能机床上的广泛应用,不仅大幅度提高了加工效率,改善了产品质量,降低了生产成本,在为社会创造巨大物质财富的同时,更促进了新材料、新技术的推广与应用,带动了相关产业的发展。数控机床关键功能部件可靠性直接影响着整机可靠性水平。机床主轴作为数控机床重要关键功能部件之一,国内外还没有关于电主轴可靠性技术全面、系统的研究,因此研制其可靠性试验台对于提高数控机床整机MTBF(平均无故障时间)的水平具有重要意义。目前,在数控机床上应用最广泛的机床主轴是电主轴,本发明就电主轴(实施例中采用的型号为170XDS30Q22)进行可靠性试验,试验方法对其他类型的机床主轴也适用。
[0003] 做电主轴可靠性试验,加载试验比空载试验更能准确的反映电主轴的实际工况,但是电主轴的转速高,对它的加载一直是个难点。目前对电主轴的加载试验主要有测功机扭矩加载、双机床主轴对拖扭矩加载、切削力作为负载、锤击法、转矩转速仪法、单独由气缸做轴向或径向的静态加载和利用滚动轴承将主轴的高速转动转化为静态加载等加载方法。这些方法只是模拟了电主轴实际工况中的一部分切削力,而且大部分方法还是静态加载,并不能真实的模拟电主轴的实际工况。为了最大可能的反映电主轴的实际工况,做可靠性试验,本发明设计了一套能同时实现主轴扭矩、径向力和轴向力的加载方案。
[0004] 参阅图6,本发明之前,已经存在利用电磁对电主轴进行非接触加载的专利,其加载原理如图中所示。二者的区别为:
[0005] 1.已经存在的专利利用电磁对电主轴进行扭矩和径向力的非接触加载。由软磁材料制成的加载圆盘在磁场中旋转时,加载圆盘中会产生电涡流,有电涡流产生就会受到切向的洛伦兹力,便添加上了扭矩,该扭矩消耗了电主轴的主要能量,最终以热量的形式靠空气冷却散发出去,已经存在的专利专门设计了斜通孔加快散热,能实现小功率电主轴的扭矩加载,如果想对上千瓦的大功率电主轴进行加载就比较困难了,大功率的电主轴的扭矩加载将产生大量的热,利用空气冷却无法实现散热,就不能实现扭矩加载,而目前机床上应用最广泛的是上千瓦的大功率电主轴,所以本发明利用较成熟的交流电力测功机进行扭矩加载,最高能实现大功率高转速的电主轴扭矩加载。
[0006] 2.已经存在的专利没有实时检测所加载的径向力和扭矩值的大小,为开环控制,本发明所加载的径向力、轴向力和扭矩均为闭环控制。
[0007] 3.电主轴本身就是一个强磁场,并且还是一个高频的强耦合磁场,如何有效的防止励磁绕组和电主轴之间的磁场干扰是一个很大的问题,而已经存在的专利利用芯轴将加载圆盘和电主轴直接连接在一起,励磁绕组将会和电主轴的磁场产生干扰,影响电主轴的性能。本发明利用陶瓷测试棒连接机床主轴和加载装置,有效的避免了该问题的产生。

发明内容

[0008] 本发明所要解决的技术问题是克服了现有技术存在的问题,提供了一种能模拟真实工况中机床主轴所受的动态切削力的一种加载装置,更确切地说,提供了一种由电磁和测功机混合动态加载的机床主轴可靠性试验装置。
[0009] 为解决上述技术问题,本发明是采用如下技术方案实现的:所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置,包括加载部分与支撑部分,所述的加载部分包括扭矩加载机构、轴向力加载机构、径向力加载机构和陶瓷测试棒。所述的径向力加载机构即2号电磁激振器,2号电磁激振器包括电磁铁、螺栓、S型拉压力传感器与连接块。所述的电磁铁包括铁芯、线圈、铝座、2个结构相同的铝座盖和挡块。
[0010] 缠绕有线圈的铁芯装入铝座内,挡块插入铝座上的矩形通孔内,使挡块的右端面和铁芯右端的左侧相切。2个结构相同的铝座盖采用螺钉固定在铝座的左端面上,铁芯的左端从2个结构相同的铝座盖上的通孔中伸出。
[0011] 中间位置加工有圆通孔的连接块的两端通过连接螺栓固定在铝座前后端面的右侧设置的前耳环与后耳环上,螺栓的一端连接于连接块中间位置的圆通孔上,另一端连接于S型拉压力传感器的一端。
[0012] 技术方案中所述的铝座为一个长方体形的结构件,铝座的左端设置一个放置线圈的横截面为矩形的水平设置的长方形凹槽,放置线圈的长方形凹槽的底部或者说右端面上设置有放置铁芯中垂直杆的水平设置的扁长方形凹槽,扁长方形凹槽和放置线圈的长方形凹槽的水平对称面共面。铝座上还设置有和扁长方形凹槽水平对称面垂直的安装挡块的矩形通孔,矩形通孔的位置使插入矩形通孔的挡块的右端面和铁芯中垂直杆的左侧相切。在铝座前后端面的右侧设置有结构相同的前耳环与后耳环,前耳环与后耳环上水平设置有安装螺栓的通孔;所述的铁芯为由三段直线杆组成的U形结构件,即由两个相互平行的等长的直线杆和一段与两个相互平行的等长的直线杆相垂直的垂直杆组成。铁芯的材料选用1J22软磁合金,铁芯中两个相互平行的等长的直线杆的工作端的端面设置成弧形面,弧形面的曲率半径和轴向力加载机构的导磁装置中的圆环筒体的外圆柱面的曲率半径相等;所述的轴向力加载机构包括1号电磁激振器和导磁装置,其中:1号电磁激振器属于标准件。
所述的导磁装置由用于径向力加载的圆环筒体和用于轴向力加载的圆环盘组成。圆环盘与圆环筒体一端的端面成固定连接,圆环筒体和圆环盘的回转轴线共线,导磁装置采用的材质为烧结铁氧化性磁铁;所述的扭矩加载机构包括交流电力测功机、弹性联轴器、转速扭矩传感器、逆变器与法兰盘。交流电力测功机的输出端通过法兰盘与转速扭矩传感器的一端连接,转速扭矩传感器的另一端和弹性联轴器的右端连接。所述的支撑部分包括主轴基座、轴向力加载支座、径向力加载支座、转速扭矩传感器支座和交流电力测功机基座。所述的主轴基座包括主轴底座、调整垫片和抱夹机构。调整垫片和抱夹机构依次叠置在主轴底座的上端面上并采用螺栓固定。主轴基座、轴向力加载支座、转速扭矩传感器支座和交流电力测功机基座通过螺栓由左至右依次安装在地平铁上,径向力加载支座安装在轴向力加载支座正后方的地平铁上;所述的径向力加载支座由上安装顶板、下安装底板与组合支撑筋板组成。上安装顶板、下安装底板与处于中间位置的组合支撑筋板采用焊接或铸造方式将三者连接成一体。下安装底板上即组合支撑筋板的左右侧设置有长条形通孔,下安装底板的一端设置有U型槽,上安装顶板由顶板和侧壁板组成,顶板和侧壁板互相垂直,侧壁板位于顶板的一端,侧壁板顶端面的中间位置设置有顶端U型槽;所述的轴向力加载支座由上安装板、下安装板与支撑筋板组组成。上安装板、下安装板与处于中间位置的支撑筋板组采用焊接或铸造方式将三者连接成一体。下安装板上前后对称地设置有U型槽,上安装板由平板和左垂直壁组成,左垂直壁位于平板的左端,左垂直壁与平板互相垂直,左垂直壁的左端面与平板的上端面之间固定链接有呈直角三角形的加强筋板,左垂直壁的前后两端设置有通孔;所述的扭矩加载机构中的弹性联轴器的左端与陶瓷测试棒的右端连接,陶瓷测试棒的左端与安装在抱夹机构上的被测的机床主轴的右端固定连接,交流电力测功机输出轴的回转轴线、弹性联轴器的回转轴线、陶瓷测试棒的回转轴线与被测的机床主轴的回转轴线共线。导磁装置套装在陶瓷测试棒上为固定连接,1号电磁激振器设置在导磁装置的正下方并处于导磁装置中的圆环盘左侧的轴向力加载支座的上安装板上,并通过螺栓和上安装板中的左垂直壁固定连接。1号电磁激振器的对称面和导磁装置的回转轴线为空间垂直交叉,
1号电磁激振器的激振端面与导磁装置中圆环盘的左端面之间应有大于零小于0.5mm的间隙。所述的径向力加载机构即2号电磁激振器中的电磁铁通过铝座固定在径向力加载支座中的上安装顶板的和侧壁板相对的一端的顶板上,2号电磁激振器中的S型拉压力传感器的另一端通过连接螺栓固定在径向力加载支座中的上安装顶板的侧壁板上,2号电磁激振器位于导磁装置中的圆环盘的左侧,2号电磁激振器中的铁芯的两个相互平行的等长的直线杆的回转轴线和导磁装置的回转轴线垂直相交处于同一水平面内,铁芯(18)中两个相互平行的等长的直线杆的工作端的弧形端面与导磁装置中的圆环筒体的外圆柱面之间具有大于零小于0.5mm的间隙。
[0013] 与现有技术相比本发明的有益效果是:
[0014] 1.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置采用电磁激振器对机床主轴进行径向力和轴向力动态加载,同时利用交流电力测功机对被测的机床主轴进行扭矩加载,来模拟机床主轴在真实切削过程中的所受的切削力。
[0015] 2.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置的轴向力、径向力为磁力加载,都能实现连续动态加载,并且能实现较高的频率,可以模拟各种不同加工方式的切削力。用陶瓷材料做加载测试棒,避免了电磁对被测的机床主轴(电主轴)性能的影响。
[0016] 3.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置的径向力加载部分即自行设计的电磁激振器加载面做成曲面,保证有效的磁隙,实现了对圆柱体的磁力加载。
[0017] 4.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置使被测的机床主轴工作时受混合动态力,对被测的机床主轴做可靠性试验,所获取的试验数据更真实可信。
[0018] 5.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置的轴向力和径向力为非接触式加载,避免了被测的机床主轴在高速运转状态下直接加载时因机械接触所产生的摩擦生热与机械磨损对整个试验台的影响。
[0019] 6.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中的电磁激振器带有拉压力传感器,能实时检测电磁吸力的大小,反馈到控制器形成闭环控制;交流电力测功机带有转速扭矩传感器,对所加载的扭矩也能实现实时反馈,使得本装置具有较高的加载精度。
[0020] 7.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中采用的交流电力测功机最高吸收功率为22KW,最高转速为18000rpm。对大功率高转速的机床主轴做加载试验更具有实际意义。
[0021] 8.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中采用的陶瓷测试棒用于连接机床主轴和加载装置,陶瓷测试棒不导磁,能有效的避免加载装置的励磁绕组与电主轴内部的励磁绕组之间的磁场干扰。
[0022] 9.本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置针对不同型号的机床主轴,只需设计更换抱夹机构就可以对其做加载试验,体现了本试验装置的灵活性和通用性。

附图说明

[0023] 下面结合附图对本发明作进一步的说明:
[0024] 图1为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置结构组成的轴测投影图;
[0025] 图2为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中径向力加载机构结构组成的轴测投影图;
[0026] 图3为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中2号电磁激振器的剖视图;
[0027] 图4为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中轴向力加载机构结构组成的轴测投影图;
[0028] 图5为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中轴向力加载机构的结构原理框图;
[0029] 图6为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置的结构原理框图;
[0030] 图7为已经存在的利用电磁对电主轴进行非接触加载的加载结构及原理图;
[0031] 图中:1.机床主轴,2.抱夹机构,3.2号电磁激振器,4.导磁装置,5.陶瓷测试棒,6.弹性联轴器,7.安全罩,8.转速扭矩传感器,9.法兰盘,10.交流电力测功机,11.地平铁,12.交流电力测功机基座,13.转速扭矩传感器支座,14.1号电磁激振器,15.轴向力加载支座,16.调整垫片,17.主轴底座,18.铁芯,19.铝座盖,20.十字槽盘头螺钉,21.铝座,22.挡块,23.螺栓,24.S型拉压力传感器,25.连接块,26.径向力加载支座,27.U型槽,28.长条形通孔,29.线圈

具体实施方式

[0032] 下面结合附图对本发明作详细的描述:
[0033] 参阅图1,本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置包括支撑部分、加载部分和自动控制系统。
[0034] 一.支撑部分
[0035] 所述的支撑部分包括主轴基座、轴向力加载支座15、径向力加载支座26、转速扭矩传感器支座13和交流电力测功机基座12。
[0036] 1.所述的主轴基座包括主轴底座17、调整垫片16和抱夹机构2,调整垫片16和抱夹机构2依次叠置在主轴底座17的上端面上并采用螺栓固定。主轴底座17由顶安装平板、底安装平板与中间组合支撑筋板组成。
[0037] 顶安装平板、底安装平板与处于中间位置的中间组合支撑筋板既可采用焊接方式连接成一体,也可采用铸造方式将三者直接加工而成,当然,还可采用其它方式进行加工。底安装平板上即中间组合支撑筋板的前后侧均布有安装螺栓用的U型槽,通过底安装平板上的U型槽可将主轴底座17固定在地平铁11上,并可调整主轴底座17在地平铁11上前后和左右两个方向的位置。顶安装平板的前后侧均布有安装抱夹机构2的抱夹机构通孔。
中间组合支撑筋板是由一块纵向中间筋板和四块对称布置的横筋板组成。
[0038] 调整垫片16是专门设计的一组厚度不同的板类结构件,通过更换不同厚度的处于主轴底座17和抱夹机构2之间的调整垫片16,即可以调整被测的机床主轴1竖直方向的位置。这样主轴基座就可以调整被测的机床主轴1前后、左右与垂直三个方向的位置,保证了被测的机床主轴1与交流电力测功机10的同轴度。
[0039] 所述的抱夹机构2形状为长方体结构件,开有内孔,大小与机床主轴1外径相同,抱夹机构2左右两端面开有螺纹孔,位置与机床主轴1自带法兰盘上的通孔相对应,通过螺栓将机械主轴1固定在抱夹机构2上。抱夹机构2的下底板前后侧均布有安装用的通孔。
[0040] 2.所述的轴向力加载支座15由上安装板、下安装板与支撑筋板组组成。
[0041] 上安装板、下安装板与处于中间位置的支撑筋板既可采用焊接方式连接成一体,也可采用铸造方式将三者直接加工而成,当然,还可采用其它方式加工而成。下安装板上前后对称地设置有安装螺栓用的U型槽,通过下安装板上的U型槽可将轴向力加载支座15固定在地平铁11上,并可调整轴向力加载支座15在地平铁11上前后和左右两个方向的位置。上安装板由平板和左垂直壁组成,左垂直壁位于平板的左端,左垂直壁与平板互相垂直,左垂直壁的左端面与平板的上端面之间固定链接有呈直角三角形的加强筋板,左垂直壁的前后两侧设置有安装螺栓用的通孔。支撑筋板组是由一块纵向中间筋板和四块对称布置的横筋板组成。
[0042] 3.所述的径向力加载支座26由上安装顶板、下安装底板与组合支撑筋板组成。
[0043] 上安装顶板、下安装底板与处于中间位置的组合支撑筋板既可采用焊接方式连接成一体,也可采用铸造方式将三者直接加工而成,当然,还可采用其它方式进行加工。下安装底板上即组合支撑筋板的左右侧设置有安装螺栓用的长条形通孔28,下安装底板的一端设置有安装螺栓用的U型槽27。通过下安装底板上的U型槽27与长条形通孔28可将径向力加载支座26固定在地平铁11上,并可调整径向力加载支座26在地平铁11上前后和左右两个方向的位置。上安装顶板由顶板和侧壁板组成,顶板和侧壁板互相垂直,侧壁板位于顶板的一端,侧壁板顶端面的中间位置设置有安装螺栓用的顶端U型槽。组合支撑筋板是由一块纵向中间筋板和四块对称布置的横筋板组成。
[0044] 由于轴向力和径向力都是通过电磁力施加,在竖直方向上的位置精度要求不高,因此把轴向力加载支座15和径向力加载支座26设计为固定高度。
[0045] 4.所述的转速扭矩传感器支座13由上安装平板、下安装平板与中间支撑筋板组组成。上安装平板、下安装平板与处于中间位置的中间支撑筋板组既可采用焊接方式连接成一体,也可采用铸造方式将三者直接加工而成,当然,还可采用其它方式进行加工。下安装平板上即中间支撑筋板组的前后侧均布有安装螺栓用的U型槽,通过下安装平板上的U型槽可将转速扭矩传感器支座13固定在地平铁11上,并可调整转速扭矩传感器支座13在地平铁11上前后和左右两个方向的位置。上安装平板的一端均布有安装转速扭矩传感器8的传感器通孔,在传感器通孔相邻一侧设置有安装安全罩7的安全罩通孔。中间支撑筋板组是由一块纵向中间筋板和四块对称布置的横筋板组成。
[0046] 转速扭矩传感器支座13也是和交流电力测功机10相配套的零件,由于交流电力测功机10的体积和质量都很大,不方便调整,故把交流电力测功机10先固定在地平铁11上,然后使被测的机床主轴1、1号电磁激振器14和2号电磁激振器3都以交流电力测功机10的位置和高度为基准来设计主轴底座17、轴向力加载支座15、径向力加载支座26与转速扭矩传感器支座13。
[0047] 二.加载部分
[0048] 所述的加载部分包括扭矩加载机构、轴向力加载机构、径向力加载机构和代替刀柄连接到被测的机床主轴1上的陶瓷测试棒5,所述陶瓷测试棒5上设置有轴肩。其中:轴向力加载机构与径向力加载机构对被测的机床主轴1所施加的轴向力和径向力为非接触式加载。
[0049] 1.参阅图1,所述的扭矩加载机构包括交流电力测功机10、弹性联轴器6、转速扭矩传感器8、逆变器、安全罩7与法兰盘9。
[0050] 交流电力测功机10(实施例中采用的型号为DLG22)安装在交流电力测功机基座12上,交流电力测功机基座12安装在地平铁11上,交流电力测功机10的回转轴线处于地平铁11的纵向对称面内,并和地平铁11的上端面平行。交流电力测功机10的输出端通过法兰盘9与转速扭矩传感器8(转速扭矩传感器8属于交流电力测功机10配置的一部分,是标准件)的一端连接,转速扭矩传感器8的另一端和弹性联轴器6的一(右)端连接,弹性联轴器6的另一(左)端与陶瓷测试棒5的一(右)端连接,陶瓷测试棒5的另一(左)端与被测的机床主轴1的右端固定连接,交流电力测功机10输出轴的回转轴线、弹性联轴器6的回转轴线、陶瓷测试棒5的回转轴线与被测的机床主轴1的回转轴线共线。安全罩
7从前、后与上三个方向罩在弹性联轴器6与陶瓷测试棒5的右端,并通过螺栓将安全罩7的底端固定在转速扭矩传感器支座13中的上安装平板的上端面上,确切地说,安全罩7通过螺栓固定在转速扭矩传感器8左侧的转速扭矩传感器支座13中的上安装平板的上端面上。交流电力测功机10通过逆变器与电网连接,逆变器可将交流电力测功机10产生的电能反馈回电网。
[0051] 2.参阅图1与图5,所述的轴向力加载机构包括1号电磁激振器14和导磁装置4。
[0052] 所述的导磁装置4采用的材质为烧结铁氧化性磁铁,在磁场中旋转时,内部不会产生电涡流,就不会产生切向的洛伦兹力,也不会发热。导磁装置4由一根圆环筒体和一个圆环盘组成,圆环筒体用于径向力加载,圆环盘用于轴向力加载,圆环盘与圆环筒体一端的端面成固定连接,圆环筒体和一个圆环盘的回转轴线共线。导磁装置4由生产厂家专门订做,并做好动平衡要求。
[0053] 所述的1号电磁激振器14是购买的标准件,实施例中采用的型号为DJ-20。
[0054] 1号电磁激振器14包括激励线圈、1号激振铁芯和测力线圈,所述激励线圈包括直流偏磁绕组和交流励磁绕组。直流偏磁绕组产生一个预置偏磁力;交流励磁绕组产生交变激振力,并可以通过编写的相应程序,实现对被测的机床主轴1轴向力的动态连续加载。当1号激振铁芯中产生交变磁通时,测力线圈中产生感应电势,把该电势进行积分,得到积分电压,而力与积分电压成正比。经过适当标定,找出力与积分电压的比例关系,就能把积分电压值转换成力的量值。1号电磁激振器14通以交、直流电流,当直流电流达额定工作电流时,利用电容测微仪调整轴向力加载支座15使1号电磁激振器14的激振端面与导磁装置
4中圆环盘的左端面之间应有大于零小于0.5mm(有效磁隙)的间隙时,1号电磁激振器14就开始对导磁装置4进行激振。当改变功放的输出电流时,可以从DJ型测力表上读得相应激振力的大小。导磁装置4的相对位移振动量可通过电容传感器在电容测微仪上读出,或送记录仪中与信号发生器联动作出频响特性曲线的记录。
[0055] 3.参阅图2与图3,所述的径向力加载机构即2号电磁激振器3,2号电磁激振器3包括电磁铁、螺栓23、S型拉压力传感器24与连接块25。所述电磁铁包括铁芯18、线圈
29、铝座21、2个结构相同的铝座盖19和挡块22。
[0056] 所述的电磁铁的铁芯18为U形结构件,即铁芯18由三段直线杆组成,两个相互平行的等长的直线杆和一段与两个相互平行的等长的直线杆相垂直的垂直杆连成一体。铁芯18的材料选用的是1J22软磁合金,1J22软磁合金具有高饱和的磁感应强度、高居里点和高磁致伸缩系数。U形结构的铁芯18中两个相互平行的等长的直线杆的工作端的端面设置成弧形面,弧形面的曲率半径和导磁装置4中的圆环筒体的外圆柱面的曲率半径相等。
[0057] 所述的铝座21为一个长方箱体结构件,铝座21的左端设置一个放置线圈29的水平设置的长方形凹槽(横截面为矩形的坑),放置线圈29的长方形凹槽(横截面为矩形的坑)的底部(右端面上)设置有放置铁芯18中垂直杆的水平设置的扁长方形凹槽,确切地说,扁长方形凹槽是和铁芯18右端(包括垂直杆的一端)配装在一起,扁长方形凹槽和放置线圈29的长方形凹槽的水平对称面共面。铝座21上还设置有和扁长方形凹槽水平对称面垂直的安装挡块22的矩形通孔,矩形通孔的位置是使插入矩形通孔的挡块22的右端面和U形的铁芯18中垂直杆的左侧相切。在铝座21前、后端面的右侧设置有结构相同的对称的前耳环与后耳环,前耳环与后耳环上水平设置有安装螺栓的通孔。
[0058] 两块结构相同的铝座盖19中的每一块铝座盖19上开有两个半圆槽(半圆槽的曲率与铁芯18曲率相等)和两个用于安装螺钉的螺钉通孔,两块结构相同的铝座盖19从上下方固定在铝座21的左端面上,两块结构相同的铝座盖19上的两个半圆槽合在一起成两个圆通孔,使铁芯18上的两个相互平行的等长的直线杆从两个圆通孔伸出。
[0059] 所述的连接块25为条形结构件,两端为圆弧状,其上均布有三个螺栓通孔,中间一个,两边相对称的有两个。
[0060] 所述的S型拉压力传感器24实施例中采用的型号为CPR24,S型拉压力传感器24的两端设置有螺纹孔。
[0061] 线圈29缠绕(相当于两个结构相同的串联的线圈分别套装)在铁芯18中两个相互平行的等长的直线杆上,将缠绕有线圈29的铁芯18装入铝座21内,即线圈29置于长方形凹槽内,同时铁芯18中的垂直杆部分置于扁长方形凹槽内。横截面为T字形的挡块22插入铝座21上面的矩形通孔内,使挡块22的右端面和U形的铁芯18右端的左侧相切。铝座盖19采用十字槽盘头螺钉20固定在铝座21中长方形凹槽的左端面上,铁芯18中的两个相互平行的等长的直线杆的左端从铝座盖19上的两个通孔中伸出。铝座21和铝座盖19能防止磁力线对检测设备和被测的机床主轴1的干扰。S型拉压力传感器24,它通过单输入通道仪表(型号为CXSE增强型)与PC机相连,通过编写的程序,实时检测和控制磁力大小。电磁铁设计完成后,对电磁铁进行标定,建立电流和力的关系,最终通过交流电控制电磁吸力实现动态连续加载。横截面为矩形的长条形的中间位置加工有圆通孔的连接块25(的两端)通过螺栓固定在铝座21前、后端面的右侧设置的结构相同的前耳环与后耳环上。螺栓
23的一端连接于连接块25中间位置的圆通孔上,另一端连接于S型拉压力传感器24的一端。
[0062] 三.自动控制系统
[0063] 所述自动控制系统包括控制柜、上位工控机、信号放大器、A/D转换器、D/A转换器,以及使用VB语言编写的控制程序。
[0064] 参阅图1,主轴基座、轴向力加载支座15、转速扭矩传感器支座13和交流电力测功机基座12通过螺栓由左至右依次安装在地平铁11上,径向力加载支座26安装在轴向力加载支座15正后方的地平铁11上。
[0065] 交流电力测功机10安装在交流电力测功机基座12上,交流电力测功机10的回转轴线处于地平铁11的纵向对称面内,并和地平铁11的上端面平行。交流电力测功机10的输出端通过法兰盘9与转速扭矩传感器8的右端连接,转速扭矩传感器8的下端通过螺栓安装在转速扭矩传感器支座13中的上安装平板一端均布的传感器通孔上,转速扭矩传感器8的左端和弹性联轴器6的右端连接,弹性联轴器6的左端与陶瓷测试棒5的右端连接,陶瓷测试棒5的左端与安装在抱夹机构2上的被测的机床主轴1的右端固定连接,交流电力测功机10输出轴的回转轴线、弹性联轴器6的回转轴线、陶瓷测试棒5的回转轴线与被测的机床主轴1的回转轴线共线。安全罩7通过螺栓固定在转速扭矩传感器8左侧的转速扭矩传感器支座13中的上安装平板的上端面上。交流电力测功机10通过逆变器与电网连接,逆变器可将交流电力测功机10产生的电能反馈回电网。
[0066] 所述的轴向力加载机构中的导磁装置4通过胀紧套(图中未标出)套装在陶瓷测试棒5上为固定连接。1号电磁激振器14设置在导磁装置的4正下方并处于导磁装置4中的圆环盘左侧的轴向力加载支座15的上安装板中的平板的上端面上,并通过螺栓和上安装板中的左垂直壁固定连接。1号电磁激振器14的对称面和导磁装置4的回转轴线为空间垂直交叉,1号电磁激振器14的激振端面与导磁装置4中圆环盘的左端面之间应有大于零小于0.5mm(0<H<0.5mm)的间隙。
[0067] 所述的径向力加载机构即2号电磁激振器3中的电磁铁通过铝座21固定在径向力加载支座26中的上安装顶板的和侧壁板相对的一端的顶板上,2号电磁激振器3中的S型拉压力传感器24的另一端通过连接螺栓固定在径向力加载支座26中的上安装顶板的侧壁板上,即连接螺栓连接于侧壁板中间位置的U型槽内,S型拉压力传感器24通过单输入通道仪表(型号为CXSE增强型)与PC机相连。通过调整径向力加载支座26的位置,使2号电磁激振器3位于导磁装置4中的圆环盘的左侧,2号电磁激振器3中的铁芯18的两个相互平行的等长的直线杆的回转轴线和导磁装置4的回转轴线垂直相交处于同一水平面内。并使铁芯18中两个相互平行的等长的直线杆的工作端的弧形端面与导磁装置4中的圆环筒体的外圆柱面之间应有大于零小于0.5mm(0<L<0.5mm)的间隙(有效磁隙),以保证
2号电磁激振器3的有效电磁吸力距离。
[0068] 由电磁和测功机混合动态加载的机床主轴可靠性试验装置的工作原理:
[0069] 参阅图5,图中为本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置控制原理的流程框图。2号电磁激振器3中的S型拉压力传感器24、1号电磁激振器14的测力线圈与转速扭矩传感器8对加载的径向力、轴向力、扭矩以及转速进行实时检测,检测信号经放大、模/数转换传输至上位工控机并在使用VB语言编写的控制界面中显示。上位工控机将控制命令输出至被测的机床主轴1、交流电力测功机10、2号电磁激振器3和1号电磁激振器14,对被测的机床主轴1可靠性试验的动态加载装置进行实时控制。
[0070] 所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置在使用时,通过自动控制系统使被测的机床主轴1能够实现启动、停止、低速、高速、以及恒功率与恒扭矩旋转等功能。对被测的机床主轴1进行径向力和轴向力加载时,可实时改变加载力的大小和频率的高低,也可以根据设定好的载荷曲线、波形进行加载。对电被测的机床主轴1进行扭矩加载时,可实现恒功率和恒扭矩两种加载方式,交流电力测功机10将产生的电能回馈电网,节省能源。
[0071] 本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中的控制界面可输出径向加载力、轴向加载力和加载扭矩的曲线,还可输出被测的机床主轴1各种模拟工况下的载荷曲线。当加载力、加载扭矩、主轴转速等数值超过正常范围时,控制系统报警并采取相应安全措施。
[0072] 本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置可以对不用型号的被测的机床主轴1做加载试验,针对不同的被测的机床主轴1只需更换抱夹机2构即可,体现了本装置的灵活性和通用性。
[0073] 本发明所述的由电磁和测功机混合动态加载的机床主轴可靠性试验装置中的实施例是为了便于该技术领域的技术人员能够理解和应用本发明。如果相关的技术人员在坚持本发明基本技术方案的情况下做出不需要经过创造性劳动的等效结构变化或各种修改都在本发明的保护范围内。