一种汽车试验用换挡机械手转让专利

申请号 : CN201110264354.3

文献号 : CN102384850B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈弘李伟乔胜华陆红雨史广宝

申请人 : 中国汽车技术研究中心陈弘

摘要 :

本发明属于汽车试验自动驾驶装置技术领域,涉及一种汽车试验用换挡机械手,包括选挡电机、换挡电机、选挡轴、换挡轴、大臂I、大臂II、大臂III、小臂I、小臂II、两个L形调节臂、腕部连接杆、肘关节和换挡杆套筒,肘关节包括肘关节轴I、肘关节轴II、肘关节轴支架I,肘关节轴支架II和销轴,肘关节轴I与肘关节轴支架I及肘关节轴支架II活动连接,肘关节轴支架I通过销轴分别与大臂I及大臂II的上部连接,肘关节轴支架II通过销轴与大臂III的上部连接,肘关节轴II与肘关节轴支架I活动连接,换挡杆套筒通过腕部连接杆分别与两个L形调节臂连接。本发明选挡和换挡两个运动过程,互不干涉,实现了挂档动作的解耦,具有控制方便的优点。

权利要求 :

1.一种汽车试验用换挡机械手,包括选挡电机、换挡电机、由选挡电机驱动的选挡轴、由换挡电机驱动的换挡轴、大臂Ⅰ、大臂Ⅱ、大臂Ⅲ、小臂Ⅰ、小臂Ⅱ、两个L形调节臂、腕部连接杆、肘关节和换挡杆套筒,所述的肘关节包括肘关节轴Ⅰ、肘关节轴Ⅱ、肘关节轴支架Ⅰ,肘关节轴支架Ⅱ和销轴,肘关节轴Ⅰ与肘关节轴支架Ⅰ及肘关节轴支架Ⅱ活动连接,肘关节轴支架Ⅰ通过销轴分别与大臂Ⅰ及大臂Ⅱ的上部连接,肘关节轴支架Ⅱ通过销轴与大臂Ⅲ的上部连接,肘关节轴Ⅱ与肘关节轴支架Ⅰ活动连接;选挡轴通过销轴与大臂Ⅲ的下部连接,大臂Ⅰ和大臂Ⅱ下部通过销轴连接到换挡轴;小臂Ⅰ的一端与肘关节轴Ⅰ锁紧连接,小臂Ⅱ的一端与肘关节轴Ⅱ锁紧连接,小臂Ⅰ和小臂Ⅱ各自的另一端分别与一个L型调节臂相连,换挡杆套筒通过腕部连接杆分别与两个L形调节臂连接。

2.根据权利要求1所述的汽车试验用换挡机械手,其特征在于,所述的汽车试验用换挡机械手包括用于获得套筒的运动位置的角位移传感器,其输出用于控制换挡动作。

3.根据权利要求1所述的汽车试验用换挡机械手,其特征在于,选挡电机与其减速机相连,减速机输出轴通过联轴器与选挡轴连接。

4.根据权利要求1所述的汽车试验用换挡机械手,其特征在于,换挡电机与其减速机相连,减速机输出轴通过联轴器与换挡轴连接。

5.根据权利要求1所述的汽车试验用换挡机械手,其特征在于,在两个L型调节臂上设置有用于改变小臂的整体长度的位置调节孔;在腕部连接杆上设置有用于调节换挡杆套筒位置的调节孔。

说明书 :

一种汽车试验用换挡机械手

技术领域

[0001] 本发明涉及一种能够在汽车试验中,代替人类驾驶员的电动式驾驶装置。属于汽车试验自动驾驶装置技术领域。

背景技术

[0002] 近年来,汽车保有量快速增长,导致汽车排放尾气中的有害物质所造成的污染问题逐渐凸显。为此,国家颁布并实施了严格的汽车排放标准以限制尾气中有害物质的含量。耐久性循环试验时间长,在试验过程中车速跟踪的准确性和重复性精度依赖于试验人员的驾驶技巧和反应速度,而且循环车速不断地改变,试验要求车辆速度误差必须控制在2km/h内,因而会降低排放试验数据的可靠性。测功机设备发出的噪声,车辆排放的尾气对空气环境的污染,长时间枯燥的驾驶均会对驾驶员造成一定的伤害。因此,需要用汽车试验驾驶机器人来替代人类驾驶员进行试验,使用汽车试验驾驶机器人可以保证试验数据的客观性和准确性,减轻驾驶人员的疲劳,降低恶劣环境对试验人员的伤害。此外,将汽车驾驶机器人应用于排放耐久性试验,还可以缩短试验时间,大幅度减少试验费用,提高试验效率。
[0003] 国外的汽车试验发展起步较早,国外公司的机器人技术资料保密,不对外公开。研制这类机器人的公司主要有,日本小野株式会社(ONOSOKKI)、AUTOPILOT、HORIBA等公司等公司,美国的LBECO公司,英国的MIRA、Froude Consine、Anthony Best Dynamics等公司。
[0004] 国内的200410065844.0号专利是描述驾驶机器人的。其利用步进电机控制油门,实现油门位置的精确定位。制动器、离合器以及换挡机械手使用汽缸作为动力源,通过相应的气阀调节来实现快速的动作。由于气体的压缩性大,对速度和位置进行精确控制比较困难,并且阻尼效果不理想。现场机器人控制计算机根据驾驶动作要求,控制电机和汽缸完成驾驶动作和时序之间的配合。该机器人的油门机械腿只靠电力驱动,在试验进行的过程中车辆正以某一时速行驶,如果由于某些因素造成电力突然中断,那么该驾驶机器人的油门机械腿将停留在当前位置,无法自动回收抬起油门踏板,对于车辆及试验人员存在一定的安全隐患。
[0005] 汽车试验驾驶机器人的执行机构通常包括油门机械腿,制动机械腿,离合器机械腿,换挡机械手。汽车试验驾驶机器人按照其驱动方式分为三类,包括液压驱动,气压驱动和电机驱动三种基本类型。液压驱动的缺点是对于含有液压油元件的密封要求高,如果泄露将造成环境污染,管路结构复杂,维护要求高;气压驱动的气体压缩性大,对速度和位置的精确控制困难,阻尼效果差。电机驱动又可以分为普通交直流电机和伺服电机,普通交直流电机控制性能差,惯性大,不易精确定位;伺服电机的体积小,控制性能好,控制灵活性强,可以实现对速度和位置的精确控制。
[0006] 传统的汽车试验驾驶机器人换挡机械手的机械传动形式,可采用齿轮齿条式,这种形式的优点是定位精确,缺点是结构复杂,齿条行程大,整机尺寸大;角度控制二力杆式,优点是结构简单,免维护,但是控制复杂。

发明内容

[0007] 针对现有技术的不足,本发明的目的是提供一种可以应用在代替人类驾驶员,进行汽车试验,尤其是耐久性试验的电动驾驶机器人装置上的换挡机械手。其能够适应不同类型,不同换挡形式的车辆,在不对车辆进行改造的基础上,安装在驾驶室内。
[0008] 本发明的技术方案是:汽车试验用换挡机械手,包括选挡电机、换挡电机、由选挡电机驱动的选挡轴、由换挡电机驱动的换挡轴、大臂Ⅰ、大臂Ⅱ、大臂Ⅲ、小臂Ⅰ、小臂Ⅱ、两个L形调节臂、腕部连接杆、肘关节和换挡杆套筒,所述的肘关节包括肘关节轴Ⅰ、肘关节轴Ⅱ、肘关节轴支架Ⅰ,肘关节轴支架Ⅱ和销轴,肘关节轴Ⅰ与肘关节轴支架Ⅰ及肘关节轴支架Ⅱ活动连接,肘关节轴支架Ⅰ通过销轴分别与大臂Ⅰ及大臂Ⅱ的上部连接,肘关节轴支架Ⅱ通过销轴与大臂Ⅲ的上部连接,肘关节轴Ⅱ与肘关节轴支架Ⅰ活动连接;选挡轴通过销轴与大臂Ⅲ的下部连接,大臂Ⅰ和大臂Ⅱ下部通过销轴连接到换挡轴;小臂Ⅰ的一端与肘关节轴Ⅰ锁紧连接,小臂Ⅱ的一端与肘关节轴Ⅱ锁紧连接,小臂Ⅰ和小臂Ⅱ各自的另一端分别与一个L型调节臂相连,换挡杆套筒通过腕部连接杆分别与两个L形调节臂连接。
[0009] 作为优选实施方式,所述的汽车试验用换挡机械手包括用于获得套筒的运动位置的角位移传感器,其输出用于控制换挡动作;选挡电机与其减速机相连,减速机输出轴通过联轴器与选挡轴连接;换挡电机与其减速机相连,减速机输出轴通过联轴器与换挡轴连接;在两个L型调节臂上设置有用于改变小臂的整体长度的位置调节孔;在腕部连接杆上设置有用于调节换挡杆套筒位置的调节孔。
[0010] 本发明的换挡机械手,采用伺服电机垂直放置的方式,一个驱动机械臂向左或向右运动,完成选挡动作;一个驱动机械臂向前或向后运动,完成换挡动作。选挡和换挡两个运动过程,互不干涉,实现了挂档动作的解耦,控制方便。而且,本发明的采用伺服电机驱动,起动转矩大,运行范围广,低振动;具有较高的响应速度、精度和频率;具有优良的控制特性。并且,本发明具有结构紧凑,易于安装和维护的优点。

附图说明

[0011] 图1是本发明整机的侧视图。
[0012] 图2是本发明整机的主视图。
[0013] 图3是本发明整机的俯视图。
[0014] 图4是离合器机械腿驱动单元的侧视图。
[0015] 图5是制动器机械腿驱动单元的俯视图。
[0016] 图6是油门机械腿驱动单元的俯视图。
[0017] 图7是换挡机械手的正视图。
[0018] 图8是换挡机械手的左视图。
[0019] 图9是换挡机械手的俯视图。
[0020] 图10是换挡机械手的右视图。
[0021] 图11是离合器机械腿的俯视图。
[0022] 图12是制动器机械腿的俯视图。
[0023] 图13是油门机械腿的俯视图。
[0024] 其中包括:整机固定底板1,转动底板2,转轴3,调节螺栓4,离合器机械腿驱动单元伸出端5,球形万向关节非转动部分6,轴承座7,直线位移传感器8,销轴9,小滑轮10,减速机固定支架11,压缩弹簧12,驱动杆13,驱动杆座14,伺服电机15,减速机16,大滑轮17,轴套18,轴承19,制动器机械腿驱动单元伸出端20,球形万向关节非转动部分21,轴承座22,轴套23,大滑轮24,销轴25,小滑轮26,减速机固定支架27,减速机28,伺服电机29,驱动杆座30,驱动杆31,压缩弹簧32,直线位移传感器33,轴承34,油门机械腿驱动单元伸出端35,球形万向关节非转动部分36,轴承座37,轴套38,大滑轮39,减速机固定支架40,减速机41,伺服电机42,驱动杆座43压缩弹簧44,驱动杆45,直线位移传感器46,小滑轮
47,销轴48,轴承49,离合机械腿外管50,锁紧环51,离合器踏板夹52,球形万向关节53,离合机械腿内管54,轴承55,机械手基座56,选挡电机57,换挡轴58,轴承59,联轴器60,换挡电机减速机61,换挡电机62,大臂Ⅰ63,肘关节轴Ⅱ64,肘关节轴Ⅰ65,大臂Ⅱ66,小臂Ⅰ67,L形调节臂Ⅰ68,换挡杆套筒69,L形调节臂Ⅱ70,小臂Ⅱ71,轴承72,选挡轴73,联轴器74,选挡电机减速机75,腕部连接杆Ⅰ76,腕部连接杆Ⅱ77,大臂Ⅲ78,肘关节轴支架Ⅰ79,肘关节轴支架Ⅱ80,销轴81,角位移传感器82,制动机械腿外管83,锁紧环84,制动踏板夹85,球形万向关节86,制动机械腿内管87,油门机械腿外管88,锁紧环89,油门踏板夹90,球形万向关节91,油门机械腿内管92。

具体实施方式

[0025] 为了能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
[0026] 请参阅图1~图3,采用本发明的换档机械手的驾驶机器人属于一种滑轮式驾驶机器人,包括机器人底座1,安放在驾驶员座椅上,离合器机械腿驱动单元伸出端5插入离合器机械腿外管50中,离合器踏板夹52与离合器踏板连接,制动器机械腿驱动单元伸出端20插入制动器机械腿外管82中,制动器踏板夹84与制动器踏板连接,油门机械腿驱动单元伸出端伸出端35插入油门机械腿外管87中,油门机械腿踏板夹89与油门踏板连接,换挡机械手通过换挡杆套筒69与汽车换挡变速杆连接。调节螺栓4穿过转轴3,并且与转动底板后部伸出部分垂直,改变调节螺栓4的长度,转轴3绕其轴转动,调整转动底板2与固定底板1的角度。使转动底板2平面指向车辆踏板,并保证近似垂直,这样可以减小机械腿驱动单元驱动电机在工作过程中的动力损失。机械手大臂Ⅰ63,大臂Ⅱ66,大臂Ⅲ78尽量与固定底板垂直,通过改变L形调节臂68(70)的长度,腕部连接杆Ⅰ76,腕部连接杆Ⅱ77的位置,使换挡杆套筒套接与换挡杆。车辆的离合器踏板、制动器踏板、油门踏板和换挡杆与机器人的执行端连接,实现了其在车辆上的无损安装。
[0027] 参阅图4,离合器机械腿驱动单元采用伺服电机作为动力源,减速机16与伺服电机15采用紧抱式连接,伺服电机及其减速机由支架11固接在转动底板2上,减速机输出轴通过轴套18与轴承19伸入式连接。大滑轮17与减速机输出轴套18固接,小滑轮10安装在轴销9上。大滑轮下端面与小滑轮的水平面相切。钢丝绳一端缠绕在大滑轮上,通过小滑轮使钢丝绳运动方向与大滑轮旋转方向垂直,另一端与驱动杆13后端固接。压缩弹簧12套在驱动杆13外面,前端与减速机固定支架连接,后端与执行杆后端连接。驱动杆由四根细杆构成,小滑轮边缘与其中心在一条水平线上,保证钢丝绳拉力在传递过程中不会产生其他方向的分力,造成力的损失。驱动杆穿过减速机固定支架11及减速机轴承座7向前伸出。球形万向关节的非转动部分6与执行杆伸出端固接,离合器机械腿驱动单元伸出端5与离合器机械腿伸入式连接。参阅图7,离合器机械腿由伸缩杆外管50,内管54,球形万向关节53,离合器夹52板构成。内管与球形万向关节非转动端连接,转动部分与离合器踏板夹螺纹连接。离合器驱动器的伺服电机转动拉动钢丝拉绳,拉绳通过滑轮转换方向,压缩弹簧,拉动驱动杆向前运动,驱动杆伸出端与离合器机械腿插入式连接,驱动离合器机械腿控制离合器踏板。通过离合机械腿驱动器中驱动杆带动直线位移传感器8,得到离合器机械腿的位置。离合器驱动单元通过调节伺服电机的转速以及启停时间,控制驱动杆的运动速度从而实现离合器机械腿回收速度的调节,达到了汽车启动和换挡过程中对离合器动作快慢的要求,降低换挡过程冲击,保证了汽车启动和换挡的平顺性。
[0028] 参阅图5,制动器机械腿驱动单元由伺服电机29作为动力源,减速机28与伺服电机29采用紧抱式连接,伺服电机及其减速机由支架固27接在转动底板2上,减速机输出轴通过轴套23与轴承34连接。大滑轮24与减速机输出轴套23固接,小滑轮26安装在轴销25上。大滑轮下端面与小滑轮的水平面相切。钢丝绳一端缠绕在大滑轮上,通过小滑轮使钢丝绳运动方向与大滑轮旋转方向垂直,另一端与驱动杆后端固接。压缩弹簧32套在驱动杆
31外面,前端与减速机固定支架连接,后端与执行杆后端连接。驱动杆穿过减速机固定支架及减速机轴承座向前伸出。球形万向关节的非转动部分21与执行杆伸出端固接,转动部分
20与制动器机械腿伸入式连接。参阅图12,制动器机械腿由伸缩杆外管83,内管87,球形万向关节86,制动器夹板85构成。内管与球形万向关节非转动端连接,转动部分与制动器踏板夹螺纹连接。制动器驱动单元的伺服电机转动拉动钢丝拉绳,拉绳通过滑轮转换方向,压缩弹簧,拉动驱动杆向前运动,驱动杆伸出端与制动器机械腿插入式连接,驱动制动器机械腿控制制动器踏板。通过制动器机械腿驱动单元中驱动杆带动直线位移传感器33,得到制动器机械腿的位置。制动器机械腿驱动单元通过控制伺服电机的转速,遵循耐久试验工况要求,调节制动器踏板夹踩踏制动踏板的时间,改变汽车制动过程中的减速度,保证汽车速度对工况要求车速跟踪的准确性。
[0029] 参阅图6,油门机械腿控制装置由伺服电机42作为动力源,减速机41与伺服电机采用紧抱式连接,伺服电机及其减速机由支架40固接在转动底板2上,减速机输出轴通过轴套38与轴承37连接。大滑轮39与减速机输出轴套38固接,小滑轮47安装在轴销48上。大滑轮下端面与小滑轮的水平面相切。钢丝绳一端缠绕在大滑轮上,通过小滑轮使钢丝绳运动方向与大滑轮旋转方向垂直,另一端与驱动杆后端固接。压缩弹簧44套在驱动杆45外面,前端与减速机固定支架40连接,后端与执行杆座43连接。驱动杆穿过减速机固定支架及减速机轴承座向前伸出。球形万向关节的非转动部分36与执行杆伸出端固接,转动部分35与油门机械腿伸入式连接。参阅图13,油门机械腿由伸缩杆外管88,内管92,球形万向关节91,油门夹板90构成。内管与球形万向关节非转动端连接,转动部分与油门踏板夹螺纹连接。油门驱动器的伺服电机转动拉动钢丝拉绳,拉绳通过滑轮转换方向,压缩弹簧,拉动驱动杆向前运动,驱动杆伸出端与油门机械腿插入式连接,驱动油门机械腿控制油门踏板。通过油门机械腿驱动单元中驱动杆带动直线位移传感器46,得到油门机械腿的位置,精确的控制油门踏板,实现车辆加速,稳速行驶的目标要求。
[0030] 参阅图7~10,挂档动作可分解为选挡和换挡两个垂直方向的动作,需要实现换挡杆套筒69两个方向的自由度运动。换挡机械手由选挡伺服电机57和换挡伺服电机62,选挡轴73,换挡轴58,大臂Ⅰ63,大臂Ⅱ66,大臂Ⅲ78,小臂Ⅰ67,小臂Ⅱ71,L形调节臂Ⅰ68,L形调节臂Ⅱ70,换挡杆套筒69组成。选挡伺服电机57与其减速机75紧抱式连接,减速机输出轴通过联轴器74与选挡轴73连接。大臂Ⅲ78下部通过销轴与选挡轴73连接,上部与肘关节连接。大臂Ⅰ63与大臂Ⅱ66的上部与肘关节连接,其下部通过销轴81连接与换挡轴58。小臂Ⅰ67与小臂Ⅱ71的一端通过连接孔,分别与肘关节的伸出端肘关节轴Ⅱ64,肘关节轴Ⅰ65锁紧连接,另一端分别与两个L型调节臂连接。换挡杆套筒69通过腕部连接杆Ⅰ76和Ⅱ77,分别与两个L形调节臂连接。调整L型调节臂Ⅰ68和Ⅱ70的位置调节孔,可以改变小臂的整体长度,调整换挡杆套筒的前后位置。调节腕部连接杆Ⅰ76和Ⅱ77的调节孔,可以调节换挡杆套筒的左右位置。
[0031] 参阅图9~10,肘关节连接大臂Ⅰ63,大臂Ⅱ66和大臂Ⅲ78。肘关节由肘关节轴Ⅱ64,肘关节轴Ⅰ65,肘关节轴支架Ⅰ79,肘关节轴支架Ⅱ80,销轴81组成。肘关节轴Ⅰ65与肘关节轴支架Ⅰ79及肘关节轴支架Ⅱ80套接并可绕支架转动,肘关节轴支架Ⅰ79通过销轴81分别与大臂Ⅰ63及大臂Ⅱ66的上部连接,肘关节轴支架Ⅱ80通过销轴与大臂Ⅲ78的上部连接。肘关节轴Ⅱ64与肘关节轴支架Ⅰ79套接并可绕其转动,肘关节轴支架Ⅰ79通过销轴81分别与大臂Ⅰ63及大臂Ⅱ66连接。
[0032] 选挡电机57驱动大臂Ⅲ78向左或向右转动,大臂Ⅰ63和大臂Ⅱ66的下部通过销轴与换挡轴58连接,上部通过肘关节与大臂Ⅲ78连接,大臂Ⅰ63和大臂Ⅱ66在肘关节的驱动下,随着大臂Ⅲ78左右转动。在大臂Ⅲ78的驱动下,肘关节轴支架Ⅰ79和肘关节轴支架Ⅱ80绕其销轴81转动,驱动肘关节轴Ⅱ64,及肘关节轴Ⅰ65做向左或向右的水平运动,从而推动小臂Ⅰ67和Ⅱ71向左或向右水平运动,进而由换挡套筒69带动换挡杆左右运动,实现选挡动作。换挡电机62驱动大臂Ⅰ63和Ⅱ66前后运动,驱动肘关节轴Ⅱ64,肘关节轴Ⅰ65,绕其肘关节轴支架79转动,带动大臂Ⅲ78随大臂Ⅰ63和Ⅱ66前后运动,完成换挡动作。大臂驱动小臂向前或向后运动,通过角位移传感82器获得套筒的运动位置,完成换挡动作。选挡和换挡两个运动过程线性度高,且不互相干涉,实现了挂档动作的解耦,控制方便。通过L形调节臂,可以调节套筒的位置,从而适应不同驾驶空间的车型。
[0033] 在操作过程中,调节螺栓4的长度,可以调节活动底板的角度,得到机械腿驱动单元与对应踏板的位置,配合调节球形万向关节的方向,改变对应机械腿的长度,实现驾驶机器人的安装。
[0034] 驾驶机器人在车辆上安装好之后,进行识教过程,以离合器踏板为例说明,下压离合器踏板到底,计算机发出指令给离合器机械腿控制伺服电机,伺服电机转动,带动缠绕在减速机输出轴上的钢丝绳转动,通过小滑轮换向拉动驱动杆,压缩弹簧,使驱动杆向前运动,当驱动杆伸出端与离合器机械腿外管截面接触时,计算机发出停止信号,离合器机械腿驱动单元回收,得到了离合器踏板的行程。制动器踏板行程及油门踏板行程的获得以此类推。