一种温敏型表面增强拉曼散射探针的制备方法转让专利

申请号 : CN201110232779.6

文献号 : CN102391414B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王著元崔一平邵平宗慎飞

申请人 : 东南大学

摘要 :

本发明是一种温敏型表面增强拉曼散射探针的制备方法,该制备方法具体为:利用微乳液聚合的方法,用N-异丙基丙烯酰胺NIPAM作为单体,N,N-亚甲基双丙烯酰胺BIS作为交联剂,2,2'-偶氮二异丁基脒二盐酸盐AAPH作为引发济,制备出温敏聚合物微球;然后将该温敏聚合物微球加入到摩尔比为10:1~100:1的十六烷基三甲基溴化铵表面修饰剂和四氯金酸的混合溶液中,用强还原剂硼氢化钠还原四氯金酸得到温敏型金种子溶液;配制十六烷基三甲基溴化铵、硝酸银和四氯金酸的混合溶液,得到生长溶液;将上述制备的温敏型金种子溶液注入上述的生长溶液中,反应3-4小时,并加入具有SERS活性的有机分子,即得到温敏型表面增强拉曼散射SERS探针。

权利要求 :

1.一种温敏型表面增强拉曼散射探针的制备方法,其特征在于该制备方法具体为:

1.)利用微乳液聚合的方法,用N-异丙基丙烯酰胺NIPAM作为单体,N,N-亚甲基双丙烯酰胺BIS作为交联剂,2,2'-偶氮二异丁基脒二盐酸盐AAPH作为引发剂来使单体发生聚合反应,在无氧环境,60~80℃水浴条件下反应2~8小时,制备出温敏聚合物微球;

2.)然后将该温敏聚合物微球加入到摩尔比为10:1~100:1的十六烷基三甲基溴化铵表面修饰剂和四氯金酸的混合溶液中,氯金酸离子通过静电吸附作用被吸附到温敏聚合物微球网孔中,用强还原剂硼氢化钠还原四氯金酸得到温敏型金种子溶液;

3.)配制十六烷基三甲基溴化铵、硝酸银和四氯金酸的混合溶液,其中十六烷基三甲基溴化铵与硝酸银的摩尔比为10:1,四氯金酸与硝酸银的摩尔比为1:5或3:40,然后加入抗坏血酸溶液,得到生长溶液;

4.)将上述制备的温敏型金种子溶液注入上述的生长溶液中,反应3-4小时,并加入具有表面增强拉曼散射SERS活性的有机分子,即得到温敏型表面增强拉曼散射SERS探针。

2.根据权利要求1所述的温敏型表面增强拉曼散射探针的制备方法,其特征在于所述的具有表面增强拉曼散射SERS活性的有机分子为4-巯基苯甲酸,或9-氨基吖啶。

3.根据权利要求1所述的温敏型表面增强拉曼散射探针的制备方法,其特征在于所述的温敏型表面增强拉曼散射SERS探针,通过调节探针水溶液的温度高低,控制表面增强拉曼散射信号的强弱;当探针被置于温度<32℃水溶液时,由于温敏聚合物处于舒展状态,金纳米棒彼此间距离较大,表面增强拉曼散射信号较弱,当探针被置于温度>32℃水溶液时,温敏聚合物收缩,表面的金纳米棒之间的距离变小,从而导致表面增强拉曼散射信号增强。

说明书 :

一种温敏型表面增强拉曼散射探针的制备方法

[0001] 技术领域:
[0002] 本发明涉及高分子材料和纳米材料领域,具体涉及一种具有表面增强拉曼散射性质温敏可控的杂化纳米微球的制备方法。
[0003] 背景技术:
[0004] 在高分子材料中,聚合物/无机杂化纳米材料由于其许多奇特的性能近年来备受人们的关注。通过与聚合物的复合,无机纳米粒子可被赋予许多新的特性,如两亲性、生物活性、化学活性、可分散性、吸附性以及有机相容性等,从而在药物输运、基因转染、蛋白质提纯等方面展现出重要的应用价值和广阔的应用前景。
[0005] 聚N-异丙基丙烯酰胺(PNIPAM)是一种具有温度响应性的聚合物,在低温下溶胀,在高温下收缩。它在32℃左右有一个最低临界溶解温度(LCST)。当温度小于32℃时,PNIPAM表现出亲水性;当温度大于32℃时,它表现出憎水性。并且PNIPAM的LCST在较大范围内是可调节的,加入亲水性共聚单体会升高LSCT,反之加入憎水性共聚单体会降低LCST。PNIPAM的这种特殊的温敏性质使它在药物输运、温敏开关以及药物的可控释放领域都得到了广泛的研究报道。另一方面,近年来,金属纳米粒子凭借其优异的光、电、磁学性质也得到了迅速的发展,在光催化、光传感、医学诊疗等领域发挥着越来越重要的作用。因此,将PNIPAM与金属纳米粒子进行复合,制备出的杂化纳米材料既保留了微球的温敏特性,又结合了金属纳米粒子优异的光学和电学特性,可实现多功能的集成,对于制备具有多重响应性的智能材料具有重要意义。
[0006] 表面增强拉曼散射技术(Surface enhanced Raman scattering, SERS)具有谱线窄,有效淬灭荧光背景干扰,能够提供探测样品的指纹信息,以及样品不易光漂白等优点。5 6
不仅如此,由于表面增强拉曼散射对拉曼信号巨大的增强效应(10-10 倍,甚至更高),使得样品的检测浓度可以很低甚至达到单分子量级。目前基于表面增强拉曼散射技术的纳米结构和纳米器件已经成为探测和分析生物样品的有利工具。
[0007] 综上所述,将聚合物PNIPAM与金属纳米粒子相结合,制备出具有温敏性和SERS特性双重性质的杂化纳米材料,对于拓展SERS探针的功能和应用领域具有重要的意义。

发明内容

[0008] 技术问题: 本发明的目的在于提供一种温敏型表面增强拉曼散射探针的制[0009] 备方法,该方法首先合成聚合单体/PNIPAM核壳结构的聚合物微球,进而在其表面原位生长一层金纳米棒,获得具有SERS特性和温敏性双重特性的纳米杂化微球。通过调节环境温度的升高或降低,可以实现该纳米杂化微球SERS信号可逆的增强或减弱,对于温敏材料在生物传感、药物可控释放等方面的应用具有重要的价值。
[0010] 技术方案:本发明的温敏型表面增强拉曼散射探针的制备方法具体为:
[0011] 1.) 利用微乳液聚合的方法,用N-异丙基丙烯酰胺NIPAM作为单体,N,N-亚甲基双丙烯酰胺BIS作为交联剂, 2,2'-偶氮二异丁基脒二盐酸盐AAPH作为引发济,在无氧环境,60~80℃水浴条件下反应2~8小时,制备出温敏聚合物微球;
[0012] 2.) 然后将该温敏聚合物微球加入到摩尔比为10:1~100:1的十六烷基三甲基溴化铵表面修饰剂和四氯金酸的混合溶液中,氯金酸离子通过静电吸附作用被吸附到温敏聚合物微球网孔中,用强还原剂硼氢化钠还原四氯金酸得到温敏型金种子溶液;
[0013] 3.) 配制十六烷基三甲基溴化铵、硝酸银和四氯金酸的混合溶液,三者的摩尔比为50:2:1~200:20:1,然后加入抗坏血酸溶液,得到生长溶液;
[0014] 4.) 将上述制备的温敏型金种子溶液注入上述的生长溶液中,反应3-4小时,并加入具有SERS活性的有机分子,即得到温敏型表面增强拉曼散射SERS探针。
[0015] 所述的具有SERS活性的有机分子为4-巯基苯甲酸,或9-氨基吖啶。
[0016] 所述的温敏型表面增强拉曼散射SERS探针,通过调节探针水溶液的温度高低,控制表面增强拉曼散射信号的强弱;当探针被置于温度<32℃水溶液时,由于温敏聚合物处于舒展状态,金纳米棒彼此间距离较大,表面增强拉曼散射信号较弱,当探针被置于温度>32℃水溶液时,温敏聚合物收缩,表面的金纳米棒之间的距离变小,从而导致表面增强拉曼散射信号增强。
[0017] 有益效果:
[0018] 1、所制备的SERS同时具有SERS特性和温敏性双重响应性质。即随着环境温度的升高或降低,SERS探针的信号强度呈可逆的增强或减弱。
[0019] 2、由于本发明采用生物兼容性好的聚合物PNIPAM作为温敏性材料,利用原位生长的方法制备金纳米棒,所获得的SERS探针无毒或毒性很小,并且在水性环境中可稳定分散。
[0020] 3、制备得到的SERS探针具有非常均匀的粒径和球形,通过改变合成条件可以很容易调节其尺寸大小。
[0021] 4、制备方法简单,不需要特殊的设备,在常温常压下操作,可控性强,重复性好。
[0022] 附图说明:
[0023] 图1是本发明实施例1制备的温敏型SERS探针的紫外可见吸收谱;
[0024] 图2是本发明实施例1制备的温敏型SERS探针的温敏特征曲线图;
[0025] 图3是本发明实施例1制备的温敏型SERS探针在高温和低温时的表面增强拉曼散射图谱。

具体实施方式

[0026] 本发明的温敏型SERS探针的制备的工艺流程为:利用微乳液聚合的方法,用N-异丙基丙烯酰胺(NIPAM)作为单体,N,N-亚甲基双丙烯酰胺(BIS)作为交联剂,2,2'-偶氮二异丁基脒二盐酸盐(AAPH)作为引发济,在无氧环境,76℃水浴条件下反应4小时左右,制备出温敏聚合物微球;然后将该温敏聚合物微球加入到含有一定量的十六烷基三甲基溴化铵表面修饰剂和四氯金酸的混合溶液中,氯金酸离子通过静电吸附作用会吸附到温敏微球网孔中,用强还原剂硼氢化钠还原四氯金酸得到温敏型金种子溶液;配制十六烷基三甲基溴化铵四氯金酸和硝酸银的混合溶液,加入抗坏血酸溶液,得到生长溶液;将一定量种子溶液注入生长溶液,反应3-4小时,并加入SERS标记物,即得到温敏型SERS探针。
[0027] 所述的温敏型SERS探针,其特征在于通过调节温度大小,可以控制表面增强拉曼散射信号的强弱。低温时,由于温敏聚合物处于舒展状态,金纳米棒彼此间距离较大,表面增强拉曼散射信号较弱,温度升高时,温敏聚合物收缩,表面的金纳米棒之间的距离变小,从而导致表面增强拉曼散射信号增强。
[0028] 以下举例说明本发明的具体实施方式,但本发明的内容并不限于所举的例子。
[0029] 实施例一
[0030] 1)温敏聚合物微球的制备:
[0031] 80 mg NIPAM和5mg BIS配成20 ml水溶液,磁搅拌,通氩气半小时后,加入1 ml (0.3 M)AAPH水溶液,在76℃水浴条件下反应4小时左右,离心清洗,重新分散到10 ml去离子水中,得到温敏聚合物微球。
[0032] 2)温敏型金种子溶液的制备:
[0033] 室温搅拌条件下,在10mL的浓度为 的十六烷基三甲基溴化铵和四氯金酸的混合溶液中,加入2ml 上述温敏微球,磁搅拌半小时后,迅速加入冰水浴中充分冷却的 溶液2 ml ,剧烈搅拌2分钟后停止搅拌,反应
后得到温敏型金种子溶液。
[0034] 3)生长溶液的制备:
[0035] 在干净的反应器中配制10ml十六烷基三甲基溴化铵、四氯金酸和硝酸银的混合液,其中十六烷基三甲基溴化铵摩尔浓度为 ,四氯金酸的摩尔浓度为,硝酸银摩尔浓度为 ,硝酸银与四氯金酸的摩尔比为5:1,最后将混合溶液置于
28℃的水浴中加入0.5ml(0.2M)抗坏血酸溶液,搅拌均匀,溶液从橙黄色变为无色,即得到生长溶液。
[0036] 4) 温敏型SERS探针的制备:
[0037] 在上述步骤3)中配置的生长溶液中加入1ml在步骤2)中已制好的温敏型种子溶液,使种子溶液与生长溶液的金元素摩尔比为10:3,金纳米棒即开始生长。加入了种子溶液后的生长溶液在28℃的水浴下反应4小时,然后加入SERS标记物9-氨基吖啶(9AA)的酒-3 -8精溶液(10 ~10 ),即得温敏型SERS探针。
[0038] 该温敏型SERS探针的紫外可见吸收谱见图1,由图1可见,该温敏型SERS探针的纵向等离子吸收峰在760nm附近,横向等离子峰在530nm左右。95%以上的金纳米棒都生长在温敏聚合物微球表面 图2,室温下SERS探针的平均尺寸在250nm。该温敏型SERS探针的平均尺寸随着温度升高而变小,相转变温度在32℃左右。从图3中可以看出该探针在高温时测得的SERS信号明显强于低温时的,说明制备的温敏型SERS探针可以通过温度变化控制表面增强拉曼散射信号的强弱。
[0039] 实施例二
[0040] 1)温敏聚合物微球的制备:
[0041] 200 mg NIPAM和5mg BIS配成20 ml水溶液,磁搅拌,通氩气半小时后,加入1 ml (0.3 M)AAPH水溶液,在76℃水浴条件下反应4小时左右,离心清洗,重新分散到10 ml去离子水中,得到温敏聚合物微球。
[0042] 2)温敏型金种子溶液的制备:
[0043] 室温搅拌条件下,在10mL的浓度为 的十六烷基三甲基溴化铵和四氯金酸的混合溶液中,加入2ml 上述温敏微球,磁搅拌半小时后,迅速加入冰水浴中充分冷却的 溶液2 ml,剧烈搅拌2分钟后停止搅拌,反应后
得到温敏型金种子溶液。
[0044] 3)生长溶液的制备:
[0045] 在干净的反应器中配制10ml十六烷基三甲基溴化铵、四氯金酸和硝酸银的混合液,其中十六烷基三甲基溴化铵摩尔浓度为 ,四氯金酸的摩尔浓度为,硝酸银摩尔浓度为 ,硝酸银与四氯金酸的摩尔比为40:3,最后将混合溶液置于
28℃的水浴中加入0.5ml(0.2M)抗坏血酸溶液,搅拌均匀,溶液从橙黄色变为无色,即得到生长溶液。
[0046] 4) 温敏型SERS探针的制备:
[0047] 在上述步骤3)中配置的生长溶液中加入1ml在步骤2)中已制好的温敏型种子溶液,使种子溶液与生长溶液的金元素摩尔比为8:3,金纳米棒即开始生长。加入了种子溶液后的生长溶液在28℃的水浴下反应4小时,然后加入SERS标记物4-巯基苯甲酸的酒精溶-3 -8液(10 ~10 ),得到温敏型SERS探针,其室温下的平均粒径尺寸为350 nm。
[0048] 以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。