水溶性石墨烯-贵金属纳米复合物及其制备方法和应用转让专利

申请号 : CN201110260278.9

文献号 : CN102426868B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 曾光明李贞汤琳伍梦诗刘灿章毅庞娅刘媛媛雷晓霞

申请人 : 湖南大学

摘要 :

本发明公开了一种水溶性石墨烯-贵金属纳米复合物及其制备方法和应用,该纳米复合物包括石墨烯片层,石墨烯片层上通过L-半胱氨酸共价结合有贵金属纳米颗粒。其制备方法包括:将氧化石墨纳米片超声分散于超纯水中,加入L-半胱氨酸盐酸盐,并添加还原剂进行还原反应后,加入贵金属离子溶液,再次添加还原剂进行还原反应即得该纳米复合物。该纳米复合物可应用为导电材料。该纳米复合物具有负载率高、水溶性和生物相容性好、操作简单且绿色环保的特点。

权利要求 :

1.一种水溶性石墨烯-贵金属纳米复合物的制备方法,包括以下步骤:

(1)材料准备:准备氧化石墨纳米片和L-半胱氨酸盐酸盐,并配制贵金属离子溶液;

(2)结合L-半胱氨酸:将氧化石墨纳米片超声分散于超纯水中,加入L-半胱氨酸盐酸盐并混合均匀;调节溶液的pH值至11~13,加入还原剂并充分反应,反应液经离心分离后,将分离物洗涤并定容,制得L-半胱氨酸共价修饰的石墨烯溶液;

(3)负载贵金属纳米颗粒:向所述L-半胱氨酸共价修饰的石墨烯溶液中加入贵金属离子溶液,调节溶液的pH值至11~13,加入还原剂并充分反应,反应液经离心分离后,得到所述水溶性石墨烯-贵金属纳米复合物;所述水溶性石墨烯-贵金属纳米复合物包括石墨烯片层,所述石墨烯片层上通过L-半胱氨酸共价结合有贵金属纳米颗粒;

上述步骤中,所述氧化石墨纳米片、L-半胱氨酸盐酸盐和贵金属离子的质量比为(1~

4)∶(8~35)∶(2~10)。

2.根据权利要求1所述的水溶性石墨烯-贵金属纳米复合物的制备方法,其特征在于,所述还原剂为硼氢化钠颗粒,所述步骤(2)中硼氢化钠颗粒的添加量为每1 mg氧化石墨纳米片添加5 mg~8 mg的硼氢化钠,反应条件为:室温下避光搅拌反应24 h~30 h,搅拌速率为100 rpm~150 rpm;

所述步骤(3)中硼氢化钠颗粒的添加量为每1 mg贵金属离子添加3 mg~6 mg 硼氢化钠,反应条件为:室温下避光搅拌反应8 h~14 h,搅拌速率为100 rpm~200 rpm。

3.根据权利要求1所述的水溶性石墨烯-贵金属纳米复合物的制备方法,其特征在于,所述还原剂为乙二醇,所述步骤(2)中乙二醇的添加量每1 mg氧化石墨纳米片添加2 mL~

5 mL乙二醇,反应条件为:在100℃~120℃油浴条件下搅拌反应2 h~3 h, 搅拌速率为

100 rpm~150 rpm;

所述步骤(3)中乙二醇的添加量为每1 mg贵金属离子添加3 mL~6 mL乙二醇,反应条件为:在100℃~120℃油浴条件下搅拌反应4 h~6 h,搅拌速率为100 rpm~200 rpm。

4.根据权利要求1或2或3所述的水溶性石墨烯-贵金属纳米复合物的制备方法,其特征在于,所述贵金属离子为铂、金或钯的盐离子。

5.根据权利要求4所述的水溶性石墨烯-贵金属纳米复合物的制备方法,其特征在于,所述贵金属纳米颗粒直径为5 nm~20 nm。

6.一种如权利要求1或2或3所述的制备方法所制得的水溶性石墨烯-贵金属纳米复合物用作导电材料检测溶液中对苯二酚浓度的应用,其特征在于,所述贵金属为铂,具体包括以下步骤:(1)制备电极:将所述水溶性石墨烯-铂纳米复合物水溶液滴涂在玻碳电极表面,室温下自然干燥成膜,制成石墨烯-铂纳米复合电极;

(2)浓度检测:用所述石墨烯-铂纳米复合电极作为工作电极,以饱和甘汞电极作为参比电极,以铂片电极作为对电极,建立三电极系统;将所述三电极系统与电化学工作站连接,通过差分脉冲伏安法产生的阳极峰电流的大小来定量指示待测溶液中对苯二酚的浓度,对苯二酚与所述阳极峰电流之间的线性回归方程为:Ip = 1.2174 C + 0.5331;

2 -7 -5 -8

相关系数r 为0.9958;线性检测范围为1.0×10 ~2.5×10 M,检测下限为1.0×10 M;其中Ip为阳极峰电流值,单位为μA;C为对苯二酚的浓度,单位为μM。

7.一种如权利要求1或2或3所述的制备方法所制得的水溶性石墨烯-贵金属纳米复合物用作导电材料检测溶液中邻苯二酚浓度的应用,其特征在于,所述贵金属为铂,具体包括以下步骤:(1)制备电极:将所述水溶性石墨烯-铂纳米复合物水溶液滴涂在玻碳电极表面,室温下自然干燥成膜,制成石墨烯-铂纳米复合电极;

(2)浓度检测:用所述石墨烯-铂纳米复合电极作为工作电极,以饱和甘汞电极作为参比电极,以铂片电极作为对电极,建立三电极系统;将所述三电极系统与电化学工作站连接,通过差分脉冲伏安法产生的阳极峰电流的大小来定量指示待测溶液中邻苯二酚的浓度,邻苯二酚与所述阳极峰电流之间的线性回归方程为:Ip = 1.059 C + 1.0554;

2 -7 -5

相关系数r 为0.9937;线性检测范围为1.0×10 M~2.5×10 M,检测下限为-8

3.3×10 ;其中Ip为阳极峰电流值,单位为μA;C为邻苯二酚的浓度,单位为μM。

8.根据权利要求6或7所述的应用,其特征在于,所述三电极系统检测待测溶液的条件为:电解液是pH为5.3~5.6的磷酸盐缓冲液;差分脉冲伏安法的扫描电位为-0.1 V~

0.5 V,电压增幅为0.001 V~0.005 V,振幅为0.01 V~0.05 V,脉冲宽度为0.05 s~

0.1 s,脉冲间隔为1 s~2 s。

说明书 :

水溶性石墨烯-贵金属纳米复合物及其制备方法和应用

技术领域

[0001] 本发明涉及导电复合材料领域,尤其涉及一种水溶性石墨烯-贵金属纳米复合物及其制备方法和应用。

背景技术

[0002] 石墨烯是由单层碳原子紧密堆积成的二维蜂窝状晶格结构的碳质材料,也是目前世界上最薄的单原子厚度的材料。由于石墨烯拥有独特的纳米结构,并显现出了超强的机械性能和优异的电学性能,因此在微电子、生物医药、信息传输和纳米复合材料等众多领域展现出了极高的应用价值。然而在石墨烯的分散过程中, 由于单一的完整六元环结构,使得石墨烯各片层间存在很强的分子间作用力,很容易堆叠在一起,并且石墨烯表面呈现稳定惰性,很难溶解于溶剂中,更难与其他无机或有机材料均匀的复合。石墨烯的各种优异性能只有在各片层保持分散状态时才能显现出来,因而改善石墨烯与各种溶剂和材料的相容性成为了扩展石墨烯应用领域的重中之重。
[0003] 目前石墨烯的制备多是对氧化石墨进行化学还原,其中还原剂主要有水合肼、二甲肼、对苯二酚。石墨烯如果在还原之前不经过化学处理,在还原过程中会很快地聚集在一起,重新生成块状石墨,很难得到所想要的片层石墨烯。由于氧化石墨烯片层结构周边含有羰基、羧基,中间含有羟基和环氧基等高活性的含氧官能团,可以利用这些官能团对具有卓越性能的石墨烯进行接枝、包覆等改性处理。用于表面改性的活性剂主要有阳离子表面活性剂、有机异氰酸酯、长链脂肪族胺和烷基胺等。功能化后的石墨烯具有很好的溶液稳定性,适用于制备各种高性能的复合材料。
[0004] 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质。如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用。金属纳米粒子以其特殊的稳定性、小尺寸效应、量子效应、表面效应及生物亲和性等,使它成为在光学、电子、催化和生物医药等方面研究和应用的热点。金属纳米粒子的存在可使石墨烯片层间距增加到几个纳米,从而大大减小石墨烯片层之间的相互作用,使单层石墨烯的独特性质得以保留。因此将金属离子分散到石墨烯纳米片表面制成石墨烯基金属纳米复合材料,不但可以同时保持石墨烯和金属纳米粒子的固有特性,而且能够产生新颖的协同效应。例如将其应用于生物传感电极,石墨烯可增大电极的有效比表面积并可用作金属纳米颗粒的支撑物。纳米尺寸的功能颗粒能够在单位面积上固定大量的生物分子,并形成高效的生物传感器或生物质催化剂。此外,它们还具有最佳的传感器性能,而且成本最低。
铂、金或钯等贵金属纳米颗粒能创造相对更大的电活性表面积,从而有效地催化了氧化还原。由于现有技术方法制备的石墨烯基金属纳米复合材料在溶剂中的分散性不佳,而对石墨烯进行还原和改性时采用的试剂往往具有较高的毒性,且操作条件苛刻不易控制,从而阻碍了它的进一步应用。因此制备一种绿色环保、操作简单、可稳定分散于水溶液中的石墨烯-金属复合材料对促进其应用与发展具有十分重要的意义。

发明内容

[0005] 本发明所要解决的技术问题是:针对现有技术存在的问题,本发明提供一种贵金属纳米颗粒的负载率高、水溶性好且生物相容性好、操作简单且绿色环保的水溶性石墨烯-贵金属纳米复合物及其制备方法和应用。
[0006] 为解决上述技术问题,本发明采用以下技术方案:
[0007] 一种水溶性石墨烯-贵金属纳米复合物,所述纳米复合物包括石墨烯片层,所述石墨烯片层上通过L-半胱氨酸共价结合有贵金属纳米颗粒。
[0008] 上述的纳米复合物中,所述贵金属为铂、金或钯,所述贵金属纳米颗粒直径为5 nm~20 nm。
[0009] 作为一个总的技术构思,本发明还提供一种上述水溶性石墨烯-贵金属纳米复合物的制备方法,包括以下步骤:
[0010] (1)材料准备:准备氧化石墨纳米片和L-半胱氨酸盐酸盐,并配制贵金属离子溶液;
[0011] (2)结合L-半胱氨酸:将氧化石墨纳米片超声分散于超纯水中,加入L-半胱氨酸盐酸盐并混合均匀;调节溶液的pH值至11~13,加入还原剂并充分反应,反应液经离心分离后,将分离物洗涤并定容,制得L-半胱氨酸共价修饰的石墨烯溶液;
[0012] (3)负载贵金属纳米颗粒:向所述L-半胱氨酸共价修饰的石墨烯溶液中加入贵金属离子溶液,调节溶液的pH值至11~13,加入还原剂并充分反应,反应液经离心分离后,得到所述水溶性石墨烯-贵金属纳米复合物;
[0013] 上述步骤中,所述氧化石墨纳米片、L-半胱氨酸盐酸盐和贵金属离子的质量比为(1~4)∶(8~35)∶(2~10)。
[0014] 上述的制备方法中,所述还原剂优选为硼氢化钠颗粒,所述步骤(2)中硼氢化钠颗粒的添加量优选为每1 mg氧化石墨纳米片添加5 mg~8 mg 硼氢化钠,反应条件为:室温下避光搅拌反应24 h~30 h,搅拌速率为100 rpm~150 rpm;所述步骤(3)中硼氢化钠颗粒的添加量优选为每1 mg贵金属离子添加3 mg~6 mg 硼氢化钠,反应条件为:室温下避光搅拌反应8 h~14 h,搅拌速率为100 rpm~200 rpm。
[0015] 上述的制备方法中,所述还原剂优选为乙二醇,所述步骤(2)中乙二醇的添加量优选为每1 mg氧化石墨纳米片添加2 mL~5 mL乙二醇,反应条件为:在100℃~120℃油浴条件下搅拌反应2 h~3 h, 搅拌速率为100 rpm~150 rpm;所述步骤(3)中乙二醇的添加量优选为每1 mg贵金属离子添加3 mL~6 mL乙二醇,反应条件为:在100℃~120℃油浴条件下搅拌反应4 h~6 h, 搅拌速率为100 rpm~200 rpm。
[0016] 上述的制备方法中,所述贵金属离子优选为铂、金或钯的盐离子。所述离心分离的转速优选为8000 rpm~10000 rpm。
[0017] 另外,本发明还提供一种上述水溶性石墨烯-贵金属纳米复合物在导电材料中的应用。
[0018] 所述应用具体是将所述水溶性石墨烯-贵铂纳米复合物应用于检测溶液中对苯二酚的浓度,具体包括以下步骤:
[0019] (1)制备电极:将所述水溶性石墨烯-铂纳米复合物水溶液滴涂在玻碳电极表面,室温下自然干燥成膜,制成石墨烯-铂纳米复合电极;
[0020] (2)浓度检测:用所述石墨烯-铂纳米复合电极作为工作电极,以饱和甘汞电极作为参比电极,以铂片电极作为对电极,建立三电极系统;将所述三电极系统与电化学工作站连接,通过差分脉冲伏安法产生的阳极峰电流的大小来定量指示待测溶液中对苯二酚的浓度,对苯二酚与所述阳极峰电流之间的线性回归方程为:
[0021] Ip = 1.2174 C + 0.5331;
[0022] 相关系数r2为0.9958;线性检测范围为1.0×10-7~2.5×10-5 M,检测下限为-81.0×10 M;其中Ip为阳极峰电流值,单位为μA;C为对苯二酚的浓度,单位为μM。
[0023] 所述应用还可以是将所述水溶性石墨烯-铂纳米复合物应用于检测溶液中邻苯二酚的浓度,具体包括以下步骤:
[0024] (1)制备电极:将所述水溶性石墨烯-铂纳米复合物水溶液滴涂在经抛光并清洗的玻碳电极表面,室温下自然干燥成膜,制成石墨烯-铂纳米复合电极;
[0025] (2)浓度检测:用所述石墨烯-铂纳米复合电极作为工作电极,以饱和甘汞电极作为参比电极,以铂片电极作为对电极,建立三电极系统;将所述三电极系统与电化学工作站连接,通过差分脉冲伏安法产生的阳极峰电流的大小来定量指示待测溶液中邻苯二酚的浓度,邻苯二酚与所述阳极峰电流之间的线性回归方程为:
[0026] Ip = 1.059 C + 1.0554;
[0027] 相关系数r2为0.9937;线性检测范围为1.0×10-7 M~2.5×10-5 M,检测下限为-83.3×10 ;其中Ip为阳极峰电流值,单位为μA;C为邻苯二酚的浓度,单位为μM。
[0028] 上述只应用了水溶性石墨烯-铂纳米复合物制成生物电极用于对苯二酚和邻苯二酚的浓度的检测,除铂以外其他贵金属纳米粒子的制备方法和应用原理都与水溶性石墨烯-铂纳米复合物相同,但线性回归方程会因纳米颗粒的种类不同而略有差异,检测线性范围和检测下限也会有所不同。
[0029] 上述的应用中,所述三电极系统检测待测溶液的条件优选为:电解液是pH为5.3~5.6的磷酸盐缓冲液;差分脉冲伏安法的扫描电位为-0.1 V~0.5 V,电压增幅为
0.001 V~0.005 V,振幅为0.01 V~0.05 V,脉冲宽度为0.05 s~0.1 s,脉冲间隔为1 s~2 s。
[0030] 与现有技术相比,本发明的优点在于:
[0031] 1、本发明的水溶性石墨烯-贵金属纳米复合物,以石墨烯片层结构为载体,L-半胱氨酸盐酸盐为共价结合修饰物,贵金属纳米颗粒均匀分布于石墨烯片层表面。利用氧化石墨烯含有的羟基、环氧基等高活性官能团与L-半胱氨酸中自由氨基之间发生共价结合,从而对还原后的石墨烯进行改性处理,大大提高了其在水中的溶解度和分散性。由于石墨烯片层上的含氧基团为贵金属纳米离子的沉积提供了一定的结合位点,故贵金属纳米颗粒经还原后沉积在石墨烯片层表面(包括边缘位置);而L-半胱氨酸中的巯基还能与贵金属纳米粒子通过共价键牢固结合,由此提高了贵金属纳米粒子在石墨烯表层的负载率,有利于其进一步应用。
[0032] 2、本发明的水溶性石墨烯-贵金属纳米复合物的制备方法,操作简单,反应条件可控,绿色环保,加入了L-半胱氨酸盐酸盐作为共价结合修饰物,可增加产品的水溶性,并能提高贵金属的负载率。本发明的方法采用硼氢化钠或乙二醇作为还原剂,二者绿色环保、无毒、无污染且反应条件要求低;尤其是采用硼氢化钠作为还原剂时,室温下即可达到较好的还原效果。
[0033] 3、将本发明的水溶性石墨烯-铂纳米复合物应用于生物传感电极,可明显增大电极的有效比表面积和导电性能。由于该材料具备良好的生物相容性,且纳米尺寸的功能颗粒能够在单位面积上固定更多的生物分子,因此该复合物在生物电极及生物质催化方面具有广阔的应用前景。将其用于检测溶液中的对苯二酚和邻苯二酚的浓度,操作简单,检测精度高且不受样品中浊度和光干扰物质的影响,对苯二酚的加标回收率范围可达96%~104%;邻苯二酚的加标回收率范围可达95%~104%。

附图说明

[0034] 图1为本发明实施例1中的氧化石墨烯和水溶性石墨烯-铂纳米复合物的水溶液的照片;其中图1(a)为实施例1中的氧化石墨烯水溶液的照片,图1(b)为实施例1中的水溶性石墨烯-铂纳米复合物的水溶液的照片;
[0035] 图2是本发明实施例1中的氧化石墨烯的TEM(透射电子显微镜)图;
[0036] 图3为本发明实施例1中的L-半胱氨酸共价修饰的石墨烯的TEM图;
[0037] 图4为本发明实施例1中的石墨烯片层上L-半胱氨酸与纳米铂颗粒键合的TEM图;
[0038] 图5为本发明实施例1中的水溶性石墨烯-铂纳米复合物的TEM图;
[0039] 图6为本发明实施例1中的水溶性石墨烯-铂纳米复合物的SEM(扫描电子显微镜)图;
[0040] 图7为本发明实施例1中的水溶性石墨烯-铂纳米复合物制备过程中XRD(X射线衍射)表征曲线示意图;其中a为氧化石墨烯的XRD表征曲线;b为未经共价修饰的石墨烯-纳米铂复合物的XRD表征曲线;c为实施例1制得的水溶性石墨烯-铂纳米复合物的XRD表征曲线;
[0041] 图8为本发明实施例5中的不同修饰的电极在铁氰化钾溶液中的电化学循环伏安曲线示意图;其中,a1为裸玻碳电极的电化学循环伏安曲线,b1为L-半胱氨酸改性后的石墨烯修饰的电极的电化学循环伏安曲线,c1为石墨烯-纳米铂复合电极的电化学循环伏安曲线;
[0042] 图9为本发明实施例5中的不同修饰的电极在铁氰化钾溶液中的电化学交流阻抗曲线示意图;其中,a2为裸玻碳电极的电化学交流阻抗曲线,b2为L-半胱氨酸改性后的石墨烯修饰的电极的电化学交流阻抗曲线,c2为石墨烯-纳米铂复合电极的电化学交流阻抗曲线;
[0043] 图10为本发明实施例6中的裸玻碳电极和石墨烯-纳米铂复合电极在加入对苯二酚溶液前后PBS(磷酸盐缓冲液,pH=5.3)中的循环伏安曲线示意图;其中,a3为裸玻碳电极加入对苯二酚前的循环伏安曲线;b3为石墨烯-纳米铂复合电极加入对苯二酚前的循环伏安曲线;c3为裸玻碳电极加入对苯二酚后的循环伏安曲线;d3为石墨烯-纳米铂复合电极加入对苯二酚后的循环伏安曲线;
[0044] 图11为本发明实施例7中的裸玻碳电极和石墨烯-纳米铂复合电极在加入邻苯二酚溶液前后PBS(磷酸盐缓冲液,pH=5.6)中的循环伏安曲线示意图;其中,a4为裸玻碳电极加入邻苯二酚前的循环伏安曲线;b4为石墨烯-纳米铂复合电极加入邻苯二酚前的循环伏安曲线;c4为裸玻碳电极加入邻苯二酚后的循环伏安曲线;d4为石墨烯-纳米铂复合电极加入邻苯二酚后的循环伏安曲线;
[0045] 图12为本发明实施例6中的阳极峰电流值与对苯二酚浓度之间的线性回归曲线示意图;
[0046] 图13为本发明实施例7中的阳极峰电流值与邻苯二酚浓度之间的线性回归曲线示意图。

具体实施方式

[0047] 以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
[0048] 实施例1:
[0049] 本发明的水溶性石墨烯-铂纳米复合物,包括石墨烯片层,石墨烯片层上通过L-半胱氨酸共价结合有纳米铂颗粒;同时,石墨烯片层上还直接负载有纳米铂颗粒。其中,纳米铂颗粒的直径为5 nm~20 nm。该水溶性石墨烯-铂纳米复合物,是通过以下步骤制备得到的:
[0050] 1、材料准备:准备氧化石墨纳米片和L-半胱氨酸盐酸盐,并配制0.1 M的氯铂酸溶液;
[0051] 2、结合L-半胱氨酸:将40 mg氧化石墨纳米片超声分散于40 mL超纯水中,得到如图1(a)所示的氧化石墨烯;加入350 mg 的L-半胱氨酸盐酸盐并混合均匀,调节溶液的pH值为12,缓慢加入320 mg硼氢化钠颗粒,室温下避光搅拌反应24 h, 搅拌速率为100 rpm;反应液采用10000 rpm的转速进行离心分离;分离物用超纯水反复洗涤后加入40 mL超纯水振荡混匀,得到L-半胱氨酸共价修饰的石墨烯溶液。
[0052] 3、负载纳米铂颗粒:往40 mL上述L-半胱氨酸共价修饰的石墨烯溶液中加入0.1 M氯铂酸溶液4 mL(含铂离子78 mg),调节溶液的pH值为12,缓慢加入450 mg硼氢化钠颗粒,室温下避光搅拌反应12 h, 搅拌速率为100 rpm,反应液采用10000 rpm的转速进行离心分离,分离物用超纯水反复洗涤,得到水溶性石墨烯-铂纳米复合物,其水溶液照片如图1(b)所示。
[0053] 上述步骤中,取氧化石墨烯和L-半胱氨酸共价修饰的石墨烯进行TEM表征,其结果分别如图2和图3所示,由图可知,氧化石墨纳米片经超声分散后得到的氧化石墨烯充分剥离成纳米片层,呈类似丝绸的褶皱薄片状;经L-半胱氨酸共价修饰后的水溶性石墨烯,明显可见石墨烯片层表面结合上了约500 nm长的大分子物质,此物质即为L-半胱氨酸,由于该物质中含有的氨基基团能与氧化石墨烯片层上的环氧基团发生共价结合,因此该物质的修饰使得石墨烯在水溶液中呈良好的分散和稳定状态。在石墨烯片层表面(包括边缘位置)有纳米铂颗粒沉积,原因在于石墨烯片层上的含氧基团为金属纳米离子的沉积提供了一定的结合位点;同时,由于每个L-半胱氨酸分子上存在一个巯基基团,因此,如图4所示,经还原剂还原后的纳米铂颗粒还能通过巯基与L-半胱氨酸分子牢固键合,从而提高了纳米铂颗粒的负载率。采用X射线能谱仪对该复合物中铂纳米颗粒的负载量进行测定,约60%~75%(质量分数)的纳米铂颗粒成功负载在石墨烯片层上,而未加入L-半胱氨酸作为改性剂,相同条件下直接将铂纳米颗粒进行还原,其在石墨烯片层上的负载率约为30%~
45%(质量分数)。对上述制得的水溶性石墨烯-铂纳米复合物分别进行TEM和SEM表征;
其结果分别如图5和图6所示,由图可见,该水溶性石墨烯-铂纳米复合物为片状结构,纳米铂颗粒均匀分布在石墨烯片层表面,粒径为5 nm~20 nm,并显示出较好的水溶性和稳定性(参见图1(b))。本发明可通过调节贵金属离子、石墨烯和L-半胱氨酸盐酸盐的配比调整石墨烯片层上贵金属纳米颗粒的负载量以及纳米复合物在水中的溶解度。在相同的配比下,金属种类不同,负载的纳米颗粒的形貌和粒径可能不同。
[0054] 取上述步骤1中的氧化石墨纳米片、未经共价修饰的石墨烯-纳米铂复合物以及上述制得的水溶性石墨烯-铂纳米复合物分别进行XRD衍射图谱分析,其结果如图7所示,由图可知,氧化石墨纳米片的XRD衍射图谱(图7中a),其在衍射角为10.4°的位置出现了较强的衍射峰;未经共价修饰的石墨烯-纳米铂复合物的XRD衍射图谱(图7中b),在衍射角为39.9°和46.2°的位置出现明显的衍射峰,指示纳米铂颗粒已成功负载在石墨烯表层;水溶性石墨烯-铂纳米复合物的XRD衍射图谱(图7中c),除了与图7 b在相同位置有衍射峰外,在衍射角为18.9°、28.5°、33.1°及34.9°的位置也出现了一定强度的衍射峰,这些峰均表明L-半胱氨酸的存在,说明其成功结合在石墨烯-纳米铂复合物之中,从而提高了该纳米复合物的水溶性和铂纳米粒子的负载率。
[0055] 实施例2:
[0056] 本发明的水溶性石墨烯-铂纳米复合物,包括石墨烯片层,石墨烯片层上通过L-半胱氨酸共价结合有纳米铂颗粒;同时,石墨烯片层上还直接负载有纳米铂颗粒。其中,纳米铂颗粒的直径为5 nm~20 nm。该水溶性石墨烯-铂纳米复合物,是通过以下步骤制备得到的:
[0057] 1、材料准备:准备氧化石墨纳米片和L-半胱氨酸盐酸盐,并配制0.1 M的氯铂酸溶液;
[0058] 2、结合L-半胱氨酸:将20 mg氧化石墨纳米片超声分散于20 mL超纯水中,得到氧化石墨烯,加入160 mg 的L-半胱氨酸盐酸盐并混合均匀;调节溶液的pH值为11,加入60 mL乙二醇,在100℃油浴条件下搅拌反应3 h, 搅拌速率为100 rpm;反应液采用10000 rpm的转速进行离心分离;分离物用超纯水反复洗涤后加入20 mL超纯水振荡混匀,得到L-半胱氨酸共价修饰的石墨烯溶液;
[0059] 3、负载纳米铂颗粒:往20 mL上述L-半胱氨酸共价修饰的石墨烯溶液中加入0.1 M的氯铂酸溶液2 mL (含铂离子39 mg),调节溶液的pH值为11,加入150 mL乙二醇,在100℃油浴条件下搅拌反应6 h, 搅拌速率为100 rpm;反应液采用10000 rpm的转速进行离心分离,分离物用超纯水反复洗涤,得到水溶性石墨烯-铂纳米复合物。
[0060] 实施例3:
[0061] 本发明的水溶性石墨烯-纳米金复合物,包括石墨烯片层,石墨烯片层上通过L-半胱氨酸共价结合有纳米金颗粒;同时,石墨烯片层上还直接负载有纳米金颗粒。其中,纳米金颗粒的直径为5 nm~20 nm。该水溶性石墨烯-纳米金复合物,是通过以下步骤制备得到的:
[0062] 1、材料准备:准备氧化石墨纳米片和L-半胱氨酸盐酸盐,并配制0.1 M的氯金酸溶液;
[0063] 2、结合L-半胱氨酸:将30 mg氧化石墨纳米片超声分散于30 mL超纯水中得到氧化石墨烯,加入250 mg 的L-半胱氨酸盐酸盐并混合均匀,调节溶液的pH值为13,缓慢加入200 mg硼氢化钠颗粒,室温下避光搅拌反应24 h,搅拌速率为100 rpm;反应液采用10000 rpm的转速进行离心分离;分离物用超纯水反复洗涤后加入30 mL超纯水振荡混匀,得到L-半胱氨酸共价修饰的石墨烯溶液;
[0064] 3、负载纳米金颗粒:往30 mL上述L-半胱氨酸共价修饰的石墨烯溶液中加入0.1 M的氯金酸溶液3 mL (含金离子59 mg),调节溶液的pH值为13,缓慢加入300 mg硼氢化钠颗粒,室温下避光搅拌反应12 h, 搅拌速率为100 rpm,反应液采用10000 rpm的转速进行离心分离,分离物用超纯水反复洗涤,得到水溶性石墨烯-金纳米复合物。
[0065] 实施例4:
[0066] 本发明的水溶性石墨烯-纳米金复合物,包括石墨烯片层,石墨烯片层上通过L-半胱氨酸共价结合有纳米金颗粒;同时,石墨烯片层上还直接负载有纳米金颗粒。其中,纳米金颗粒的直径为5 nm~20 nm。该水溶性石墨烯-纳米金复合物,是通过以下步骤制备得到的:
[0067] 1、材料准备:准备氧化石墨纳米片和L-半胱氨酸盐酸盐,并配制0.1 M的氯金酸溶液;
[0068] 2、结合L-半胱氨酸:将10 mg氧化石墨纳米片超声分散于10 mL超纯水中得到氧化石墨烯,加入80 mg 的L-半胱氨酸盐酸盐并混合均匀;调节溶液的pH值为12,加入20 mL乙二醇,在100℃油浴条件下搅拌反应3 h, 搅拌速率为100 rpm;反应液采用10000 rpm的转速进行离心分离;分离物用超纯水反复洗涤后加入10 mL超纯水振荡混匀,得到L-半胱氨酸共价修饰的石墨烯溶液;
[0069] 3、负载纳米金颗粒:往10 mL上述L-半胱氨酸共价修饰的石墨烯溶液中加入0.1 M的氯金酸溶液1 mL (含金离子20 mg),调节溶液的pH值为12,加入60 mL乙二醇,在100℃油浴条件下搅拌反应6 h, 搅拌速率为100 rpm;反应液采用10000 rpm的转速进行离心分离,分离物用超纯水反复洗涤,得到水溶性石墨烯-金纳米复合物。
[0070] 实施例5:
[0071] 本实施例通过采用三电极体系在CHI电化学工作站上进行CV(循环伏安法)扫描和交流阻抗法表征,说明本发明的水溶性石墨烯-铂纳米复合物的导电性能,从而说明本发明的水溶性石墨烯-贵金属纳米复合物可应用作导电材料,且导电性能优异。
[0072] 1、制备一石墨烯-纳米铂复合电极:
[0073] a. 对玻碳电极进行预处理:将玻碳电极在抛光纸上依次用0.3 μm和0.05 μm的氧化铝悬浊液抛光至镜面,再依次用硝酸溶液(HNO3∶H2O = 1∶1)、无水乙醇和超纯水分别超声清洗5 min;
[0074] b. 滴涂纳米复合物:取上述实施例1或实施例2制得的水溶性石墨烯-铂纳米复合物的水溶液10 μL滴涂在经预处理的玻碳电极上,室温下自然干燥成膜,即制得石墨烯-纳米铂复合电极。
[0075] 2、采用上述制备一石墨烯-纳米铂复合电极的步骤,将L-半胱氨酸共价修饰的石墨烯滴涂在裸玻碳电极上,制备一L-半胱氨酸改性后的石墨烯修饰的电极。
[0076] 3、取上述制得的石墨烯-纳米铂复合电极、L-半胱氨酸改性后的石墨烯修饰的电3-
极以及一裸玻碳电极,在5.0 mM Fe(CN)6 溶液中进行循环伏安法(CV)扫描,得到如图8 所示的曲线。由图8可见,与裸玻碳电极相比,经L-半胱氨酸改性后的石墨烯修饰的电极的峰电流明显增大,而石墨烯-纳米铂复合电极的峰电流增值更大,说明本发明的水溶性石墨烯-铂纳米复合物修饰的电极比单纯石墨烯修饰电极的传导率更高,这是由于纳米铂颗粒与石墨烯复合后有效比表面积更大,导电性能更强,从而提高了电子的转移速率。
[0077] 4、分别取上述三种电极置于5.0 mM Fe(CN)63- 溶液中,频率在0.01 HZ ~ 100 k HZ范围内进行交流阻抗法扫描,结果如图9所示;由图9可见,表征裸玻碳电极的曲线在高频部分出现了较明显的圆弧,阻抗为674 Ω,说明裸玻碳电极对电极表面的电子传输有一定的阻碍作用;表征L-半胱氨酸改性后的石墨烯修饰电极的曲线在高频部分的圆弧较裸玻碳电极明显减小,阻抗减至283 Ω,说明修饰了石墨烯后电极表面的电子传输阻碍作用减少;而石墨烯-纳米铂复合电极的阻抗曲线近似一条直线,表明经纳米铂和石墨烯修饰3-
后电极表面的导电性能明显增强,其感应端不会阻挡Fe(CN)6 中氧化还原电子传递。
[0078] 实施例6:
[0079] 将实施例1或实施例2制得的水溶性石墨烯-铂纳米复合物用于检测溶液中对苯二酚的浓度,包括以下步骤:
[0080] 1、制备电极:步骤与实施例5的步骤相同;
[0081] 2、响应测试:
[0082] c. 分别取裸玻碳电极和上述制得的石墨烯-纳米铂复合电极,在67 mM PBS(pH5.3)的电解液中,扫描电位在 -0.2 V~0.5 V范围内、扫描速度为50 mV/s的条件下,进行循环伏安法扫描,扫描结果如图10所示。由图可见,裸玻碳电极在PBS中进行CV(循环伏安法)扫描,得到一条扁平很“瘦”的曲线,没有任何峰出现;而石墨烯-纳米铂复合电极,出现一条比裸玻碳电极的CV曲线“胖”很多、较宽的曲线,没有明显的峰出现。当在PBS中加入10 μL 0.1 M 对苯二酚后,裸玻碳电极的CV曲线上出现一对明显的氧化还原峰;而石墨烯-纳米铂复合电极的CV曲线出现的氧化还原峰电流比裸电极的明显增大,这是由于经石墨烯和纳米铂颗粒共同修饰后电极表面的导电性和催化性能都明显增强。
[0083] d. 用上述制得的石墨烯-纳米铂复合电极作为工作电极,以饱和甘汞电极作为参比电极,以铂片电极作为对电极,建立三电极系统;将所述三电极系统与电化学工作站连接,通过差分脉冲伏安法产生的阳极峰电流的大小来定量指示待测溶液中对苯二酚的浓度。所用电解液为67 mM PBS(pH 5.3),扫描电位范围为-0.1 V~0.5 V,电压增幅为0.005 V,振幅为0.05 V,脉冲宽度为0.05 s,脉冲间隔为2 s。在测量池中加入10 mL PBS电解液,加入不同浓度的对苯二酚溶液10 μL,充分混匀后进行测定。测得的对苯二酚与所述阳极峰电流之间的线性关系如图12所示。由图12可知,二者间线性关系可用方程Ip
2 -7
= 1.059 C + 1.0554表示;其中,相关系数r 为0.9937;线性检测范围为1.0×10 M~-5 -8
2.5×10 M,检测下限为3.3×10 ;其中Ip为阳极峰电流值,单位为μA;C为对苯二酚的浓度,单位为μM。
[0084] 3、浓度检测:
[0085] 根据上述步骤d.的方法对取自湘江橘子洲大桥段的原水水样进行检测。如表1所示,其中C1 为原水过滤后测定的对苯二酚的浓度(均为0),经过滤后加入确定浓度的对苯二酚,制成A、B、C三个水样,其浓度如C2 所示,C3为本发明石墨烯-纳米铂复合电极按照上述的检测条件测定的浓度值。
[0086] 表1 水溶性石墨烯-纳米铂复合电极检测水样中的对苯二酚
[0087]水样 C1/μM C2/μM C3/μM 回收率/%
A 0 12.50 12.28 98.4
B 0 2.50 2.59 103.6
C 0 0.20 0.193 96.5
[0088] 由表1可知,本发明的石墨烯-纳米铂复合电极在检测范围内,加标回收率范围为96%~104%。测定结果理想,与传统的高效液相色谱法相比,本发明的检测方法操作简单且不受样品中浊度和光干扰物质的影响。
[0089] 实施例7:
[0090] 将实施例1或实施例2制得的水溶性石墨烯-铂纳米复合物用于检测溶液中邻苯二酚的浓度,包括以下步骤:
[0091] 1、制备电极:步骤与实施例5的步骤相同;
[0092] 2、响应测试:
[0093] c. 分别取裸玻碳电极和上述制得的石墨烯-纳米铂复合电极,在67 mM PBS(pH5.3)的电解液中,扫描电位在 -0.2 V~0.5 V范围内、扫描速度为50 mV/s的条件下进行循环伏安法扫描,扫描结果如图11所示。由图可见,裸玻碳电极在PBS中进行CV扫描时,其CV曲线在加入邻苯二酚(加入10 μL 0.1 M 邻苯二酚)前后图形由扁平闭合曲线变成有明显对称峰的曲线;而石墨烯-纳米铂复合电极的CV曲线,由一条比裸玻碳电极的“胖”很多的且未有明显峰的闭合曲线变成有明显的氧化还原峰且峰电流比裸电极增大很多。这是由于电极表面修饰了石墨烯和纳米铂两种物质,其协同作用能同时增大电极的导电性和催化性能。
[0094] d. 用上述制得的石墨烯-纳米铂复合电极作为工作电极,以饱和甘汞电极作为参比电极,以铂片电极作为对电极,建立三电极系统;将所述三电极系统与电化学工作站连接,通过差分脉冲伏安法产生的阳极峰电流的大小来定量指示待测溶液中邻苯二酚的浓度。所用电解液为67 mM PBS(pH 5.3), 扫描电位范围为-0.1~0.5 V, 电压增幅为0.005 V, 振幅为0.05 V,脉冲宽度为0.05 s, 脉冲间隔为2 s。在测量池中加入10 mL PBS电解液,加入不同浓度的邻苯二酚溶液10 μL,充分混匀后进行测定。测得的邻苯二酚与阳极峰电流之间的线性关系如图12所示。由图13可知,二者间线性关系可用方程Ip =
1.059 C + 1.0554表示,相关系数r2为0.9937;线性检测范围为1.0×10-7 M~2.5×10-5 M,检测下限为3.3×10-8;其中Ip为阳极峰电流值,单位为μA;C 为邻苯二酚的浓度,单位为μM。
[0095] 3、浓度检测:
[0096] 采用上述步骤d.的方法对取自湘江橘子洲大桥段的原水水样进行检测。如表2所示,其中C3 为原水过滤后测定的邻苯二酚的浓度(均为0),经过滤后加入确定浓度的邻苯二酚,制成D、E、F三个水样,其浓度如C4 所示,C5为本发明石墨烯-纳米铂复合电极按照上述的检测条件测定的浓度值。
[0097] 表2 水溶性石墨烯-纳米铂复合电极检测水样中的邻苯二酚
[0098]水样 C3/μM C4/μM C5/μM 回收率/%
D 0 15.50 15.18 97.9
E 0 4.50 4.65 103.3
F 0 0.60 0.573 95.5
[0099] 由表2可知,本发明的石墨烯-纳米铂复合电极在检测范围内,加标回收率范围为95%~104%,测定结果准确,且本发明的检测方法方法操作简单且不受样品中浊度和光干扰物质的影响。
[0100] 以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,与本发明构思无实质性差异的各种工艺方案均在本发明的保护范围内。