用电动CVVT控制改善GDI发动机的启动性能的方法转让专利

申请号 : CN201110212963.4

文献号 : CN102486105A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 韩成熙

申请人 : 现代自动车株式会社

摘要 :

一种用电动CVVT控制改善GDI发动机的启动性能的方法,可以包括,确定发动机是否正在运行;计算凸轮轴的相位角,以及凸轮轴的位置与高压泵的圆形突出部的最佳位置之差;对驱动电动机施加负载以转动凸轮轴;计算转动之后的凸轮轴的当前位置与凸轮轴的目标位置之差,将所述差与预定值进行比较。当所述差不小于预定值时,就提高所述负载并将负载施加到驱动电动机,以进一步转动凸轮轴,直至所述差降低并小于所述预定值。

权利要求 :

1.一种利用电动连续可变气门正时来改善汽油直喷式发动机的启动性能的方法,该方法包括:确定发动机是否正在运行;

计算凸轮轴的相位角;

计算凸轮轴的位置与高压泵的圆形突出部的最佳位置之差;

对驱动电动机施加负载以转动凸轮轴;以及

计算转动之后的凸轮轴的当前位置与凸轮轴的目标位置之差,将所述差与预定值进行比较。

2.根据权利要求1所述的利用电动连续可变气门正时来改善汽油直喷式发动机的启动性能的方法,其中所述凸轮轴的位置是基于来自凸轮位置传感器和曲轴位置传感器的输入来计算的。

3.根据权利要求1所述的利用电动连续可变气门正时来改善汽油直喷式发动机的启动性能的方法,其中当所述转动之后凸轮轴的当前位置与凸轮轴的目标位置之差小于预定值时,就完成了该方法的控制;而当所述差不小于所述预定值时,就提高所述负载并将负载施加到驱动电动机,以进一步转动凸轮轴。

4.根据权利要求3所述的利用电动连续可变气门正时来改善汽油直喷式发动机的启动性能的方法,其中根据所述转动之后所述凸轮轴的当前位置与所述凸轮轴的目标位置之差来提高所述负载。

5.根据权利要求3所述的利用电动连续可变气门正时来改善汽油直喷式发动机的启动性能的方法,其中所述凸轮轴的当前位置就是在发动机停止后用于下次启动的有利位置。

6.根据权利要求5所述的利用电动连续可变气门正时来改善汽油直喷式发动机的启动性能的方法,其中所述用于下次启动的有利位置就是在下次启动期间刚好在高压泵开始被压缩之前的位置。

说明书 :

用电动CVVT控制改善GDI发动机的启动性能的方法

[0001] 相关申请的交叉引用
[0002] 本申请要求2010年12月6日向韩国知识产权局提交的第10-2010-0123548号韩国专利申请的优先权,其全部内容结合于此用于该引用的所有目的。

技术领域

[0003] 本发明涉及一种通过采用电动连续可变气门正时(CVVT)控制来改善启动性能的方法。更具体而言,本发明涉及一种改善配有电动CVVT装置的车辆的启动性能的方法,其中凸轮定位于刚好在高压泵开始被加压之前的位置处。

背景技术

[0004] 进气门/排气门的最佳开启正时/关闭时间通常因发动机的速度、发动机的负荷等而有所不同。因此开发了用于合适的气门正时的控制技术,其中凸轮轴的旋转并非是根据曲轴的旋转来确定,而是根据发动机的驾驶条件来控制,以便获得预定的位移。这被称为是可变气门正时(VVT)。
[0005] 连续可变气门正时(CVVT)是可变气门正时方法中的一种,其中气门正时可以通过预定范围内的任意值来控制。
[0006] 图1为普通凸轮轴100和高压泵的剖视图,其中只有在圆形突出部30挤压高压泵10的活塞12时才会产生高压。
[0007] 因此,用于压力增加的开始点(starting points)根据凸轮轴100的多个位置而不同,这导致了开始的延迟。尽管在相同的时间开始,压力上升点在不同的时间开始,这是因为凸轮轴100遇到了高压泵10的圆形突出部30是根据凸轮轴100的位置。这样,压力上升时间被延迟了。
[0008] 如图2和图3所示,普通的CVVT控制是通过安装在凸轮轴100上的CVVT装置来实现的。在双CVVT的情况下,控制是通过安装在凸轮120上的进气侧的进气CVVT 140和安装在凸轮120上的排气侧的排气CVVT 150来实现的。
[0009] 这样,当在凸轮120上形成的基础轮廓(base profile)提供一定的相位差时,就通过输入到发动机控制单元(ECU)60中的转速/负荷影射图来进行角度计算。
[0010] 如果油控阀(control valve,OCV)40得到电负载的供给以转动凸轮轴100,OCV就向CVVT装置中的提前室(advance chamber)142或滞后室(retard chamber)144提供高压油,所述高压油供给到油泵中,油泵连接着发动机的驱动系统,且凸轮轴100就基于所供给的油量而在提前方向或滞后方向上转动,因此CVVT装置的凸轮轮廓就向左或向右运动。
[0011] 因此,CVVT装置在提前方向或滞后方向上的旋转大大超过了预定的凸轮轮廓(例如,±45度),从而产生了气门叠开角(valve overlap)。
[0012] 传统的机械CVVT驱动油泵用于上述操作,并提高发动机的液压,且采用所述液压,因此所述的CVVT装置在低转速条件(低液压条件)期间或开始(starting off)期间不能被运动。
[0013] 而且,在汽油直喷(GDI)发动机的情况下,GDI发动机以比传统的多位置喷射(MPI)发动机更高的压力喷射燃料并促进燃料的雾化,因此尽管燃料相对较少,也能获得最佳的空燃比(air/fuel ratio)。而且,随着用于高压泵的驱动凸轮120的旋转,燃料被压缩,流入到高压泵的燃料被压缩,通过重复的压缩,获得了用于喷射的必要的轨道压力(rail pressure)。
[0014] 然而,在启动性能方面,为了在低温下形成足够的压力,摇车时间(cranking time)就长,因此与传统的发动机相比就需要长得多的时间。
[0015] 也就是说,根据设计条件,在凸轮轴100上加工出了用于高压泵的三个或四个圆形突出部30,并且在一个摇车间隙中发动机的速度通常较低且高压泵10需要较长的时间以便与圆形突出部30相遇,因此对于发动机的整个启动过程就需要较长的时间。
[0016] 公开在背景技术部分中的信息只是为了增强对于本发明的一般背景的理解,而不能看作是认可了或者任何形式地暗示了该信息构成了已经为本领域的普通技术人员所知晓的现有技术。

发明内容

[0017] 本发明致力于提供一种利用电动连续可变气门正时(CVVT)控制来改善汽油直喷式发动机(GDI)的启动性能的方法,其具有减少下次启动的启动时间的优点,这是通过将发动机停止状态下的凸轮轴定位于一定的位置,该位置刚好在高压泵的圆形突出部的末端之前以便形成高压,并通过控制CVVT来改善启动稳定性。
[0018] 本发明的各方面致力于提供一种通过控制电动CVVT来改善GDI发动机的启动性能的方法,该方法包括:确定发动机是否正在运行;计算凸轮轴的相位角;计算凸轮轴的位置与高压泵的圆形突出部的最佳位置之差;对驱动电动机施加负载以转动凸轮轴;以及计算转动之后的凸轮轴的当前位置与凸轮轴的目标位置之差,并将所述差与预定值进行比较。
[0019] 本发明的某些方面提供一种方法,其中所述凸轮轴的位置是通过凸轮位置传感器和曲轴位置传感器来计算的。
[0020] 本发明的其它方面提供一种方法,其中当所述凸轮轴的当前位置与凸轮轴的目标位置之差小于预定值时,就完成了所述控制;而当所述差不小于所述预定值时,就提高所述负载并将负载施加到驱动电动机,以进一步转动凸轮轴,直至所述差被减小并小于所述预定值。
[0021] 本发明另外的其它方面提供一种方法,其中所述凸轮轴的当前位置就是在发动机停止的位置处用于下次启动的有利位置。
[0022] 如上所述,本发明的示例性实施方式具有如下效果:其通过将凸轮轴定位在有利位置以易于形成高压并较早地开始压缩来缩短启动时间。
[0023] 本发明的方法和设备还具有其它的特征和优点,这些将在结合于本文的附图以及随后的具体实施方式中得以显现或得到阐述,所述附图和具体实施方式一起用于解释本发明的特定原理。

附图说明

[0024] 图1是普通的凸轮轴和高压泵的剖视图。
[0025] 图2示出了配有普通的CVVT装置的凸轮轴的立体图。
[0026] 图3为普通的CVVT装置的剖视图。
[0027] 图4是根据本发明的示例性实施方案的用于改善启动性能的流程图。

具体实施方式

[0028] 现在将详细引用本发明的各个实施方案,其实例在在附图中被图解并在以下得到描述。尽管将结合示例性的实施方案来描述本发明,但应该理解,本描述并非要将本发明限定于那些示例性的实施方案。相反,本发明旨在不仅要覆盖所述示例性的实施方案,而且要覆盖可以被包含在由所附权利要求书所限定的本发明的精神和范围之内的各种替代方案、修改方案、等同方案和其它实施方案。
[0029] 图2为配有CVVT装置的普通凸轮轴设备的立体图,本发明的示例性实施方案涉及通过将凸轮轴定位在有利位置以易于形成高压来缩短启动时间的方法。
[0030] 在如传统发动机中的液压CVVT设备中,液压根据发动机的速度而产生,因此在发动机停止时就不产生驱动凸轮轴100的液压。但在电动CVVT的情况下,当连接有主要继电器(main relay)时,发动机和凸轮轴100的位置是基于从凸轮位置传感器110和曲轴位置传感器220的大约7至10秒钟的输入来计算的,即使在发动机停止的情况下也是如此。而且,凸轮轴100能够定位于这样的位置,该位置刚好在高压泵10开始被电动CVVT的前后移动所压缩之前,这是传统的发动机所无法做到的。
[0031] 为此,必须首先计算凸轮轴100的位置,该位置能够基于凸轮位置传感器110和曲轴位置传感器220的输入而计算。这样,凸轮轴100的当前位置与高压泵圆形突出部30的位置之差就通过所述计算来确定。
[0032] 此时,在凸轮轴100的固定位置处机械地处理用于压缩高压泵10的圆形突出部30,且该信息作为基础数据被输入。
[0033] 因此,通过凸轮位置传感器110和曲轴位置传感器220来计算凸轮轴100的当前位置,然后计算移动凸轮的必要角度。所计算出角度表示所述凸轮必须在提前方向上或滞后方向上被移动的预定角度。
[0034] 当凸轮轴10的位置不同于高压泵圆形突出部30的位置时,就需要驱动凸轮轴。在那种情况下,凸轮轴100被施加负载而转动以驱动电动机。
[0035] 如果根据多种情况的相应的正向负载或负向负载被施加到电动CVVT驱动电动机以修正计算出的角度,则该电动机就在所需的方向上转动凸轮轴100。
[0036] 如果凸轮轴100转动的当前位置和目标位置之差低于所述预定值,就完成了控制。然而,如果凸轮轴的当前位置和目标位置之差高于所述预定值,就向电动机施加更高的负载,从而降低所述凸轮轴100的当前位置与目标位置之差。
[0037] 凸轮轴100的当前位置是连续计算的。当凸轮轴100的当前位置达到目标位置时,控制就完成了,并停止动力供应。此时,凸轮轴100的当前位置意味着在发动机停止之后用于下次启动的有利位置,且该有利位置意味着该位置刚好在下次启动时高压泵10开始压缩之前。
[0038] 以下,将根据参照图4的控制过程来描述本发明的示例性实施方案。
[0039] 首先,确定发动机是否运行(步骤S20)。如果发动机没有运行,凸轮轴100的相位角就根据凸轮位置传感器110和曲轴位置传感器220来计算(步骤S30),并计算高压泵10的圆形突出部30的最佳位置和凸轮轴100的当前位置之差(步骤S40)。
[0040] 结果,根据所述当前位置和用于高压泵的圆形突出部30的目标位置之差,来向电动机施加负载(步骤S50)。将所述当前位置与高压泵10的圆形突出部30的目标位置之差与预定值进行比较(步骤S60),这样,如果所述差大于所述预定值,就提高所施加的负载。如果所述差小于所述预定值,控制就完成了,就停止动力供应(步骤S70)。
[0041] 通过所述预定值a来控制所述当前位置和所述凸轮轴100的目标位置之差,从而使凸轮轴100的当前位置在所施加的最高负载处改变为目标位置。
[0042] 也就是说,如果凸轮轴100的当前位置位于所述目标位置的前面位置和后面位置,且满足了判断标准(步骤S60),控制就完成了。如果所述凸轮轴100的当前位置偏离了所述目标位置的前面位置和后面位置,且判断标准(步骤S60)还没有实现,就提高电动机负载并转动凸轮轴直至满足判断标准(步骤S60),从而完成控制。
[0043] 附图中的其它附图标记50、146、148、160、200分别表示链条、壳体叶片(housing vane)、转子叶片(rotor vane)、凸轮链轮齿(cam sprocket)、曲轴链轮齿(crank sprocket)。
[0044] 为便于在所附权利要求书中进行解释和精确限定,术语“较低”、“较高”等用于参考图中显示的特征的位置来描述示例性实施方案的这些特征。
[0045] 前面对本发明的具体示例性实施方案的描述,是为了图解和描述的目的。这些描述并非是要做到穷尽,也不是要将本发明限定在所揭示的精确形式,显然,在上述教示的启示下,可以做出许多的修改和变化。选择示例性的实施方案并进行描述是为了解释本发明的特定原理及其实际应用,从而使得本领域的普通技术人员能够实现并利用本发明的各个示例性的实施方案,以及其各种替代方案和修改方案。本发明的保护范围由所附权利要求书及其等同形式所确定。