硅基多级孔钴基催化剂的制备方法和应用转让专利

申请号 : CN201110393919.8

文献号 : CN102500425B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孙予罕王俊刚李德宝侯博贾丽涛

申请人 : 中国科学院山西煤炭化学研究所

摘要 :

一种硅基多级孔钴基催化剂由活性组分和载体组成,其重量百分比组成为:金属钴:5-40%,金属助剂含量0-2.0%,多级孔二氧化硅为58-95%;催化剂的物化性质:第一个孔径为0.5-1.5nm,第二个孔径为2.3-50nm,第三个孔径为50-200nm。第一个孔径所占比例为10-30%,第二个孔径所占比例为20-50%,第三个孔径所占比例为20%-7%,催化剂比表面积400-1400m2/g,孔容0.5-1.5cm3/g,Co3O4晶粒尺寸12-90nm。本发明具有选择性好,寿命长,活性高的优点。

权利要求 :

1. 一种硅基多级孔钴基催化剂,其特征在于催化剂的重量百分比组成为:金属钴:

5-40%,金属助剂含量0-2.0%,硅基多级孔载体为58-95%;

催化剂的物化性质:第一个孔径为0.5-1.5 nm,第二个孔径为2.3-50 nm,第三个孔径为50-200 nm,不包括50 nm;第一个孔径所占比例为10-30%,第二个孔径所占比例为2

20-50%,第三个孔径所占比例为20%-7%,催化剂比表面积400-1400 m/g,孔容0.5-1.5 3

cm/g,Co3O4晶粒尺寸12-90 nm;

并由如下方法制备:

(1)硅基多级孔载体的制备:

A:将十六烷基三甲基溴化铵溶于0.01-0.05 mol/L的NaOH水溶液中,再以1-2 ml/min的速度加入正硅酸乙酯,继续搅拌30-60 min后,静置3-8 h,然后60-100 ℃老化

36-72 h,用去离子水和乙醇清洗过滤后,60-90 ℃下烘24-30 h,以1-3℃/min在

500-650℃焙烧6-10 h,得到介孔-大孔双孔分布载体,合成介孔-大孔载体的各原料摩尔比为:十六烷基三甲基溴化铵:NaOH:正硅酸乙酯 = 1:0.1-0.6:5-12;

B:按铝酸钠:氢氧化钠:25wt%四乙基氢氧化铵的水溶液:白碳黑为0.1-0.8 g:

0.1-1 g:10 -50 mL:2-10 g,将铝酸钠和氢氧化钠溶于四乙基氢氧化铵的水溶液中,再加入白碳黑,并在室温下搅拌3-6 h呈均相,得到沸石纳米簇的前驱体溶液; 按沸石纳米簇的前驱体溶液与介孔-大孔双孔分布载体重量比为1-5:1,将沸石纳米簇的前驱体溶液加入到介孔-大孔双孔分布载体中,然后按甘油与沸石纳米簇的前驱体溶液体积比为5-10: 1加入甘油,搅拌均匀后转入自压釜中于100-200℃晶化4-12天,经清洗过滤后,最后在60-90℃下烘24-30 h,然后以1-3℃/min升温到500-

650℃焙烧6-10 h,得到微孔-介孔-大孔多级孔硅载体;

(2)硅基多级孔钴催化剂的制备:

采用氨水气相诱导水解法制备所需催化剂,按催化剂组成,将金属钴和金属助剂的硝酸盐溶液等体积浸渍10-40 h微孔-介孔-大孔多级孔硅载体,浸渍后未经烘干的催化剂放入高压釜内衬中,再将10-20 %的氨水溶液置于内衬和不锈钢外壳中间,封好后置于

60-90 ℃中反应0.5-2 h,自然冷却到室温,然后在60-80 ℃烘12-48 h,最后在

400-550℃焙烧1-3 h,即得多级孔催化剂。

2.如权利要求1所述的一种硅基多级孔钴基催化剂,其特征在于所述的金属助剂为钌、铑、钯、铂、镧、铈、锰、铼、镁、锆中的一种或两种。

3.一种权利要求1所述的硅基多级孔钴基催化剂的应用,其特征在于包括如下步骤:催化剂既用于固定床或用于浆态床费托合成反应器,还原条件为,纯氢气氛,250~-1

500℃,0.1~1.20 Mpa,体积空速为500~3000 h ,还原6~24 h,当用于浆态床时转速为400~1400 rpm;

-1

反应条件为,190~300℃,0.5~5.0 Mpa, 体积空速为500~2000 h ,H2/CO的摩尔比为 1~3/1,当用于浆态床时转速为400~1400 rpm。

说明书 :

硅基多级孔钴基催化剂的制备方法和应用

技术领域

[0001] 本发明属于一种催化剂及制备方法和应用,具体的说涉及一种硅基多级孔材料负载钴催化剂及制备方法和在费托合成中的应用。技术背景
[0002] F-T合成技术的核心是将以煤、天然气或生物质等原料加工生成的合成气(CO和H2)为原料,在催化剂和适当的反应条件下转化为石蜡烃为主的液态燃料的工艺过程。钴基催化剂具有活性高,水煤气反应活性低,是费托合成中常用的催化剂。当前,F-T合成过程存在许多科学问题亟待解决,其中产物选择性的调控是最为关键的问题之一。传统的F-T合成链增长服从聚合机理,产物碳数分布遵循Anderson-Schultz-Flory分布,甲烷和重质烃(蜡)有较高的选择性,而其余馏分都有选择性极限。因此,F-T合成得到的产物是混合烃,选择性差是F-T合成的一个显著特征。为了选择性地合成产物,许多研究者致力于开发不服从ASF分布的催化剂及其工艺。其中,由合成气制中间馏分油催化剂的研发是费-托合成技术发展的重要方向。因此采用费-托合成方法选择性合成中间馏分油催化剂的制备和应用具有极其重要意义。
[0003] 目前,多孔分子筛材料的在大分子催化,吸附分离等方面展示了非常诱人的前景。分子筛的孔道尺寸和结构对费-托合成产物的选择有重要的影响,以微孔分子筛ZSM-5等为载体一般可以得到汽油组分,但甲烷的选择性较高。而以介孔分子筛SBA-15等为载体则可得到C10以上柴油组分为主的产物。尽管不同孔径的材料对催化性能具有显著的作用,多级孔材料往往同时具有各级孔的优势,又同时具有单一孔的材料所不具备的优势。在实际工业应用的催化剂也往往不能是粉末材料,要求是具有一定尺寸(毫米或次毫米)的颗粒,这些颗粒中的介孔和大孔有助于反应物和产物的扩散,多层次孔的材料(从微孔到介孔到大孔)将会有更高的效率。多级孔材料具有以下优势:同时具备各级孔材料的优势;反应物和生成物能在各级孔材料之间得到比单一孔更大优势的扩散;消除了孔径限制。多级孔道结构的材料也能减少大分子造成的孔道堵塞和提高扩散效率;介孔或者微孔堵塞和提高扩散效率;介孔或者微孔孔道作为反应物的反应空间,反应物在大孔体系以很小的压力降就可快捷地接近活性位,同时使产物可及时脱离而适时中止反应。介孔和大孔材料空旷的结构和巨大比表面积使它不仅自身可以作为催化的反应中心,而且也可以分散担载很多优良催化性能的金属(如过渡金属)或金属离子,使得催化效能得到显著的提高。利用其作为钴基催化剂载体,可以获得高分散度的钴基催化剂,提高费-托合成的催化活性。Shinoda et al.将SiO2或ZrO2溶胶加入到大孔SiO2凝胶中,制得具有双孔分布的载体,并由此得到双峰孔分布负载型钴基催化剂。双孔结构的空间促进作用和氧化锆的化学效应使得该催化剂具有较高的反应速率和较低的CH4选择性。Zhang et al.采用硝酸铝盐的聚合溶液与SiO2凝胶制备具有约3nm和约50nm两种主要孔径分布的铝硅双孔分子筛,以其为载体制备的催化剂因具有双孔结构和载体铝的化学效应,表现出优良的催化活性和较低的CH4选择性。这种结构的优点在于大孔有利于产物扩散,而小孔有利于Co物种的分散。但以往所报道的均是微介孔复合或者介孔-大孔复合型的催化剂,其扩散性能依然受到限制,采用硅基微孔-介孔-大孔三种孔结构复合型的钴基催化剂会进一步改善产物扩散性以及选择性,而且此方面的应用还未见报道。因而应用具有三维立方孔道通道的多级孔材料制备费托合成催化剂具有重要学术价值和现实意义。

发明内容

[0004] 本发明的目的是提供一种选择性好,活性高的硅基多级孔钴基催化剂的制备方法和在费托合成中的应用。
[0005] 本发明催化剂由活性组分和载体组成,其重量百分比组成为:金属钴:5-40%,金属助剂含量0-2.0%,多级孔二氧化硅为58-95%。
[0006] 如上所述的硅基多级孔催化剂物化性质:第一个孔径为0.5-1.5nm,第二个孔径为2.3-50nm,第三个孔径为50-200nm。第一个孔径所占比例为10-30%,第二个孔径所占2
比例为20-50%,第三个孔径所占比例为20%-7%,催化剂比表面积400-1400m/g,孔容
3
0.5-1.5cm/g,Co3O4晶粒尺寸12-90nm。
[0007] 如上所述的金属助剂为钌、铑、钯、铂、镧、铈、锰、铼、镁、锆中的一种或两种。
[0008] 本发明催化剂的制备方法如下:
[0009] (1)硅基多级孔载体的制备:
[0010] A:将十六烷基三甲基溴化铵(CTAB)溶于0.01-0.05mol/L的NaOH水溶液中,再以1-2ml/min的速度加入正硅酸乙酯(TEOS),继续搅拌30-60min后,静置3-8h,然后60-100℃老化36-72h,用去离子水和乙醇清洗过滤后,60-90℃下烘24-30h,以1-3℃/min在500-650℃焙烧6-10h,得到介孔-大孔双孔分布载体,合成介孔-大孔载体的各原料摩尔比为:CTAB∶NaOH∶TEOS=1∶0.1-0.6∶5-12;
[0011] B:按铝酸钠(NaAlO2)∶氢氧化钠∶25wt%四乙基氢氧化铵(TEAOH)水溶液∶白碳黑为0.1-0.8g∶0.1-1g∶10-50mL∶2-10g,将铝酸钠(NaAlO2)和氢氧化钠(NaOH)溶于四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入白碳黑,并在室温下搅拌3-6h呈均相,得到沸石纳米簇的前驱体溶液;
[0012] 按沸石纳米簇的前驱体溶液与介孔-大孔双孔分布载体重量比为1-5∶1,将沸石纳米簇的前驱体溶液加入到介孔-大孔双孔分布载体中,然后按甘油与沸石纳米簇的前驱体溶液体积比为5-10∶1加入甘油,搅拌均匀后转入自压釜中于100-200℃晶化4-12天,经清洗过滤后,最后在60-90℃下烘24-30h,然后以1-3℃/min在500-650℃焙烧6-10h,得到微孔-介孔-大孔多级孔硅载体;
[0013] (2)硅基多级孔钴催化剂的制备:
[0014] 采用氨水气相诱导水解法制备所需催化剂,按催化剂组成,将金属钴和金属助剂的硝酸盐溶液等体积浸渍10-40h微孔-介孔-大孔多级孔硅载体,浸渍后未经烘干的催化剂放入高压釜内衬中,再将10-20%的氨水溶液置于内衬和不锈钢外壳中间,封好后置于60-90℃中反应0.5-2h,自然冷却到室温,然后在60-80℃烘12-48h,最后在400-550℃焙烧
1-3h,即得多级孔催化剂。
[0015] 本发明所制得的催化剂既可用于固定床费托合成反应器,又可用于浆态床中。应用操作条件为:还原条件为,纯氢气氛,250~500℃,0.1~1.20Mpa,体积空速为500~-13000h (V/V),还原6~24h,当用于浆态床时转速为400~1400rpm。
[0016] 反应条件为,190~300℃,0.5~5.0Mpa,体积空速为500~2000h-1(V/V),H2/CO(摩尔比)=1~3/1,当用于浆态床时转速为400~1400rpm。
[0017] 本发明制备的催化剂具有以下特点:
[0018] 1)具有丰富的微孔-介孔-大孔多级孔结构,为反应提供足够的比表面,在有利用获得高分散的活性位的同时,催化剂具有不同的微孔-介孔-大孔孔道结构,从而避免了反应物和产物的扩散限制等问题。
[0019] 2)催化剂的三孔径大小可调,第一种孔径范围0.5~1.5nm,第二种孔径范围2 3
2.3~50nm,第三种孔径范围50~100nm,催化剂比表面积400-1400m/g,孔容0.5-1.5cm/g,Co3O4晶粒尺寸12-90nm。有利于选择性地控制合成不同碳数分布的烃类化合物。
[0020] 3)选择性好,活性高。

具体实施方式

[0021] 实施例1
[0022] 1g CTAB溶于50ml 0.01mol/L NaOH水溶液中,再以1ml/min的速度加入2.81ml TEOS,继续搅拌30min后,静置3h,然后60℃老化36h。用去离子水和乙醇清洗过滤后,60℃下烘24h,以1℃/min在500℃焙烧6h,得到介孔-大孔双孔分布载体。
[0023] 配置一定量的沸石前驱体溶液。将0.1g铝酸钠(NaAlO2)和0.10g氢氧化钠(NaOH)溶于10mL四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入2g白碳黑并在室温下搅拌3h呈均相,得到沸石纳米簇的前驱体溶液。
[0024] 将配置好的沸石前驱体溶液取3ml加入到上述得到的3g介孔-大孔载体中,然后加入15ml甘油,然后于100℃下转入自压釜中晶化4天。最后于60℃下烘24h,以1℃/min在500℃焙烧6h,得到微孔-介孔-大孔多级孔硅载体。
[0025] 将3g载体与溶于9ml含2.91g硝酸钴以及0.15g硝酸钯的溶液中进行等体积浸渍。将等体积浸渍20h后未经烘干的催化剂放入高压釜中,再将10%的氨水溶液置于于烧杯外和内衬中间,封好后置于60℃烘箱中反应0.5h,自然冷却到室温,然后在烘箱中60℃烘12h,最后在马弗炉中500℃焙烧6h,即得所需催化剂。
[0026] 在加压固定床反应器中(Φ10×500nm)装填2ml 60~80目的上述催化剂,在纯-1氢气氛中程序升温还原。还原条件为,250℃,0.1MPa,体积空速为500h (V/V),还原6h。反-1
应条件为,190℃,0.5Mpa,体积空速为500h (V/V),H2/CO(摩尔比)=1/1。反应结果见表
1。
[0027] 取100目以上的上述催化剂15ml放入1L的浆态搅拌釜中,然后加入500ml液体石-1蜡,在纯氢气中程序升温还原。还原条件为,400℃,0.1MPa,500h (V/V),400rpm,6h。还原-1
后,降温切换成合成气进行反应,反应条件为190℃,0.5MPa,500h (V/V),400rpm,H2/CO(摩尔比)=1/1。反应结果见表1。
[0028] 实施例2
[0029] 1g CTAB溶于30ml 0.05mol/L NaOH水溶液中,再以2ml/min的速度加入6.74ml TEOS,继续搅拌60min后,静置8h,然后100℃老化72h。用去离子水和乙醇清洗过滤后,90℃下烘30h,以3℃/min在650℃焙烧10h,得到介孔-大孔双孔分布载体。
[0030] 配置一定量的沸石前驱体溶液。将0.8g铝酸钠(NaAlO2)和1g氢氧化钠(NaOH)溶于50mL四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入10g白碳黑并在室温下搅拌6h呈均相,得到沸石纳米簇的前驱体溶液。
[0031] 将配置好的沸石前驱体溶液取3ml加入到上述得到的3g介孔-大孔载体中,然后加入20ml甘油,然后于200℃下转入自压釜中晶化12天。最后于90℃下烘30h,以3℃/min在650℃焙烧10h,得到微孔-介孔-大孔多级孔硅载体。
[0032] 将3g载体与溶于9ml含2.91g硝酸钴的溶液中进行等体积浸渍。将等体积浸渍20h后未经烘干的催化剂放入高压釜中,再将10%的氨水溶液置于于烧杯外和内衬中间,封好后置于60℃烘箱中反应0.5h,自然冷却到室温,然后在烘箱中60℃烘12h,最后在马弗炉中650℃焙烧10h,即得所需催化剂。
[0033] 在加压固定床反应器中(Φ10×500nm)装填2ml 60~80目的上述催化剂,在纯-1氢气氛中程序升温还原。还原条件为,500℃,1.2MPa,体积空速为3000h (V/V),还原24h。
-1
反应条件为,210℃,5Mpa,体积空速为2000h (V/V),H2/CO=3/1。反应结果见表1。
[0034] 取100目以上的上述催化剂15ml放入1L的浆态搅拌釜中,然后加入1000ml液体-1石蜡,在纯氢气中程序升温还原。还原条件为,500℃,1.2MPa,3000h (V/V),1400rpm,24h。
-1
还原后,降温切换成合成气进行反应,反应条件为210℃,1.2MPa,2000h (V/V),1400rpm,H2/CO=3/1。反应结果见表1。
[0035] 实施例3
[0036] 1g CTAB溶于25ml 0.02mol/L NaOH水溶液中,再以1ml/min的速度加入5.62ml TEOS,继续搅拌30min后,静置3h,然后60℃老化40h。用去离子水和乙醇清洗过滤后,70℃下烘24h,以1℃/min在500℃焙烧6h,得到介孔-大孔双孔分布载体。
[0037] 配置一定量的沸石前驱体溶液。将0.3g铝酸钠(NaAlO2)和0.16g氢氧化钠(NaOH)溶于20mL四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入4.8g白碳黑并在室温下搅拌3h呈均相,得到沸石纳米簇的前驱体溶液。
[0038] 将配置好的沸石前驱体溶液取3ml加入到上述得到的3g介孔-大孔载体中,然后加入25ml甘油,然后于100℃下转入自压釜中晶化4天。最后于60℃下烘24h,以1℃/min在550℃焙烧6h,得到微孔-介孔-大孔多级孔硅载体。
[0039] 将3g载体与溶于9ml含2.91g硝酸钴和0.1g硝酸镧的溶液中进行等体积浸渍。将等体积浸渍20h后未经烘干的催化剂放入高压釜中,再将10%的氨水溶液置于于烧杯外和内衬中间,封好后置于60℃烘箱中反应0.5h,自然冷却到室温,然后在烘箱中60℃烘12h,最后在马弗炉中500℃焙烧1h,即得所需催化剂。
[0040] 在加压固定床反应器中(Φ10×500nm)装填2ml 60~80目的上述催化剂,在纯-1氢气氛中程序升温还原。还原条件为,400℃,0.2MPa,体积空速为500h (V/V),还原6h。反-1
应条件为,220℃,1Mpa,体积空速为1000h (V/V),H2/CO=2/1。反应结果见表1。
[0041] 取100目以上的上述催化剂15ml放入1L的浆态搅拌釜中,然后加入500ml液体-1石蜡,在纯氢气中程序升温还原。还原条件为,400℃,0.2MPa,500h (V/V),1000rpm,6h。还-1
原后,降温切换成合成气进行反应,反应条件为220℃,1MPa,1000h (V/V),1000rpm,H2/CO=2/1。反应结果见表1。
[0042] 实施例4
[0043] 1g CTAB溶于30ml 0.03mol/L NaOH水溶液中,再以2ml/min的速度加入5.62ml TEOS,继续搅拌30min后,静置3h,然后60℃老化36h。用去离子水和乙醇清洗过滤后,60℃下烘24h,以2℃/min在500℃焙烧6h,得到介孔-大孔双孔分布载体。
[0044] 配置一定量的沸石前驱体溶液。将0.3g铝酸钠(NaAlO2)和0.16g氢氧化钠(NaOH)溶于20mL四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入4.8g白碳黑并在室温下搅拌3h呈均相,得到沸石纳米簇的前驱体溶液。
[0045] 将配置好的沸石前驱体溶液取3ml加入到上述得到的3g介孔-大孔载体中,然后加入20ml甘油,然后于100℃下转入自压釜中晶化8天。最后于70℃下烘24h,以1℃/min在550℃焙烧7h,得到微孔-介孔-大孔多级孔硅载体。
[0046] 将3g载体与溶于9ml含2.91g硝酸钴和0.5g硝酸锆的溶液中进行等体积浸渍。将等体积浸渍20h后未经烘干的催化剂放入高压釜中,再将10%的氨水溶液置于于烧杯外和内衬中间,封好后置于60℃烘箱中反应0.5h,自然冷却到室温,然后在烘箱中60℃烘12h,最后在马弗炉中500℃焙烧1h,即得所需催化剂。
[0047] 在加压固定床反应器中(Φ10×500nm)装填2ml 60~80目的上述催化剂,在纯-1氢气氛中程序升温还原。还原条件为,400℃,0.1MPa,体积空速为1000h (V/V),还原10h。
-1
反应条件为,230℃,0.5Mpa,体积空速为500h (V/V),H2/CO=2/1。反应结果见表1。
[0048] 取100目以上的上述催化剂15ml放入1L的浆态搅拌釜中,然后加入1000ml液体-1石蜡,在纯氢气中程序升温还原。还原条件为,500℃,0.1MPa,1000h (V/V),1200rpm,6h。
-1
还原后,降温切换成合成气进行反应,反应条件为230℃,0.5MPa,500h (V/V),1200rpm,H2/CO=2/1。反应结果见表1。
[0049] 实施例5
[0050] 1g CTAB溶于20ml 0.04mol/L NaOH水溶液中,再以1ml/min的速度加入5.62ml TEOS,继续搅拌30min后,静置5h,然后80℃老化60h。用去离子水和乙醇清洗过滤后,80℃下烘30h,以2℃/min在500℃焙烧6h,得到介孔-大孔双孔分布载体。
[0051] 配置一定量的沸石前驱体溶液。将0.3g铝酸钠(NaAlO2)和0.16g氢氧化钠(NaOH)溶于20mL四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入4.8g白碳黑并在室温下搅拌3h呈均相,得到沸石纳米簇的前驱体溶液。
[0052] 将配置好的沸石前驱体溶液取3ml加入到上述得到的3g介孔-大孔载体中,然后加入25ml甘油,然后于150℃下转入自压釜中晶化6天。最后于80℃下烘24h,以1℃/min在600℃焙烧8h,得到微孔-介孔-大孔多级孔硅载体。
[0053] 将3g载体与溶于9ml含4.37g硝酸钴的溶液中进行等体积浸渍。将等体积浸渍36h后未经烘干的催化剂放入高压釜中,再将15%的氨水溶液置于于烧杯外和内衬中间,封好后置于60℃烘箱中反应0.5h,自然冷却到室温,然后在烘箱中60℃烘12h,最后在马弗炉中550℃焙烧2h,即得所需催化剂。
[0054] 在加压固定床反应器中(Φ10×500nm)装填2ml 60~80目的上述催化剂,在纯-1氢气氛中程序升温还原。还原条件为,400℃,0.1MPa,体积空速为500h (V/V),还原10h。
-1
反应条件为,250℃,1Mpa,体积空速为1500h (V/V),H2/CO=2/1。反应结果见表1。
[0055] 取100目以上的上述催化剂15ml放入1L的浆态搅拌釜中,然后加入500ml液体-1石蜡,在纯氢气中程序升温还原。还原条件为,400℃,0.1MPa,1000h (V/V),1000rpm,10h。
-1
还原后,降温切换成合成气进行反应,反应条件为250℃,1MPa,1500h (V/V),1000rpm,H2/CO=2/1。反应结果见表1。
[0056] 实施例6
[0057] 1g CTAB溶于25ml 0.03mol/L NaOH水溶液中,再以2ml/min的速度加入5.62ml TEOS,继续搅拌30min后,静置3h,然后70℃老化36h。用去离子水和乙醇清洗过滤后,60℃下烘24h,以2℃/min在550℃焙烧6h,得到介孔-大孔双孔分布载体。
[0058] 配置一定量的沸石前驱体溶液。将0.3g铝酸钠(NaAlO2)和0.16g氢氧化钠(NaOH)溶于20mL四乙基氢氧化铵(TEAOH 25%水溶液)中,再加入4.8g白碳黑并在室温下搅拌3h呈均相,得到沸石纳米簇的前驱体溶液。
[0059] 将配置好的沸石前驱体溶液取3ml加入到上述得到的3g介孔-大孔载体中,然后加入25ml甘油,然后于100℃下转入自压釜中晶化8天。最后于70℃下烘30h,以1℃/min在550℃焙烧7h,得到微孔-介孔-大孔多级孔硅载体。
[0060] 将3g载体与溶于9ml含4.37g硝酸钴和0.8g硝酸铈的溶液中进行等体积浸渍。将等体积浸渍20h后未经烘干的催化剂放入高压釜中,再将20%的氨水溶液置于于烧杯外和内衬中间,封好后置于60℃烘箱中反应0.5h,自然冷却到室温,然后在烘箱中80℃烘20h,最后在马弗炉中600℃焙烧1h,即得所需催化剂。
[0061] 在加压固定床反应器中(Φ10×500nm)装填2ml 60~80目的上述催化剂,在纯氢气氛中程序升温还原。还原条件为,400℃,0.1MPa,体积空速为1000h-1(V/V),还原10h。-1
反应条件为,230℃,0.5Mpa,体积空速为2000h (V/V),H2/CO=2/1。反应结果见表1。
[0062] 取100目以上的上述催化剂15ml放入1L的浆态搅拌釜中,然后加入1000ml液体-1石蜡,在纯氢气中程序升温还原。还原条件为,500℃,0.1MPa,1000h (V/V),1200rpm,6h。还-1
原后,降温切换成合成气进行反应,反应条件为230℃,0.5MPa,2000h (V/V),1200rpm,H2/CO=2/1。反应结果见表1。
[0063] 表1催化剂的费托合成反应结果
[0064]