高功率连续波氟化氘/氟化氢化学激光器转让专利

申请号 : CN201210013060.8

文献号 : CN102545031B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘泽金刘文广许晓军袁圣付华卫红陈金宝

申请人 : 中国人民解放军国防科学技术大学

摘要 :

本发明公开了一种高功率连续波氟化氘/氟化氢化学激光器,该激光器包括主振荡器和位于主振荡器后的2N+1个放大级,N为非负整数,主振荡器主要由非稳腔镜和增益模块构成,放大级的第1级与主振荡器间的光路上和/或任意相邻的两个放大级之间的光路上至少设有一个光束翻转装置。本发明的化学激光器能够校正光束传输方向偏转,具有光强均匀化能力和杂光抑制能力,能够输出高质量的激光光束。

权利要求 :

1.一种高功率连续波氟化氘/氟化氢化学激光器,所述激光器包括主振荡器和位于主振荡器后的2N+1个放大级,N为非负整数,所述主振荡器主要由非稳腔镜和增益模块构成,其特征在于:所述放大级的第1级与所述主振荡器间的光路上和/或任意相邻的两个放大级之间的光路上至少设有一个光束翻转装置;设于所述放大级的第1级与所述主振荡器间的光路上的光束翻转装置包括输入平面反射镜和输出平面反射镜,所述输入平面反射镜和输出平面反射镜依次布设在所述主振荡器输出光束的光路上;设于任意相邻的两个放大级之间的光束翻转装置包括转向平面反射镜、输入平面反射镜和输出平面反射镜,所述转向平面反射镜、输入平面反射镜和输出平面反射镜依次布设在前一放大级输出光束的光路上;所述输入平面反射镜的中心开设有杂光导出孔阑;所述转向平面反射镜与所述非稳腔镜光轴方向呈45°角放置;所述输入平面反射镜与所述非稳腔镜光轴方向呈α角放置,α为锐角,且过所述输入平面反射镜中心与所述转向平面反射镜中心所成的直线垂直于所述非稳腔镜光轴方向;所述输出平面反射镜与所述非稳腔镜光轴方向呈45°+α角放置。

2.根据权利要求1所述的高功率连续波氟化氘/氟化氢化学激光器,其特征在于:所述转向平面反射镜的前方对应装设有红外光斑监测装置,所述输出平面反射镜安装在可接收红外光斑监测装置所发出的调节信号的调节镜架上。

3.根据权利要求1或2所述的高功率连续波氟化氘/氟化氢化学激光器,其特征在于:

所述非稳腔镜包括凹面反射镜、输出耦合镜和凸面反射镜,所述增益模块置于所述凹面反射镜和凸面反射镜之间,所述输出耦合镜置于所述增益模块和凸面反射镜之间并靠近凸面反射镜;所述增益模块的增益区中心与所述非稳腔镜的光轴重合。

4.根据权利要求3所述的高功率连续波氟化氘/氟化氢化学激光器,其特征在于:

所述任意相邻的两个放大级之间至少设有一个光束翻转装置具体是指在所述放大级的第

2M级与所述放大级的第2M+1级之间的光路上至少设有一个光束翻转装置,其中M=1、2、

3、……、N。

5.根据权利要求4所述的高功率连续波氟化氘/氟化氢化学激光器,其特征在于:所述各放大级中均包括有增益模块,所述各增益模块的流场方向均相同;所述放大级的第1级与所述主振荡器间的光路上、所述放大级的第2M级与所述放大级的第2M+1级之间的光路上均设有一个光束翻转装置;部分的放大级沿流场方向相对所述非稳腔镜光轴偏移适当距离,以便光路前方紧邻的光束翻转装置输出的光束能够入射到偏移后的放大级中。

6.根据权利要求5所述的高功率连续波氟化氘/氟化氢化学激光器,其特征在于:所述主振荡器输出的光束为中空光束,所述中空光束的两条边缘光线分别通过所述增益模块的流场上游与流场下游;两条边缘光线经过所述输出耦合镜反射输出后,再通过所述光束翻转装置的调整,使两条边缘光线分别交替通过所述放大级的流场下游和流场上游。

说明书 :

高功率连续波氟化氘/氟化氢化学激光器

技术领域

[0001] 本发明涉及激光技术领域,尤其涉及一种氟化氘/氟化氢化学激光器。

背景技术

[0002] 氟化氘/氟化氢激光器是目前连续波输出功率最大的高能激光器件,具有重要的应用价值。为进一步拓展氟化氘/氟化氢激光器的应用范围,氟化氘/氟化氢激光器的输出功率水平需要取得进一步的提升。使氟化氘/氟化氢激光器功率水平提升有两种技术途径,其一是沿用以往的单谐振腔方案,仅增加增益模块的数量,但这种方式使得腔镜上的功率负载太大,激光运行中腔镜发生热损伤的风险很大,因此使用单谐振腔方案仅能在一定的功率水平之下才有实际应用价值;另一方法就是使用主振荡-功率放大(MOPA)技术方案,以一个具有高输出光束质量、较低功率水平的氟化氘/氟化氢激光器作为种子源,采用多个放大级来进行功率放大,如图1所示。这种方法可保持一定的输出光束质量,同时腔镜上的功率负载较低,镜面热损伤的风险较低,因此MOPA方案是高功率连续波氟化氘/氟化氢激光器的优选方案。
[0003] 然而,实验发现,现有的使用MOPA方案的高功率连续波氟化氘/氟化氢激光器存在以下三个问题,导致激光器输出光束质量较低。
[0004] 其一是由于氟化氘/氟化氢激光器的增益介质沿流场方向的分布是非均匀的,因此输出光强分布不均匀。在高输出功率水平下,非均匀的光强分布将使镜面产生较大的高阶像差,这些高阶像差不能被自适应光学系统得到有效补偿,导致输出光束质量下降。
[0005] 二是由于输出光强分布存在上游强、下游弱的特点,高功率密度的非均匀光斑辐照在镜面上将产生较大的倾斜像差,使激光束传输方向偏离设计值,由于放大级长度较长,微弱的倾斜量将导致光束经过长距离传输时,部分光束辐照在下一面反射镜的镜架上,引起的镜架热变形也会使镜片进一步产生大角度的失调。
[0006] 三是放大级长度达到数米左右,且主振荡级输出的光束为中空光束,因此放大的自发辐射(ASE)效应显著,经过多个放大级后,光束中产生了较强的杂光,这些强烈的杂光将造成激光器热管理的困难,杂光对镜架具有加热效应,引起的镜架热变形也会使镜片产生大角度的失调,使光束传输方向严重偏离设计值,甚至超过自适应光学系统的校正范围,最终造成输出光束质量的下降。

发明内容

[0007] 本发明要解决的技术问题是克服现有技术的不足,提供一种能够校正光束传输方向偏转、具有光强均匀化能力和杂光抑制能力的、高输出光束质量的高功率连续波氟化氘/氟化氢化学激光器。
[0008] 为解决上述技术问题,本发明提出的技术方案为一种高功率连续波氟化氘/氟化氢化学激光器,所述激光器包括主振荡器和位于主振荡器后的2N+1个放大级,N为非负整数;所述主振荡器主要由非稳腔镜和增益模块构成,所述放大级的第1级与所述主振荡器间的光路上和/或任意相邻的两个放大级之间的光路上至少设有一个光束翻转装置。
[0009] 上述的高功率连续波氟化氘/氟化氢化学激光器中,设于任意相邻的两个放大级之间的光束翻转装置优选包括转向平面反射镜、输入平面反射镜和输出平面反射镜,所述转向平面反射镜、输入平面反射镜和输出平面反射镜依次布设在前一放大级输出光束的光路上,经过输出平面反射镜输出后进入相邻的后一放大级。设于所述放大级的第1级与所述主振荡器间的光路上的光束翻转装置(即位于最前方的光束翻转装置)优选包括输入平面反射镜和输出平面反射镜,所述输入平面反射镜和输出平面反射镜依次布设在所述主振荡器输出光束的光路上;此时所述的转向平面反射镜直接由所述非稳腔镜中的相应输出耦合镜充当。
[0010] 上述的高功率连续波氟化氘/氟化氢化学激光器中,所述输入平面反射镜的中心优选开设有杂光导出孔阑。
[0011] 上述的高功率连续波氟化氘/氟化氢化学激光器中,所述转向平面反射镜的前方对应优选装设有红外光斑监测装置,所述输出平面反射镜安装在可接收红外光斑监测装置所发出的调节信号的调节镜架上。所述红外光斑监测装置可以实时监测转向平面反射镜上光斑的偏移位置,并根据光斑偏移位置计算出光束偏转角度,并将角度调节信号传递给(电控的)调节镜架以校正光束传输方向的偏转。
[0012] 上述的各高功率连续波氟化氘/氟化氢化学激光器中,所述非稳腔镜优选包括凹面反射镜、输出耦合镜和凸面反射镜,所述增益模块置于所述凹面反射镜和凸面反射镜之间,所述输出耦合镜置于所述增益模块和凸面反射镜之间并靠近凸面反射镜;所述增益模块的增益区中心与所述非稳腔镜的光轴重合。
[0013] 上述的各高功率连续波氟化氘/氟化氢化学激光器中,作为进一步的改进和优化,所述任意相邻的两个放大级之间至少设有一个光束翻转装置优选是指在所述放大级的第2M级与所述放大级的第2M+1级之间的光路上至少设有一个光束翻转装置,其中M=1、2、3、……、N。
[0014] 上述的各高功率连续波氟化氘/氟化氢化学激光器中,所述各放大级中均包括有增益模块,所述各增益模块的流场方向均相同;所述放大级的第1级与所述主振荡器间的光路上、所述放大级的第2M级与所述放大级的第2M+1级之间的光路上均设有一个光束翻转装置(即共设有N+1个光束翻转装置);其中,部分的放大级沿流场方向相对所述非稳腔镜光轴偏移适当距离,以便光路前方紧邻的光束翻转装置输出的光束能够平行于光轴入射到偏移后的放大级中。所述各放大级还可沿垂直于流场方向平移适当距离,以便在相应的放大级之间放置所述的光束翻转装置。
[0015] 上述的高功率连续波氟化氘/氟化氢化学激光器中,所述主振荡器输出的光束优选为中空光束,所述中空光束的两条边缘光线分别通过所述增益模块的流场上游与流场下游;两条边缘光线经过所述输出耦合镜反射输出后,再通过所述光束翻转装置的调整,使两条边缘光线分别交替通过所述放大级的流场下游和流场上游。
[0016] 上述的高功率连续波氟化氘/氟化氢化学激光器中,所述转向平面反射镜与所述非稳腔镜光轴方向优选呈45°角放置;所述输入平面反射镜与所述非稳腔镜光轴方向优选呈α角放置,α为锐角,且过所述输入平面反射镜中心与所述转向平面反射镜中心所成的直线垂直于所述非稳腔镜光轴方向;所述输出平面反射镜与所述非稳腔镜光轴方向优选呈β角放置(β=45°+α)。各个反射镜间的距离可调,以便使经过光束翻转装置的输出光束的传输方向与前述光轴方向保持一致。
[0017] 与现有技术相比,本发明的有益效果在于:
[0018] (1)通过采用光束翻转装置,使主振荡级或前一级放大输出的光强较强部分通过后一放大级增益系数较弱的位置,而光强较弱部分通过后一放大级光强较强部分,从而改善了输出光强分布的均匀性,抑制了腔镜热变形的高阶成份,从而提高了输出光束的质量。
[0019] (2)通过设置杂光导出孔阑,可以有效降低放大的自发辐射(ASE)效应以及衍射造成的镜面中心位置处的杂光,从而可以进一步提高输出光束的质量。
[0020] (3)通过红外光斑监控装置监测镜面上的光斑位置,以驱动调节镜架进行倾斜调节,可以控制高能激光束传输方向的偏离,避免镜架受激光辐照引起镜面大角度的失调。

附图说明

[0021] 图1为现有的MOPA方案高功率连续波氟化氘/氟化氢激光器的原理图。
[0022] 图2为本发明实施例1中激光器小信号增益系数沿流场方向分布图。
[0023] 图3为本发明实施例1中激光器在光束翻转前后的小信号增益分布及其叠加图。
[0024] 图4为本发明实施例1中MOPA方案激光器的原理图。
[0025] 图5为本发明实施例1中红外光斑监测装置给出校正信号的原理图。
[0026] 图6为本发明实施例2中MOPA方案激光器的原理图。
[0027] 图7为本发明实施例2中MOPA方案激光器输出光强分布图。
[0028] 图8为现有的MOPA方案激光器的输出光强分布图。
[0029] 图例说明:
[0030] 1、增益模块;2、凹面反射镜;3、输出耦合镜;4、凸面反射镜;5、转向平面反射镜;6、输出平面反射镜;7、输入平面反射镜;8、电控调节镜架;9、红外光斑监测装置;10、杂光导出孔阑;11、第二边缘光线;12、光轴;13、第一边缘光线。

具体实施方式

[0031] 以下结合说明书附图和具体实施例对本发明作进一步描述。
[0032] 实施例1:
[0033] 一种如图4所示的本发明的高功率连续波氟化氘/氟化氢化学激光器,包括主振荡器和位于主振荡器后的2N+1个放大级(N非负整数),主振荡器主要由非稳腔镜(带有输出耦合镜的正支共焦非稳腔)和增益模块1构成。增益模块1是产生激发态氟化氘/氟化氢分子并使之加速至超音速流动的装置,气体流动方向与非稳腔的光轴12垂直,由于气体的流动特性导致增益介质沿流场方向分布是非均匀的,其小信号增益系数沿流场方向的分布如图2所示。非稳腔镜包括凹面反射镜2、输出耦合镜3和凸面反射镜4,增益模块1置于凹面反射镜2和凸面反射镜4之间,输出耦合镜3置于增益模块1和凸面反射镜4之间并靠近凸面反射镜4,输出耦合镜3为中心开设有椭圆形孔(或矩形孔)的平面反射镜,输出耦合镜3的中心与非稳腔的光轴12重合;增益模块1的增益区中心与非稳腔镜的光轴12重合。主振荡器输出的光束为中空光束,该中空光束包括两个边缘光线,分别为第一边缘光线13和第二边缘光线11,第一边缘光线13和第二边缘光线11分别通过增益模块1的流场上游和流场下游(流场方向参见图4中的箭头),然后经过输出耦合镜3反射输出。
[0034] 本实施例的放大级的第2M级与第2M+1级之间的光路上均设有一个光束翻转装置(其中M=1、2、3、……、N)。具体而言,放大级第一级输出的光束直接进入放大级第二级,在第二级和第三级之间放置光束翻转装置。重复上述步骤,在第偶数个放大级和紧接其后的第奇数个放大级之间放置光束翻转装置,而在第奇数个放大级和紧接其后的第偶数个放大级之间不放置光束翻转装置,最终使主振荡器出射的光束通过2N+1个放大级。设于相邻两放大级之间的光束翻转装置包括转向平面反射镜5、输入平面反射镜7和输出平面反射镜6,转向平面反射镜5、输入平面反射镜7和输出平面反射镜6依次布设在前一放大级(即第2M级)输出光束的光路上。
[0035] 另外,本实施例的放大级的第一级与主振荡器之间的光路上也设有一个光束翻转装置,该光束翻转装置包括输入平面反射镜7和输出平面反射镜6,而主振荡器中的输出耦合镜3则直接充当转向平面反射镜5,此时输出耦合镜3、输入平面反射镜7和输出平面反射镜6依次布设在主振荡器输出光束的光路上。
[0036] 本实施例中,光束翻转装置的转向平面反射镜5与光轴12方向呈45°角放置,输入平面反射镜7与光轴12方向呈α°角放置(α为锐角),且输入平面反射镜7的中心与转向平面反射镜5的中心相连所成的直线垂直于光轴12方向,输出平面反射镜6与光轴12方向呈β=α+45°角放置;各个镜面间的距离可调,使经光束翻转装置出射的光束传输方向与光轴12方向相同。
[0037] 由主振荡器出射的光束其横截面为圆形或矩形的中空光斑,经过放大级传输后,由于衍射效应和ASE效应,光斑中心将会出现强烈的杂光,这些杂光将对光束质量和热管理产生严重影响,因此,本实施例的光束翻转装置中引入了杂光导出孔阑10,即在输入平面反射镜7的中心开设有杂光导出孔阑10。该杂光导出孔阑10是在输入平面反射镜7上加工出的合适形状的小孔,小孔的形状在垂直于光束传输方向的面上投影与输出耦合镜3在垂直于光轴12方向的面上投影相同并略小。这样可以有效抑制ASE效应,从而可提高激光器的输出光束质量。
[0038] 本实施例中,在转向平面反射镜5的前方对应装设有红外光斑监测装置9,红外光斑监测装置9由红外热像仪及数据采集和处理系统构成,红外光斑监测装置9的热像仪光学镜头光轴方向垂直于光束翻转装置的转向平面反射镜5。输出平面反射镜6安装在二维倾斜的电控调节镜架8上可实时调节镜片的倾斜方向。当红外光斑监测装置9探测到转向平面反射镜5上的光斑位置偏离设计范围时,其将给出一个校正信号驱动电控调节镜架8,电控调节镜架8可以根据红外光斑监测装置9给出的校正信号进行俯仰角和左右角的倾斜调节,使转向平面反射镜5上的光斑回到设计位置,通过这种方法可以实时校正激光束传输方向的偏离,避免高能激光束照射在镜框上引起的镜框受热和大角度的镜面失调。放大级第一级前的光束翻转装置中无需使用红外光斑监测装置9。
[0039] 本实施例中,红外光斑监测装置9给出校正信号的原理如图5所示。将经转向平面反射镜5反射后的光束中心定为原点,以光束传输方向为z轴,垂直于纸面向内为x轴方向为建立直角坐标系。当高能激光束照射在转向平面反射镜5时,由于镜面存在微弱的散射效应,红外热像仪可探测到镜面上的光斑分布;通过数据采集与处理装置可以发现实际光斑与设计的理想光斑位置相比在x、y方向分别偏移了Δx和Δy(进行这些偏移量计算的软件均为商业化成熟软件)。设沿光轴方向从转向平面反射镜5中心到上一级光束翻转装置输出平面反射镜6中心之间的距离为L,则由上一级的输出平面反射镜6到本级光束翻转装置的转向平面反射镜5传输时,激光束的俯仰角和左右角的偏离角分别为:红外光斑监测装置9获取这一偏离角信号后给上一级的电控调节镜
架8对应的驱动信号,使上一级光束翻转装置的输出平面反射镜6进行相应的倾斜角调节,使本级光束翻转装置转向平面反射镜5上的光斑回到设计位置。
[0040] 本实施例的上述光束翻转装置可以使光束的横截面产生左右翻转,并具有光束平移、光束偏转和杂光抑制等功能。
[0041] 本实施例的2N+1个放大级分别由2N+1个增益模块1构成,构成放大级的各增益模块1与主振荡器使用的增益模块1相同,所有的增益模块1的流场方向相同,且各增益模块1沿光轴12方向的长度均相同。各放大级可沿流场方向或垂直于流场方向平移适当距离以便在增益模块1之间安放光束翻转装置。在本实施例中,每相邻两个放大级组成一组(例如第一级与第二级组成一组、第三级与第四级组成一组、……),每一组放大级沿流场方向相对非稳腔镜的光轴12偏移适当距离,以便该组放大级前方紧邻的光束翻转装置输出的光束能够平行于光轴12入射到偏移后的该组放大级中;在光路方向上越靠后的放大级组偏移的距离越大,因而形成类似的阶梯状分布;各放大级还可沿垂直于流场方向平移适当距离,以便在相应的放大级之间(例如第二级与第三级之间、第四级与第五级之间、……)放置光束翻转装置。
[0042] 上述本实施例的具有高输出光束质量的高功率连续波氟化氘/氟化氢化学激光器,其工作原理如下:由于主振荡器输出的光强沿流场方向是非均匀的,并且这种非均匀性是与小信号增益系数分布相对应的,增益系数大的位置对应的光强较强(即第一边缘光线13),增益系数较小的位置对应的光强较弱(即第二边缘光线11);主振荡器输出的光束经光束翻转装置后,光束横截面发生上下翻转,流场上游位置对应的光强(即第一边缘光线
13)与流场下游位置对应的光强(即第二边缘光线11)交换位置后,进入放大级的第一级;
由于放大级中流场的方向与主振荡器流场的方向相同,这使得第一级中增益较强的位置对应的光强较弱(即第二边缘光线11),而增益较弱的位置对应的光强较强(即第一边缘光线13),因此经过这一级放大后光强的非均匀性得到了改善,腔镜的热变形中高阶成份得到抑制,输出光束质量提高;从放大级的第一级输出的光束直接进入放大级的第二级,此时光束未经过翻转,光强分布与第一级相同,经过第二级的放大,光强沿流场方向的分布又表现出非均匀性,因此在放大级的第二级与第三级之间再次设置光束翻转装置,这样第二级输出的光束再经过放大级中的光束翻转装置的翻转,进入放大级的第三级,经过第三级放大后光强的非均匀性再一次得到改善,出射光强又变均匀,输出光束的质量再次提高。以此类推,共循环N个周期后,最后光束从放大级的第2N+1级输出,从第2N+1个放大级出射后的光束具有均匀的光强分布,从而可以使高能氟化氘/氟化氢激光器后续的内通道中众多激光中继镜面上所受的激光辐照较为均匀,可抑制内通道中众多激光中继镜面产生的难以校正的高阶像差,从而可使输出的激光具有很高的光束质量。
[0043] 我们也可以从另一角度来理解光束翻转可使输出光强实现均匀化的原理。光束翻转也可等同于放大级第一级中的增益模块1沿流场方向的小信号增益系数分布发生翻转,翻转后的小信号增益系数分布与未翻转的主振荡器增益模块1的小信号增益分布叠加后除以2,得到综合小信号增益分布,如图3所示。综合小信号增益分布的均匀性较翻转前小信号增益分布有明显的改善,因此输出光强的均匀性可以得到相应改善。
[0044] 实施例2:
[0045] 一种如图6所示的用于具有3个放大级的本发明高功率连续波氟化氘/氟化氢化学激光器。该激光器包括主振荡器和位于主振荡器后的三个放大级(即N=1),主振荡器主要由非稳腔镜(带有输出耦合镜的正支共焦非稳腔)和增益模块1构成。增益模块1是产生激发态氟化氘/氟化氢分子并使之加速至超音速流动的装置,气体流动方向与非稳腔的光轴12垂直,由于气体的流动特性导致增益介质沿流场方向分布是非均匀的。非稳腔镜包括凹面反射镜2、输出耦合镜3和凸面反射镜4,增益模块1置于凹面反射镜2和凸面反射镜4之间,输出耦合镜3置于增益模块1和凸面反射镜4之间并靠近凸面反射镜4,输出耦合镜3为中心开设有矩形孔的平面反射镜,该矩形孔在垂直于光轴12平面上的投影尺寸为15mm×45mm,输出耦合镜3的中心与非稳腔的光轴12重合;增益模块1的增益区中心与非稳腔镜的光轴12重合。主振荡器输出的光束为中空光束,该中空光束横截面为中空矩形光斑,其外尺寸为45mm×135mm,内孔尺寸为15mm×45mm。该中空光束包括两个边缘光线,分别为第一边缘光线13和第二边缘光线11,第一边缘光线13和第二边缘光线11分别通过增益模块1的流场上游和流场下游(流场方向参见图6中的箭头),然后经过输出耦合镜3反射输出。
[0046] 本实施例的激光器包括有两个光束翻转装置,具体而言,在放大级的第一级与主振荡器之间的光路上设有一个光束翻转装置,另外在放大级的第二级和第三级之间也放置有一光束翻转装置。设于相邻两放大级之间的后一个光束翻转装置包括转向平面反射镜5、输入平面反射镜7和输出平面反射镜6,转向平面反射镜5、输入平面反射镜7和输出平面反射镜6依次布设在第二级输出光束的光路上。而设于主振荡器后的第一个光束翻转装置包括输入平面反射镜7和输出平面反射镜6,主振荡器中的输出耦合镜3则直接充当转向平面反射镜5,输出耦合镜3与光轴12方向呈45°角放置,输入平面反射镜7与光轴12方向呈15°角放置,输入平面反射镜7的中心与输出耦合镜3的中心相距450mm,且两者中心的连线Q1垂直于光轴12方向,输出平面反射镜6的中心与放大级第一级中心线重合,并且与直线Q1的距离为86mm。此时输出耦合镜3、输入平面反射镜7和输出平面反射镜6依次布设在主振荡器输出光束的光路上。
[0047] 本实施例中,放大级第一级输出的光束直接进入放大级第二级,光束从第二级出射后,经过光束翻转装置进入第三放大级。此时,光束翻转装置的转向平面反射镜5的中心与第二级中心线重合,并与光轴12方向呈45°角放置;输入平面反射镜7与光轴12方向呈α=15°角放置;输入平面反射镜7的中心与转向平面反射镜5的中心相距450mm,且两者中心相连所成的直线Q2垂直于光轴12方向;输出平面反射镜6的中心与放大级第三级的中心线重合,且输出平面反射镜6与光轴12方向呈β=60°角放置,输出平面反射镜6的中心与直线Q2的距离为86mm;各个镜面间的距离可调,使经光束翻转装置出射的光束传输方向与光轴12方向相同。
[0048] 由主振荡器出射的光束其横截面为矩形的中空光斑,经过放大级传输后,由于衍射效应和ASE效应,光斑中心将会出现强烈的杂光,这些杂光将对光束质量和热管理会产生严重影响,因此,本实施例的光束翻转装置中引入了杂光导出孔阑10,即在输入平面反射镜7的中心开设有杂光导出孔阑10(尺寸为14mm×44mm)。该杂光导出孔阑10是在输入平面反射镜7上加工出的合适形状的小孔,小孔的形状在垂直于光束传输方向的面上投影与输出耦合镜3在垂直于光轴12方向的面上投影相同并略小。这样可以有效抑制ASE效应,从而可提高激光器的输出光束质量。
[0049] 本实施例中,在转向平面反射镜5的前方对应装设有红外光斑监测装置9,红外光斑监测装置9由红外热像仪及数据采集和处理系统构成,红外光斑监测装置9的热像仪光学镜头光轴方向垂直于光束翻转装置的转向平面反射镜5。输出平面反射镜6安装在二维倾斜的电控调节镜架8上(与光轴方向呈60°角放置)可实时调节镜片的倾斜方向。当红外光斑监测装置9探测到转向平面反射镜5上的光斑位置偏离设计范围时,其将给出一个校正信号驱动电控调节镜架8,电控调节镜架8可以根据红外光斑监测装置9给出的校正信号进行俯仰角和左右角的倾斜调节,使转向平面反射镜5上的光斑回到设计位置,通过这种方法可以实时校正激光束传输方向的偏离,避免高能激光束照射在镜框上引起的镜框受热和大角度的镜面失调(红外光斑监测装置9的工作原理与实施例1相同)。放大级第一级前的光束翻转装置中无需使用红外光斑监测装置9。
[0050] 本实施例的上述光束翻转装置可以使光束的横截面产生左右翻转,并具有光束平移、光束偏转和杂光抑制等功能。
[0051] 本实施例的三个放大级分别由三个增益模块1构成,构成放大级的各增益模块1与主振荡器使用的增益模块1相同,所有的增益模块1的流场方向均相同,且每个增益模块1沿光轴12方向的长度均相同。各放大级可沿流场方向或垂直于流场方向平移适当距离以便在增益模块1之间安放光束翻转装置。在本实施例中,放大级的第一级与第二级组成一组,该组放大级的中心线沿流场方向相对非稳腔镜的光轴12偏移的距离为300mm,以便第一级前的光束翻转装置输出的光束能够平行于光轴12入射到偏移后的该组放大级中;
在光路方向上越靠后的放大级偏移的距离越大,例如第三级中心线偏移第二级中心线的距离同样为300mm,偏移光轴12则达到600mm,因而形成类似的阶梯状分布(不是必须呈阶梯状,如果将光束翻转装置作对称放置,那么第三级也可以重新回归到与光轴重合的位置);
各放大级还可沿垂直于流场方向平移适当距离,以便在相应的放大级之间(例如第二级与第三级之间)放置光束翻转装置。
[0052] 上述本实施例的具有高输出光束质量的高功率连续波氟化氘/氟化氢化学激光器,其工作原理如下:由于主振荡器输出的光强沿流场方向是非均匀的,并且这种非均匀性是与小信号增益系数分布相对应的,增益系数大的位置对应的光强较强(即第一边缘光线13),增益系数较小的位置对应的光强较弱(即第二边缘光线11);主振荡器输出的光束经光束翻转装置后,光束横截面发生上下翻转,流场上游位置对应的光强(即第一边缘光线
13)与流场下游位置对应的光强(即第二边缘光线11)交换位置后,进入放大级的第一级;
由于放大级中流场的方向与主振荡器流场的方向相同,这使得第一级中增益较强的位置对应的光强较弱(即第二边缘光线11),而增益较弱的位置对应的光强较强(即第一边缘光线
13),因此经过这一级放大后光强的非均匀性得到了改善,腔镜的热变形中高阶成份得到抑制,输出光束质量提高;从放大级的第一级输出的光束直接进入放大级的第二级,此时光束未经过翻转,光强分布与第一级相同,经过第二级的放大,光强沿流场方向的分布又表现出非均匀性,因此在放大级的第二级与第三级之间再次设置光束翻转装置,这样第二级输出的光束再经过放大级中的光束翻转装置的翻转,进入放大级的第三级,经过第三级放大后光强的非均匀性再一次得到改善,出射光强又变均匀,输出光束的质量再次提高。本实施例中,主振荡器输出的光束分别经过第一个光束翻转装置、放大级第一级、放大级第二级、第二个光束翻转装置、放大级第三级后输出,获得的输出光束横截面上的光强分布如图7所示,如果直接按照图1所示的现有技术获得的光强分布如图8所示。对比后可见,使用本发明的方法可以显著提高输出光强的均匀性和有效抑制杂光,从而可以获得高输出光束质量的激光输出。