气体供给装置转让专利

申请号 : CN201080054408.7

文献号 : CN102639922B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 米田隆吉田隆

申请人 : 大阳日酸株式会社

摘要 :

本发明提供一种能够在稳定的状态下将压缩气体减压而进行供给,且在经济性、安全性上优异的气体供给装置。在利用减压单元(压力调整器(21)、(31))将从压缩气体供给源(高压气体容器(11))供给的气体减压而进行供给的气体供给装置中,在上述减压单元的气体流向上游侧设置使要被导入到该减压单元内的气体与从温水供给源(温水循环单元(15))供给的温水热交换而加温上述气体的换热器(22)、(32),并且在上述减压单元中设置用于利用上述温水的一部分加温该减压单元的温水流路(53)。

权利要求 :

1.一种气体供给装置,其利用减压单元将从压缩气体供给源供给的气体减压而进行供给,其中,在所述减压单元的气体流向上游侧设置使要被导入到该减压单元内的气体与从温水供给源供给的温水热交换而加温所述气体的换热器,并且在所述减压单元中设置用于利用所述温水的一部分加温该减压单元的温水流路,使得该温水流路包围所述减压单元的中央的气体流路,在所述温水流路的一端设有温水导入口,在另一端设有温水导出口,从温水导入口流入温水流路内的温水通过形成在所述气体流路的周围的入口侧环状流路,从该入口侧环状流路起,通过设在所述减压单元的阀箱部分的周围的阀箱外周流路,流入出口侧环状流路,从所述温水导出口导出。

2.根据权利要求1所述的气体供给装置,其中,

该气体供给装置具有将所述温水加温至30℃~40℃的温度并向所述换热器以及所述减压单元的温水流路进行供给的温水循环单元。

3.根据权利要求1或2所述的气体供给装置,其中,所述减压单元串联或并联地配置有多个,且在各减压单元的气体流向上游侧分别配置有所述换热器。

4.根据权利要求1或2所述的气体供给装置,其中,所述气体是硅烷或三氟化氮。

5.根据权利要求3所述的气体供给装置,其中,

所述气体是硅烷或三氟化氮。

说明书 :

气体供给装置

技术领域

[0001] 本发明涉及一种气体供给装置,详细地说,涉及一种将压缩气体减压而进行供给的气体供给装置。

背景技术

[0002] 当将来自47公升的容器、大型容器的压缩气体进行供给时,是利用压力调整设备、减压阀、控制阀等减压单元将该压缩气体减压至指定的压力而进行供给的。此时,由于利用减压单元减压的气体因绝热膨胀以及焦耳—汤姆孙效应而使气体温度降低,因此有时产生有在减压单元的外表面上的结露、结霜,难以进行气体压力的调整。因此,进行有通过加热减压单元的上游侧配管(一次侧配管)或加热减压单元来抑制减压后的气体温度降低的处理(例如,参照专利文献1~3)。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:日本特开2006—283812号公报
[0006] 专利文献2:日本特许第3592446号公报
[0007] 专利文献3:日本特公平6—33858号公报

发明内容

[0008] 发明所要解决的问题
[0009] 但是,由于当万一发生了气体泄露时存在有着火的危险性,因此并不优选使用电加热器作为用于加热供给可燃性气体的装置的配管、减压单元的加热源。另外,在将流动有加热用的流体的加热用配管卷绕在气体配管周围的结构中,为了使气体配管内的气体充分地升温,需要极大地增大导热面积或将在加热用配管内流动的流体温度设为高温,从而导致了设备成本、运转成本的上升。
[0010] 另一方面,由于硅烷(SiH4)、三氟化氮(NF3)的临界压力与填充压力极为接近,临界温度也与室温较为接近,因此硅烷、三氟化氮的供给成为从如下状态开始的供给,即,在临界点附近进行填充后的状态。而且,由于标准沸点较高,因此由绝热膨胀所引发的温度的降低较大,气体易于液化,且在减压单元上也易较多地形成结露、结霜。而且,由于硅烷具有可燃性、自燃性,三氟化氮也具有助燃性,因此期望避免电加热器的使用。
[0011] 在此,本发明的目的在于提供一种能够在稳定的状态下将压缩气体减压而进行供给,且在经济性、安全性上也较为优异的气体供给装置。
[0012] 用于解决问题的方案
[0013] 为了达成上述目的,本发明的气体供给装置是利用减压单元将从压缩气体供给源供给的气体减压而进行供给的气体供给装置,其中,在上述减压单元的气体流向上游侧设置使要被导入到该减压单元内的气体与从温水供给源供给的温水热交换而加温上述气体的换热器,并且在上述减压单元中设置用于利用上述温水的一部分加温该减压单元的温水流路。
[0014] 进而,本发明的气体供给装置具有将上述温水加温至30℃~40℃的温度并向上述换热器以及上述减压单元的温水流路进行供给的温水循环单元。另外,上述减压单元串联或并联地配置有多个,且在各减压单元的气体流向上游侧分别配置有上述换热器。而且,上述气体是硅烷或三氟化氮。
[0015] 发明的效果
[0016] 采用本发明的气体供给装置,由于利用将温水设为加热源的换热器来加温气体,因此能够效率好地且可靠地加温在配管内流动的气体,通过使减压单元也利用温水进行加温,能够可靠地防止减压后的气体液化的情况。另外,通过将加热源设为温水,与电加热器相比能够提高安全性。而且,通过将温水温度设为40℃以下,气体温度不会过高,能够减少加温所需的能量。另外,由于通过串联或并联地设置多个减压单元,能够最佳地设定各减压单元的减压度,因此在减压单元、配管系统上不会产生结露、结霜,能够效率更好地供给减压气体,特别是也能够以稳定的状态安全地供给如硅烷、三氟化氮这样的气体。

附图说明

[0017] 图1是表示本发明的气体供给装置的一实施例的系统图。
[0018] 图2是表示本发明的气体供给装置中所使用的换热器的一例的剖视图。
[0019] 图3是本发明的气体供给装置中所使用的压力调整器的一例的剖视图。

具体实施方式

[0020] 本实施例所示的气体供给装置,串联地设置有作为减压单元的2个压力调整器21、31,该减压单元用于降低从高压气体容器11供给的气体的压力,该高压气体容器11是以规定的高压状态填充了压缩气体的压缩气体供给源;并且,形成为:通过利用气体流向上游侧的第1压力调整器21将高压气体以预先设定的减压度进行减压而作为中压气体,利用下游侧的第2压力调整器31将中压气体以预先设定的减压度进行减压,从而供给依照供给目的地的要求的压力的低压气体。例如,在将填充压力是9MPa(绝对压力,以下相同)的压缩气体减压至大气压附近而进行供给的情况下,在利用第1压力调整器21将其减压至
4MPa左右的中压后,利用第2压力调整器31将其从4MPa减压至接近大气压的供给压力而进行供给。
[0021] 在气体供给装置与高压气体容器11之间设有高压阀12和压力检测器13,在气体供给装置与供给目的地之间设有低压阀14。然后,在各压力调整器21、31的气体流向上游侧(一次侧)设有换热器22、32和截止阀23、33,在各压力调整器21、31的气体流向下游侧(二次侧)分别设有压力检测器24、34。另外,在本实施例所示的气体供给装置中,以与配置了上述压力调整器21、31、换热器22、32等的装置主体部16相隔离的状态设有用于分别向上述压力调整器21、31以及上述换热器22、32循环供给加温用的温水的温水循环单元15。
[0022] 如图2所示,在上述换热器22、32中使用有在上方开口的有底的容器41内容纳了金属制的螺旋盘管42的结构(管壳式结构,シェルァンドコィル構造)的装置,在容器41的上部开口处,可装卸地安装有贯通了螺旋盘管42的入口管42a和出口管42b的盖体43。另外,在容器41的彼此相对的侧壁中的一侧的侧壁上设有温水导入口44,在另一侧的侧壁上设有温水导出口45,并且在容器41的内部,以不与螺旋盘管42干涉的方式设有多个挡板(隔板)46,其用于使从温水导入口44流入到容器41内的温水效率较好地与螺旋盘管42相接触。从温水导入口44流入到容器41内的温水利用挡板46的作用边在容器41内蜿蜒运动边流动,从而均匀地与螺旋盘管42的外表面相接触,在经由螺旋盘管42的管壁与在螺旋盘管42的内部流动的气体热交换从而加温气体之后,从温水导出口45导出。
[0023] 如图3所示,在上述压力调整器21、31中使用有以包围中央的气体流路51、52的周围的方式设有温水流路53的带有保温功能的装置。在该温水流路53的一端设有温水导入口54,在另一端设有温水导出口55,从温水导入口54流入温水流路53内的温水通过形成在气体流路51的周围的入口侧环状流路53a,从该入口侧环状流路53a起,通过设在阀箱部分的周围的阀箱外周流路53b,流入出口侧环状流路53c,在流过上述各流路时加温压力调整器21、31,之后,从温水导出口55导出。
[0024] 温水循环单元15具有使用任意的热能而生成预先设定的温度的温水的温水生成器17、连接该温水生成器17和上述装置主体部16内的加温对象的温水供给管18、以及温水返回管19。温水生成器17,是例如利用电加热器生成加温至30℃~40℃的温度的温水并将该温水以泵进行供给的装置,利用温水生成器17生成的温水形成为以下形式,即,该温水通过温水供给管18分流至分别与换热器22、32、压力调整器21、31相对应的导入侧分支管18a内,从换热器22、32、压力调整器21、31导出的温水从各导出侧分支管19a合流到温水返回管19内,在温水生成器17内循环而被再利用。
[0025] 自温水生成器17供给的温水的温度能够根据供给的气体流量、换热器22、32的热交换效率、压力调整器21、31中的加温效率等的条件任意地设定,但是若考虑到泄露时的安全性,则优选设定在40℃以下,若考虑到气体的加温效果,则设定在30℃以上,特别是35℃以上为最佳。温水流量也能够根据换热器22、32中的气体流量、热交换效率等适当地设定,但是优选设定为如下方式,即,例如,在换热器22、32中,利用对流方向的流动使该温水与螺旋盘管42内的气体热交换从而降低了温度的温水温度,即,温水导出口45中的温水温度比温水导入口44内的温水温度低不到5℃,优选低不到2℃。
[0026] 另一方面,螺旋盘管42使用有依照供给目的地所要求的气体流量和通过该螺旋盘管42的气体压力的直径、壁厚的管道。通过增长螺旋盘管42的长度能够使热交换后的气体温度接近温水温度,但是无法期待与使用的螺旋盘管的成本上升相抵的充分的效果,因此该螺旋盘管42的长度优选设定为如下方式,即,利用与温水之间的热交换而被加温的气体温度比温水温度低不到5℃,优选低不到3℃。
[0027] 此时,在螺旋盘管42内流动的气体和在螺旋盘管42的周围流动的温水经由螺旋盘管42的管壁进行热交换,由于不存在如在气体配管的周围卷绕温水配管的以往的情况那样,2根管道的管外表面彼此线接触,或在管彼此之间夹设有空气层的情况,因此通过设定螺旋盘管42的内外的各表面积、管壁的厚度、内外的温差、比热等各种条件,能够利用计算简单地求得热交换后的气体温度等。因而,不存在如以往那样,无法使气体温度充分地上升,或气体温度变得不稳定的情况,能够将流入到下游侧的压力调整器21、31内的气体可靠地加温到规定温度。
[0028] 另外,在压力调整器21、31中,优选考虑到减压后的气体温度和温水的加温效果,分别设定各压力调整器21、31中的减压度,且以如下方式设定温水流量、温水流路53的结构、形状即可,即,能够以向换热器22、32供给的温水温度将压力调整器21、31的外表面加温至使得在压力调整器21、31的外表面不产生结露的程度。
[0029] 而且,通常,对应所供给的气体的最大流量来设定上述温水温度、上述温水循环单元15的温水供给能力、换热器22、32的热交换能力、压力调整器21、31的加温能力,但是若最大流量的持续时间为短时间,且此时的压力调整器21、31上的结露量为能够忽视的程度,则能够对应比最大流量少的气体流量来设定各能力。
[0030] 如本实施例所示,通过以多个阶段进行压缩气体的减压,能够减小各减压阶段内的减压度,并且不需要将导入到减压单元(压力调整器21、31)内的压缩气体加热至高温,且通过利用使用了40℃以下的温水的换热器22、32加温气体,能够防止减压单元中的气体的液化、减压单元外表面上的结露。特别是通过以换热器进行利用温水的气体的加温,能够效率较好地将气体加温至规定温度,通过使用40℃以下的温水,与利用电加热器加热配管等的情况相比能够确保安全性。另外,通过以借助隔壁等隔离的状态设置具有流动有压缩气体的配管系统的装置主体部16和生成温水的温水生成器17,即使对温水生成器17的加热源使用电加热器,由于压缩气体与电加热器相隔离,因此能够大幅度地提高安全性。另外,通过使用温水,与使用热水、蒸气的情况相比可谋求加温所需的能量的减少,也减少了来自配管系统的热量损失,且万一温水泄露也不存在有烫伤的危险。
[0031] 另外,在将减压后的低压气体向供给目的地连续供给的情况下,可以设置多个具有上述装置主体部16和温水循环单元15的气体供给装置,也可以使一个温水循环单元15对应多个装置主体部16。另外,在将由绝热膨胀所造成的气体温度的降低较小且减压度较小的压缩气体减压而进行供给的情况下,能够仅设置一个减压单元以及一个换热器。
[0032] 附图标记说明
[0033] 11、高压气体容器;12、高压阀;13、压力检测器;14、低压阀;15、温水循环单元;16、装置主体部;17、温水生成器;18、温水供给管;18a、导入侧分支管;19、温水返回管;
19a、导出侧分支管;21、31、压力调整器;22、32、换热器;23、33、截止阀;24、34、压力检测器;41、容器;42、螺旋盘管;42a、入口管;42b、出口管;43、盖体;44、温水导入口;45、温水导出口;46、挡板;51、52、气体流路;53、温水流路;53a、入口侧环状流路;53b、阀箱外周流路;53c、出口侧环状流路;54、温水导入口;55、温水导出口。