向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法转让专利

申请号 : CN201210152317.8

文献号 : CN102653400B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郭辉张克基张玉明张凤祁赵艳黎雷天民

申请人 : 西安电子科技大学

摘要 :

本发明公开了一种向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,主要解决现有技术中制备的石墨烯表面不光滑、连续性差,且制作器件时易造成电子迁移率降低的问题。其实现步骤是:首先,在Si衬底基片上先生长一层碳化层作为过渡,再在温度为1200℃-1350℃下进行3C-SiC的异质外延生长;接着,在3C-SiC样片上选取注入区,注入Si离子,并将3C-SiC样片置于外延炉中,加热至1200-1300℃,恒温时间为30-90min,使注入区的3C-SiC热解生成碳膜;然后,在Si基体上电子束沉积300-500nm厚的Ni膜,再将生成的碳膜样片置于Ni膜上,并将它们一同置于Ar气中,在温度为900-1200℃下退火10-20min生成石墨烯纳米带。本发明成本低,安全性高,注入区的3C-SiC热解温度降低,且生成的石墨烯纳米带表面光滑,连续性好,可用于制作微电子器件。

权利要求 :

1.一种向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,包括以下步骤:(1)对4-12英寸的Si衬底基片进行标准清洗;

-7

(2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10 mbar级别;

(3)在H2保护的情况下,对反应室逐步升温至碳化温度1000℃-1200℃,并通入流量为

30ml/min的C3H8,对衬底进行碳化4-8min,生长一层碳化层;

(4)使反应室迅速升温至生长温度1200℃-1350℃,并通入C3H8和SiH4,进行3C-SiC薄膜异质外延生长,生长时间为30-60min,然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长;

14

(5)在生长好的3C-SiC薄膜样片上的指定区域注入能量为15-30keV,剂量为5×10 ~

17 -2

5×10 cm 的Si离子;

-6

(6)将注入Si离子后的3C-SiC薄膜样片放入压强为0.5~1×10 Torr的外延炉中,并向其中通入Ar气,再加热至1200-1300℃,恒温时间为30-90min,使指定区域的3C-SiC热解生成碳膜;

(7)在Si基体上电子束沉积300-500nm厚的Ni膜;

(8)将生成的碳膜样片置于Ni膜上,再将它们一同置于Ar气气氛中,在温度为

900-1200℃下退火10-20分钟,使碳膜依附在Ni膜上重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Ni膜,所述的指定区域是指:3C-SiC样片上与所需要制作的器件的衬底形状相同的区域。

2.根据权利要求1所述的向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,其特征在于所述步骤(4)通入的SiH4和C3H8,其流量分别为20-35ml/min和40-70ml/min。

3.根据权利要求1所述的向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,其特征在于所述步骤(6)中Ar气流速为500-800ml/min。

4.根据权利要求1所述的向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,其特征在于所述步骤(7)中电子束沉积,其工艺条件为:基底到靶材的距离为50cm,

-4

反应室压强为5×10 Pa,

束流为40mA,

蒸发时间为10-20min。

5.根据权利要求1所述的向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,其特征在于所述步骤(8)退火时Ar气的流速为20-100ml/min。

说明书 :

向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法

技术领域

[0001] 本发明属于微电子技术领域,涉及一种半导体薄膜材料及其制备方法,具体地说是向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法。技术背景
[0002] 石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。石墨烯作为一种零带隙的半金属材料,不仅具有高的载4 5 2 13 2
流子迁移率(10~10cm/V·s)和高载流子浓度(10 /cm),及室温下亚微米尺度的无散射传输特性和电场调制载流子特性,而且具有超高频率的响应特性并能够在室温下稳定存在,这些特性都为未来石墨烯在微电子器件中的应用奠定了基础。
[0003] 目前石墨烯的制备方法主要有以下两种:
[0004] 1.化学气相沉积法提供了一种可控制备石墨烯的有效方法,它是将平面基底,如金属薄膜、金属单晶等置于高温可分解的前驱体,如甲烷、乙烯等气氛中,通过高温退火使碳原子沉积在基底表面形成石墨烯,最后用化学腐蚀法去除金属基底后即可得到独立的石墨烯片。通过选择基底的类型、生长的温度、前驱体的流量等参数可调控石墨烯的生长,如生长速率、厚度、面积等,此方法最大的缺点在于获得的石墨烯片层与衬底相互作用强,丧失了许多单层石墨烯的性质,而且石墨烯的连续性不是很好。
[0005] 2.热分解SiC法:将单晶SiC加热以通过使表面上的SiC分解而除去Si,随后残留的碳形成石墨烯。然而,SiC热分解时温度较高,且单晶SiC非常昂贵,并且生长出来的石墨烯呈岛状分布,孔隙多,用这种石墨烯材料制作器件时由于光刻,干法刻蚀工艺使石墨烯的电子迁移率降低,从而影响了器件性能。

发明内容

[0006] 本发明的目的在于避免上述现有技术的不足,提出一种向3C-SiC注入Si的Ni膜退火石墨烯纳米带制备方法,以提高表面光滑度和连续性、降低孔隙率、减少成本,并免除在后续制作器件过程中要对石墨烯进行刻蚀的工艺过程,保证石墨烯的电子迁移率稳定,提高器件性能。
[0007] 为实现上述目的,本发明的制备方法包括以下步骤:
[0008] (1)对4-12英寸的Si衬底基片进行标准清洗;
[0009] (2)将清洗后的Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别;
[0010] (3)在H2保护的情况下,对反应室逐步升温至碳化温度1000℃-1200℃,并通入流量为30ml/min的C3H8,对衬底进行碳化4-8min,生长一层碳化层;
[0011] (4)使反应室迅速升温至生长温度1200℃-1350℃,并通入C3H8和SiH4,进行3C-SiC薄膜异质外延生长,生长时间为30-60min,然后在H2保护下逐步降温至室温,完成
3C-SiC薄膜的生长;
[0012] (5)在生长好的3C-SiC薄膜样片上的指定区域注入能量为15-30keV,剂量为14 17 -2
5×10 ~5×10 cm 的Si离子;
[0013] (6)将注入Si离子后的3C-SiC薄膜样片放入压强为0.5~1×10-6Torr的外延炉中,并向其中通入Ar气,再加热至1200-1300℃,恒温时间为30-90min,使指定区域的3C-SiC热解生成碳膜;
[0014] (7)在Si基体上电子束沉积300-500nm厚的Ni膜;
[0015] (8)将生成的碳膜样片置于Ni膜上,再将它们一同置于Ar气气氛中,在温度为900-1200℃下退火10-20分钟,使碳膜依附在Ni膜上重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Ni膜。
[0016] 本发明与现有技术相比具有如下优点:
[0017] 1.本发明由于在3C-SiC样片上选取与所需要制作的器件的衬底形状相同的区域注入Si离子,使得此区域的3C-SiC热解温度降低,从而制备出石墨烯纳米带,在此石墨烯纳米带上制作器件时无需对石墨烯进行刻蚀,因而石墨烯中的电子迁移率不会降低,保证了制作的器件性能。
[0018] 2.本发明由于利用在Ni膜上退火,因而生成的碳膜更容易重构形成连续性较好,表面光滑的石墨烯纳米带。
[0019] 3.本发明由于在生长3C-SiC时先在Si衬底上成长一层碳化层作为过渡,然后再生长3C-SiC,因而生长的3C-SiC质量高。
[0020] 4.本发明由于3C-SiC可异质外延生长在Si圆片上,因而生长成本便宜。

附图说明

[0021] 图1是本发明制备石墨烯的流程图。

具体实施方式

[0022] 参照图1,本发明的制作方法给出如下三种实施例。
[0023] 实施例1
[0024] 步骤1:去除样品表面污染物。
[0025] 对4英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
[0026] 步骤2:将Si衬底基片放入CVD系统反应室中,对反应室抽真空达到10-7mbar级别。
[0027] 步骤3:生长碳化层。
[0028] 在H2保护的情况下将反应室温度升至碳化温度1000℃,然后向反应室通入流量为30ml/min的C3H8,在Si衬底上生长一层碳化层,生长时间为8min。
[0029] 步骤4:在碳化层上生长3C-SiC薄膜。
[0030] 将反应室温度迅速升至生长温度1200℃,通入流量分别为20ml/min和40ml/min的SiH4和C3H8,进行3C-SiC薄膜异质外延生长,生长时间为60min;然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长。
[0031] 步骤5:对3C-SiC薄膜样片的指定区域进行Si离子注入。
[0032] 在生长好的3C-SiC薄膜样片上选取与所需要制作的器件的衬底形状相同的区域14 -2
作为注入区,然后在此注入区中注入能量为15keV,剂量为5×10 cm 的Si离子。
[0033] 步骤6:3C-SiC热解生成碳膜。
[0034] 将注入Si离子后的3C-SiC样片放入外延炉中,外延炉中压强为0.5×10-6Torr,并向其中通入气流速为500ml/min的Ar气,再加热至1200℃,保持恒温时间为90min,注入区的3C-SiC热解生成碳膜。
[0035] 步骤7:取另一Si衬底样片放入电子束蒸发镀膜机中的基底载玻片上,基底到靶-4材的距离为50cm,将反应室压强抽至5×10 Pa,调节束流为40mA,蒸发10min,在Si衬底样片上沉积一层300nm厚的Ni膜。
[0036] 步骤8:碳膜重构成石墨烯纳米带。
[0037] (8.1)将生成的碳膜样片从外延炉中取出,将其置于Ni膜上;
[0038] (8.2)将碳膜样片和Ni膜整体置于流速为20ml/min的Ar气中,在温度为900℃下退火20分钟,使碳膜重构成石墨烯纳米带;
[0039] (8.3)将Ni膜从石墨烯纳米带样片上取开,获得石墨烯纳米带样片。
[0040] 实施例2
[0041] 步骤一:去除样品表面污染物。
[0042] 对8英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
[0043] 步骤二:与实施例1的步骤2相同。
[0044] 步骤三:生长碳化层。
[0045] 在H2保护的情况下将反应室温度升至碳化温度1100℃,然后向反应室通入流量为30ml/min的C3H8,在Si衬底上生长一层碳化层,生长时间为6min。
[0046] 步骤四:在碳化层上生长3C-SiC外延薄膜。
[0047] 将反应室温度迅速升至生长温度1300℃,通入流量分别为30ml/min和60ml/min的SiH4和C3H8,进行3C-SiC薄膜异质外延生长,生长时间为45min;然后在H2保护下逐步降温至室温,完成3C-SiC薄膜的生长。
[0048] 步骤五:对3C-SiC薄膜样片的指定区域进行Si离子注入。
[0049] 在生长好的3C-SiC薄膜样片上选取与所需要制作的器件的衬底形状相同的区域15 -2
作为注入区,然后在此注入区中注入能量为25keV,剂量为5×10 cm 的Si离子;
[0050] 步骤六:3C-SiC热解生成碳膜。
[0051] 将注入Si离子后的3C-SiC样片放入外延炉中,外延炉中压强为0.8×10-6Torr,并向其中通入气流速为600ml/min的Ar气,再加热至1250℃,保持恒温时间为60min,注入区的3C-SiC热解生成碳膜。
[0052] 步骤七:取另一Si衬底样片放入电子束蒸发镀膜机中的基底载玻片上,基底到靶-4材的距离为50cm,将反应室压强抽至5×10 Pa,调节束流为40mA,蒸发15min,在Si衬底样片上沉积一层400nm厚的Ni膜。
[0053] 步骤八:碳膜重构成石墨烯纳米带。
[0054] 将生成的碳膜样片从外延炉中取出并置于Ni膜上,再将它们一同置于流速为100ml/min的Ar气气氛中,温度为1000℃下退火15分钟,使碳膜重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Ni膜,获得石墨烯纳米带样片。
[0055] 实施例3
[0056] 步骤A:对12英寸的Si衬底基片进行表面清洁处理,即先使用NH4OH+H2O2试剂浸泡样品10分钟,取出后烘干,以去除样品表面有机残余物;再使用HCl+H2O2试剂浸泡样品10分钟,取出后烘干,以去除离子污染物。
[0057] 步骤B:与实施例1的步骤2相同。
[0058] 步骤C:在H2保护的情况下将反应室温度升至碳化温度1150℃,然后向反应室通入流量为30ml/min的C3H8,持续3min,以在Si衬底上生长一层碳化层。
[0059] 步骤D:将反应室温度迅速升至生长温度1300℃,通入流量分别为25ml/min和50ml/min的SiH4和C3H8,进行3C-SiC薄膜异质外延生长36min;然后在H2保护下逐步降温至室温。
[0060] 步骤E:在生长好的3C-SiC薄膜样片上选取与所需要制作的器件的衬底形状相同17 -2
的区域作为注入区,然后在此注入区中注入能量为30keV,剂量为5×10 cm 的Si离子。
[0061] 步骤F:将注入Si离子后的3C-SiC样片放入外延炉中,外延炉中压强为-61×10 Torr,并向其中通入流速为800ml/min Ar气,再加热至1300℃,保持恒温时间为
30min,注入区的3C-SiC热解生成碳膜。
[0062] 步骤G:取另一Si衬底样片放入电子束蒸发镀膜机中的基底载玻片上,基底到靶-4材的距离为50cm,将反应室压强抽至5×10 Pa,调节束流为40mA,蒸发20min,在Si衬底样片上沉积一层500nm厚的Ni膜。
[0063] 步骤H:将生成的碳膜样片从外延炉中取出并置于Ni膜上,再将它们一同置于流速为80ml/min的Ar气气氛中,在温度为1200℃下退火10分钟,使碳膜重构成石墨烯纳米带,最后从石墨烯纳米带样片上取开Ni膜,获得石墨烯纳米带样片。