一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法转让专利

申请号 : CN201210154576.4

文献号 : CN102680028B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 施成华彭立敏邓之友罗晶杨伟超雷明锋丁祖德

申请人 : 中南大学

摘要 :

本发明公开了一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,本发明从地下水渗流的基本理论和基本规律出发,在既有承压非完整井及井群降水过程中维持稳定水位时每天排水量计算公式的基础上,通过对降水区域进行积分,建立了承压非完整井或井群地下水位从初始水位变化至目标水位过程中排水量和排水时间的具体计算方法。本发明改变了目前承压非完整井或井群设计时水位变化阶段的排水量计算长期依赖于经验的现状,实现了工程施工承压非完整井或井群降水全过程排水量的计算及动态控制。

权利要求 :

1.一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,对于潜水非完整井,通过以下公式计算降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q:其中K为含水层渗透系数,H为潜水含水层厚度,S为设计水位降深,l为过滤器进水部分长度,R为降水影响半径,rw为降水井半径,A为系数;

对于潜水非完整井群,通过以下公式计算降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q:其中K为含水层渗透系数,H为潜水含水层厚度,S为设计水位降深,R为降水影响半径,r0为基坑换算半径,L为基坑长度;

根据所求得的降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q,在由降水井布置间距及位置确定而使降水井每天的排水能力Qn确定的情况下,通过计算排水能力Qn与每天维持稳定水位时排水量 的差值及与总排水量Q的比值的方法确定降至目标水位所需要的周期的总天数m,所求m的计算公式为:其中Qn为降水井每天的排水能力,Q为井内水位由S1下降或回升至S2所需要增加或减少的总排水量, 为维持稳定降深S2时每天所需要的排水量,当为 单井时:当为井群时: 。

2.根据权利要求1所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,所述的含水层渗透系数K,若含水层为多层且邻近,则K可取加权平均值,计算方法为K=∑(Kihi)/∑hi,其中Ki为各含水层的渗透系数,hi为各含水层的厚度。

3.根据权利要求1所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,所述的潜水含水层厚度H的计算方法为:H=∑hi,其中hi为各含水层的厚度。

4.根据权利要求1所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,所述的降水影响半径R按稳定流抽水实验获得,当没有条件进行稳定流抽水实验时,按公式 进行计算。

5.根据权利要求1所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,所述的基坑换算半径r0的计算方法为:对基坑进行降水时,若周边降水井的位置还未设计,则按基坑面积进行计算, 其中F为基坑面积;

若基坑周边降水井已经布置,则优先按井的位置进行计算, 其中n为井点数量。

6.根据权利要求1所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,根据所求得的降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q,将总排水量Q分配至进行水位下降或回升阶段周期内的每一天,然后和维持稳定水位时潜水非完整井 或井群每天的排水量进行叠加的方法计算降水动态过程中每天的排水量Qm1,所求Qm1的计算公式为:其中Q为井内水位由S1下降或回升至S2所需要增加或减少的总排水量,m为水位下降或回升阶段的总天数, 为维持稳定降深S2时每天所需要的排水量,当为单井时:当为井群时: 。

7.根据权利要求1所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,对于工程施工中A降水区域和B降水区域两个独立的降水区域的水位从S1下降或回升至S2过程中所需增加或减少的总排水量QA和QB分别通过以下公式计算:则在A降水区域维持稳定水位S2的条件下,B降水区域的水位下降或回升至S2所需要增加或减少的排水量QB-A可表示为:QB-A=QB-QA。

8.根据权利要求7所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,根据所求得的在A降水区域维持稳定水位S2的条件下,B降水区域的水位下降或回升至S2所需要增加的排水量QB-A,将排水量QB-A分配至进行B降水区域的水位下降或回升阶段周期内的每 一天,由此得在A区域维持稳定水位S2的条件下,B区域在mB天内降至S2水位时每天的排水量QBm为:其 中 为 区 域 B维 持 稳 定 降 深 S2时 每 天 所 需 要 的 排 水 量,,式中rB0为区域B基坑的换算半径,LB为区域B的基坑的长度。

说明书 :

一种潜水非完整井或井群动态降水过程中排水量及排水时

间的计算方法

技术领域

[0001] 本发明涉及一种适用于工程施工降水排水量的计算方法,具体涉及一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法。

背景技术

[0002] 基坑降水的目的在于将地下水位降低到某一深度要求以下,能够满足基坑结构在无水干扰的条件下进行施作,从而降低施工难度,并在最大程度上保证基坑开挖及结构施工的安全。
[0003] 目前国内外对降水过程中维持在某一稳定水位时每天的排水量进行了大量的研究。理论方面,针对承压含水层中稳定、非稳定渗流运动,提出了相应的地下水运动理论,推导出了相应的排水量计算公式。针对干扰井群基坑降水问题,也有研究者编制了相关程序,对基坑及周围地下水位实时预测。数值计算方法也在工程降水计算中得到了广泛的应用,在考虑不同边界条件、坑内外是否有水力联系等的基础上,可以对降水中承压地下水水位随时间的下降过程进行研究。一些学者考虑以降水试验中的抽水试验数据为基础,研究地基中地下水在不同条件下的渗透性;研究不同井点深度、不同外界干扰作用下单井井点和单排井点的地下水位、出水量、影响范围及其随着时间的变化关系,以对井点降水常用典型计算公式进行补充和改进。但对于工程施工承压非完整井或井群降水过程中水位下降或回升阶段每天的降水量以及降水所需的时间,目前国内外还没有相关的计算方法,在现场应用中多依据现场技术人员的经验在试抽的基础上不断进行调整,最终确定具体的排水量,对工程的工期、造价等方面均会产生一定的影响。
[0004] 总体来说,工程施工承压非完整井或井群降水过程中水位下降或回升阶段每天的降水量还多依赖于工程技术人员的经验,无法满足工程施工降水的要求。
[0005] 因此,研制一种新型的承压非完整井或井群动态降水过程中排水量及排水时间的计算方法已为急需。

发明内容

[0006] 本发明所要解决的总体技术问题是克服现有承压非完整井或井群降水动态过程中水位下降或回升阶段排水量的计算长期依赖于经验的现状,提供一种承压非完整井或井群降水动态过程中水位下降或回升阶段排水量及排水时间的计算方法。
[0007] 为了实现上述技术目的,本发明的技术方案是,一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,对于潜水非完整井,通过以下公式计算降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q:
[0008]
[0009] 其中K为含水层渗透系数,H为潜水含水层厚度,S为设计水位降深,l为过滤器进水部分长度,R为降水影响半径,rw为降水井半径,A为系数,可按相关文献得到,如《工程降水设计施工与基坑渗流理论》吴林高等编著,人民交通出版社;
[0010] 对于潜水非完整井群,通过以下公式计算降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q:
[0011]
[0012] 其中K为含水层渗透系数,H为潜水含水层厚度,S为设计水位降深,R为降水影响半径,r0为基坑换算半径,L为基坑长度。
[0013] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,所述的含水层渗透系数K,若含水层为多层且邻近,则K可取加权平均值,计算方法为K=∑(Kihi)/∑hi,其中Ki为各含水层的渗透系数,hi为各含水层的厚度。
[0014] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,所述的潜水含水层厚度H的计算方法为:H=∑hi,其中hi为各含水层的厚度。
[0015] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,所述的降水影响半径R可按稳定流抽水实验获得,当没有条件进行稳定流抽水实验时,也可按公式 进行计算。
[0016] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,所述的基坑换算半径r0的计算方法为:对基坑进行降水时,若周边降水井的位置还未设计,则按基坑面积进行计算, 其中F为基坑面积;若基坑周边降水井已经布置,则优先按井的位置进行计算, 其中n为井点数量。
[0017] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,根据所求得的降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q,将总排水量Q分配至进行水位下降或回升阶段周期内的每一天,然后和维持稳定水位时承压非完整井或井群每天的排水量进行叠加的方法计算降水动态过程中每天的排水量Qm1,所求Qm1的计算公式为:
[0018]
[0019] 其中Q为井内水位由S1下降或回升至S2所需要增加或减少的总排水量,m为水位下降或回升阶段周期的总天数, 为维持稳定降深S2时每天所需要的排水[0020] 量,当为单井时:
[0021] 当为井群时:
[0022] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,根据所求得的降水井内的水位从S1下降或回升至S2过程中所需增加或减少的总排水量Q,在由降水井布置间距及位置确定而使降水井每天的排水能力Qn确定的情况下,通过计算排水能力Qn与每天维持稳定水位时排水量 的差值及与总排水量Q的比值的方法确定降至目标水位所需要的周期的总天数m,所求m的计算公式为:
[0023]
[0024] 其中Qn为降水井每天的排水能力,Q为井内水位由S1下降或回升至S2所需要增加或减少的总排水量, 为维持稳定降深S2时每天所需要的排水量,当为
[0025] 单井时:
[0026] 当为井群时:
[0027] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,对于工程施工中A降水区域和B降水区域两个独立的降水区域的水位从S1下降或回升至S2过程中所需增加或减少的总排水量QA和QB分别通过以下公式计算:
[0028]
[0029]
[0030] 则在A降水区域维持稳定水位S2的条件下,B降水区域的水位下降或回升至S2所需要增加的排水量QB-A可表示为:
[0031] QB-A=QB-QA。
[0032] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,根据所求得的在A降水区域维持稳定水位S2的条件下,B降水区域的水位下降或回升至S2所需要增加的排水量QB-A,将排水量QB-A分配至进行B降水区域的水位下降或回升阶段周期内的每一天,由此得在A区域维持稳定水位S2的条件下,B区域在mB天内降至S2水位时每天的排水量QBm为:
[0033]
[0034] 其中 为区域B维持稳定降深S2时每天所需要的排水量,
[0035] 式中rB0为区域B基坑的换算半径,LB为区域B的基坑的长度,其余符号意义同前。
[0036] 所述的一种潜水非完整井或井群动态降水过程中排水量及排水时间的计算方法,其特征在于,含水层渗透系数K的单位为米每天,承压含水层厚度H的单位为米,设计水位降深S的单位为米,降水影响半径R的单位为米,降水井半径rw的单位为米,过滤器进水部分长度l的单位为米,基坑换算半径r0的单位为米,基坑长度L的单位为米,各含水层的渗透系数Ki的单位为米每天,各含水层的厚度hi的单位为米,基坑面积F的单位为平方米,井内水位由S1下降或回升至S2所需要增加或减少的总排水量Q的单位为立方米,维持稳定降深S2时每天所需要的排水量 的单位为立方米,降水井每天的排水能力Qn的单位为立方米,维持稳定降深S2时每天所需要的排水量 的单位为立方米,降水动态过程中每天的排水量Qm1的单位为立方米,A降水区域排水量QA的单位为立方米,B降水区域排水量QB的单位为立方米,B降水区域的水位下降或回升至S2所需要增加的排水量QB-A的单位为立方米,B区域每天的排水量QBm的单位为立方米,区域B维持稳定降深S2时每天所需要的排水量 的单位为立方米,区域B维持稳定降深S2时每天所需要的排水量 的单位为立方米,区域B基坑的换算半径rB0的单位为米,区域B的基坑的长度LBrB0的单位为米。
[0037] 本发明的技术效果在于,传统的基坑潜水非完整井或井群降水计算方法只能得到维持在某一稳定水位每天所需要的排水量,而对水位下降和回升变化过程中每天的排水量以及降至目标水位所需要的时间缺乏研究。本发明可适时计算潜水非完整井或井群降水过程中每一水位的维稳水量和降水过程中的增排水量,据此掌握降水的动态信息,并通过确定参与工作的井数及降水井的布置来确定降至目标水位所需要的时间,进而达到对潜水非完整井或井群降水全过程进行动态控制。
[0038] 下面结合附图对本发明作进一步说明。

附图说明

[0039] 图1为本发明单井降水漏斗曲线示意图
[0040] 图2为本发明平面范围降水区域扩展示意图
[0041] 图中:1——抽水井;2——起始水位渗降漏斗曲线;3——目标水位渗降漏斗曲线;4——基坑;5——隔水层;6——降水区域;7——S2降深处影响半径;8——S1降深处影响半径;9——降深S1;10——降深S2;11——潜水层厚度;12——微元d S;A——降水区域A;B——扩大后的降水区域B。

具体实施方式

[0042] (1)单井水位下降过程中排水量及排水时间的计算方法
[0043] 首先取单井进行分析,图1为本发明单井降水漏斗曲线示意图,如图1所示,降水后在井的周边形成降水漏斗曲线,由于降水井的四周不断有地下水补给到该降水区域内,为保证井内水位维持在某一稳定水位S1,每天需要维持稳定的排水量Q(S1),此时的降水漏斗曲线为X1,当进一步需要将井内的水位降至S2时,则形成降水漏斗曲线X2,此时需要每天在原有的稳定排水量Q(S1)的基础上加井内的排水量,也即增加降水漏斗曲线X1和X2之间的排水量。
[0044] 如图1所示,取微小降深dS进行分析,当降水深度dS趋于无限小时,可以认为降水漏斗X1在垂直漏斗曲线方向上均匀扩大了dS,则降水漏斗曲线X1和X2之间的排水量可近似表示为:
[0045] dQ(S)=Q(S1)·dS (a)
[0046] 由此,降水井内的水位从S1降至S2所需要增加的排水量则可表示为:
[0047]
[0048] 式中:Q(S)为降水井内为维持某一稳定水位每天所需要的排水量,其为井内降水深度S的函数,随着降水深度的变化而变化。目前国内外已有大量的文献对此进行研究,潜水非完整井排水量计算的表达式可直接进行应用。
[0049] 对于潜水非完整井,降水井内的水位从S1降至S2所需要增加的排水量表达式为:
[0050]
[0051] 其中K为含水层渗透系数,单位为米每天,若含水层为多层且邻近,则K可取加权平均值,计算方法为K=∑(Kihi)/∑hi,其中Ki为各含水层的渗透系数,单位为米每天,hi为各含水层的厚度,单位为米,H为潜水含水层厚度,单位为米,计算方法为:H=∑hi,其中hi为各含水层的厚度,单位为米,S为设计水位降深,单位为米,l为过滤器进水部分长度,单位为米,R为降水影响半径,单位为米,可按稳定流抽水实验获得,稳定流抽水实验是应用稳定流理论分析抽水试验资料,随时绘制流量-降深等曲线,并据此得到含水层的影响半径,试验中必须达到流量和水位降深相对稳定,并根据含水层岩性确定需延续一定长时间,才能停止,当没有条件进行稳定流抽水实验时,也可按公式 进行计算,rw为降水井半径,A为系数,可按相关文献得到,如《工程降水设计施工与基坑渗流理论》吴林高等编著,人民交通出版社。
[0052] 以上式进行计算时,可直接进行积分求解,若直接积分计算难以求解时,可采用数值积分的方法进行计算。
[0053] 以上计算是以每天维持井内稳定水位的排水量为基础的,计算得到的应是降水井内的水位在一天内从S1降至S2所需要的排水量,对于实际工程而言,不可能一天之内就能将水位降至目标值,一般需要在一段时间内完成,此时就需要在每天维持稳定水位的降水量的基础上,将增加的排水量分配至每一天,假定在m天内井内水位由S1降至S2,则在水位下降过程中每天的排水量可用下式计算。
[0054]
[0055] 式中:Qm1为水位下降阶段每天的排水量,单位为立方米,
[0056] 为维持稳定降深S2时每天所需要的排水量,单位为立方米,当为单井时:
[0057]
[0058] 当为井群时: Q为井内水位由S1降至S2所需要增加或减少的总排水量,单位为立方米,m为降水天数。
[0059] 在降水井每天的排水能力确定的条件下,则地下水位下降或回升至目标值所需的时间可用下式进行计算。
[0060]
[0061] 式中:Qn为降水井每天的排水能力,单位为立方米, 为维持稳定降深S2时每天所需要的排水量,单位为立方米,当为单井时:
[0062]
[0063] 当为井群时: Q为井内水位由S1下降或回升至S2所需要增加或减少的总排水量,单位为立方米,m为降水天数。
[0064] (2)坑外井群水位下降过程中排水量及排水时间的计算方法
[0065] 对于地铁车站基坑井群在水位下降过程中的排水量,可按单井排水量相同的方法进行计算,由此潜水非完整井井群在水位下降过程中的降水量表达式如下。
[0066] 潜水非完整井内的水位从S1降至S2所需要增加的排水量表达式为:
[0067]
[0068] 其中其中K为含水层渗透系数,单位为米每天,H为潜水含水层厚度,单位为米每天,S为设计水位降深,单位为米每天,R为降水影响半径,单位为米每天,r0为基坑换算半径,单位为米,计算方法为:对基坑进行降水时,若周边降水井的位置还未设计,则按基坑面积进行计算, 其中F为基坑面积,单位为平方米;若基坑周边降水井已经布置,则优先按井的位置进行计算, 其中n为井点数量。L为基坑长度,单位为米。
[0069] 同理,以上计算得到的也是降水基坑内的水位在一天内从S1降至S2所需要的排水量,对于实际工程而言,同样需要在一段时间内将水位降至目标值,则在m天内基坑内的水位由S1降至S2时,水位下降过程中每天的排水量同样可用式(d)进行计算。
[0070] 在实际工程中,若确定了降水时间,则可根据计算得到的每天的排水量来确定降水井的数量和具体布置要求,若确定了降水井的数量和布置方式,则可根据计算得到的排水量按照(e)式来计算将地下水位降至目标值所需要的时间,据此进行工程施工组织设计。
[0071] (3)坑外井群水位回升过程中排水量及排水时间的计算方法
[0072] 地下水位的回升是降水的逆过程,降水漏斗外的水量补给相同,由此,[0073] 水位由S2回升到S1所需要减少的排水量则可表示为:
[0074]
[0075] 式中:Q(S)意义同前,为维持某一稳定水位每天所需要的排水量。
[0076] 同理,以上计算也是以每天维持井内稳定水位的排水量为基础的,计算得到的是降水井内的水位在一天内由S2回升到S1所需要减少的排水量,对于实际工程而言,也不可能一天之内将水位回升目标值,此时就需要在每天维持稳定水位的降水量的基础上,将减少的排水量分配至每一天,假定在m天内井内水位由S2回升到S1,则在水位回升过程中每天的排水量可用下式计算。
[0077]
[0078] 式中:Qm2为水位回升阶段每天的排水量,单位为立方米, 为维持稳定降深S1时每天所需要的排水量,单位为立方米,Qj为井内水位由S2回升至S1所需要减少的总排水量,单位为立方米,m为降水天数。
[0079] 在降水井布置间距及位置确定的情况下,降水井的每天排水能力确定也就确定了,相应的降水时间同样按照(e)式进行计算。
[0080] (4)平面降水区域变化时排水量及排水时间的计算方法
[0081] 在工程施工中开挖通常是分部分块进行的,因此工程施工中提出需要分区域进行降水。图2为本发明平面降水区域扩大示意图,如图2所示,首先进行A区域施工,在该区域内将地下水位由S1降至某一目标水位S2,A区域施工完成后,紧接着施工区域扩大至B,该区域水位也由S1降至同一目标水位S2,则在A区域维持稳定水位S2的条件下,B区域降至S2所需要增加的排水量可按以下方法进行计算。
[0082] 当A降水区域和B降水区域为两个独立的降水区域时,其由水位S1降至某一目标水位S2时增加的排水量QA和QB分别为:
[0083]
[0084]
[0085] 则在A区域维持稳定水位S2的条件下,B区域降至S2所需要增加的排水量QB-A可表示为:
[0086] QB-A=QB-QA (k)
[0087] 以上计算得到的也是区域B内的水位在一天内由S1下降到S2所需要增加的排水量,也需要将增加的排水量在降水的时间段内进行分配,由此得在A区域维持稳定水位S2的条件下,B区域在mB天内降至S2水位时每天的排水量为:
[0088]
[0089] 式中:QBm为区 域B水 位下 降阶 段每 天的 排水 量,单 位为 立方 米,为区域B维 持稳定降 深S2时每 天所需要 的排水量,单 位为立方 米,QB-A为A区域维持稳定水位S2的条件下,B区域降至S2所需要增加的排水量,单位为立方米,mB为B区域降至目标水位S2时的降水天数。
[0090] 在降水井布置间距及位置确定的情况下,降水井每天的排水能力也就确定了,相应的降水时间同样按照(e)式进行计算。