一种铜铟镓硒薄膜太阳能电池的制备方法转让专利

申请号 : CN201210192751.9

文献号 : CN102694077B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 林刘毓张准

申请人 : 林刘毓张准

摘要 :

本发明涉及一种铜铟镓硒薄膜太阳能电池的制备方法,其包括:a)在衬底上制备钼背电极;b)在该钼背电极上制备铜铟镓硒吸收层;c)进行退火处理;d)在铜铟镓硒吸收层上制备In2Se3或ZnS缓冲层;e)在所述In2Se3或ZnS缓冲层上制备本征氧化锌高阻抗层;f)在所述本征氧化锌高阻抗层上制备氧化铟锡薄膜低阻抗层;g)在氧化铟锡薄膜低阻抗层上制备铝电极。

权利要求 :

1.一种铜铟镓硒薄膜太阳能电池的制备方法,其包括:a)在衬底上制备钼背电极:采用磁控溅射法沉积0.8微米厚的钼(Mo)金属作为背电极;

b)在该钼背电极上制备铜铟镓硒吸收层:利用真空磁控溅射法,采用CuInxGa1-xSe2合金靶进行溅射,设x=0的CuGaSe2合金靶为靶1,设x=0.8至0.6的CuInxGa1-xSe2合金

2 2

靶为靶2,首先以高功率密度4W/cm 至8W/cm 之间的任意高功率密度对靶1先溅射2至42

分钟,接着再对靶1和靶2进行共溅射,此时对靶2进行溅射的初始功率密度为0.3W/cm2

至1W/cm 之间任意的低功率密度,而对靶1进行溅射的高功率密度设置成在工作中连续递减,在对靶1和靶2进行共溅射的状态下,当对靶1进行溅射的功率密度连续递减时,与此同时对靶2进行溅射的功率密度则为连续递增,最后直至对靶1进行溅射的功率密度递减

2 2 2

至0.3W/cm 至1W/cm 之间的任意低功率密度,对靶2进行溅射的功率密度递增至4W/cm 至2

8W/cm 之间的任意高功率密度,执行共溅射的时间为30至60分钟,使得铜铟镓硒吸收层中的Ga浓度形成梯度,其在该吸收层与Mo背电极接触的一侧的浓度最高,在该吸收层的相对另一侧的浓度最低;

c)进行退火处理:在真空室内以快速加热方式对铜铟镓硒吸收层进行退火处理,其温度为400℃至600℃,退火时间为55至90秒;

d)在铜铟镓硒吸收层上制备In2Se3或ZnS缓冲层,其厚度为80至120纳米;

e)在所述In2Se3或ZnS缓冲层上制备本征氧化锌高阻抗层,其厚度为0.1至0.5微米;

f)在所述本征氧化锌高阻抗层上制备氧化铟锡薄膜低阻抗层,其厚度为0.3至0.8微米;

g)在氧化铟锡薄膜低阻抗层上制备铝电极;

-4

在执行步骤b)中,溅射腔体内的工作压力为1×10 Torr,衬底的温度保持在350℃至

450℃之间的任意温度;

在执行步骤d)中,利用真空磁控溅射法,采用In2Se3或ZnS合金靶,真空磁控溅射的工-3作压力为1-5×10 Torr并通入Ar气体,衬底的温度保持在室温;

在执行步骤e)中,利用射频真空磁控溅射法,靶材为本征氧化锌,射频真空磁控溅射-3的工作压力为1-5×10 Torr,工作频率为400K~2MHz,并通入Ar气体,衬底的温度保持在室温;

在执行步骤f)中,利用真空直流磁控溅射法,靶材为氧化铟锡In2O3:SnO2,In2O3:SnO2-3的质量比为9:1,真空直流磁控溅射的工作压力为1-5×10 Torr,并通入掺有2%至5%O2的Ar气体,衬底的温度保持室温。

2.如权利要求1所述的制备方法,其特征在于:所述铜铟镓硒吸收层的厚度为1.5微米至2微米。

说明书 :

一种铜铟镓硒薄膜太阳能电池的制备方法

技术领域:

[0001] 本发明涉及太阳能电池领域,更具体的,涉及一种铜铟镓硒薄膜太阳能电池吸收层的制备方法。背景技术:
[0002] 众所周知,铜铟镓硒化合物具有黄铜矿结构,可以制备在软性或刚性的衬底上作为太阳能发电的材料,由此制成的铜铟镓硒薄膜太阳能电池具有高稳定、低成本的优点。目前地球上可利用的能源日趋短少,而石化能源在使用过程中会排放碳、硫的氧化物造成空气污染并且加剧地球的温室效应,使地球的环境恶化气候异常,这已经是不争的事实了。因此开发无污染的可再生能源是当前世界各国的首要科研项目之一。而太阳能是无污染的能源,是可再生能源的最佳选择之一。太阳能的开发利用首要的是开发可以产生将太阳能高效率转换成电能的材料。
[0003] 铜铟镓硒化合物材料是具有黄铜矿结构的化合物半导体材料,其为直接带隙材料,能吸收波长范围较大的太阳光,且具有自调变自身组成以形成p-n结的特性,是公认的作为太阳能电池吸收层的最佳材料之一,例如铜铟镓二硒(Cu(InGa)Se2),简称CIGS,为目前具有最高光吸收能力的半导体材料。由于CIGS的高光吸收率优势,使得CIGS吸收层的厚度在1~2μm即可,以一般粗略估算,在量产制造时,CIGS材料的费用只需要0.03美元/瓦,因此极具竞争优势,有望使太阳能发电可以与传统的石化燃料发电成本相同甚至更低。因此如何制备低成本、高效率的铜铟镓硒太阳能薄膜电池,是目前最值得开发研究的课题之一。
[0004] CIGS薄膜太阳能电池有两个优点:1是光电转换层可以很薄,为几微米;二是其带隙(禁带宽度)可以通过Ga(镓)在铜铟镓硒化合物的比例含量来调控。根据现有技术,Ga和In的比例与带隙(Eg)存在如下的关系,Eg(eV)=1.02+0.67y+0.11y(y-1),其中y=In/(Ga+In)的原子含量比例。理论说明,单一带隙的太阳能电池不能最大限度的利用太阳能,也就是光子能量太小的产生不了电子-空穴对,能量太大的光子也只能激发一个电子-空穴对,多余的能量只能转化成不利于太阳能电池效率的热而已。因此从提高太阳电池效率的角度考虑,希望太阳能电池有很多的带隙以尽量吸收更多的太阳能,而CIGS化合物的带隙的可调特性恰恰可以实现如此的设想。在制备CIGS薄膜时可以调节Ga的含量比例。增加Ga的比例,CIGS化合物的禁带带隙会升高。
[0005] 现有文献中已记载制备CIGS薄膜的方法主要有:(1)硒化法,(2)叠层法,(3)多源(二或三源)蒸发法,(4)溅射法,(5)沉积法,(6)喷涂法,(7)旋涂法,(8)真空加热合成法等。而这(1)硒化法,(2)叠层法,(3)多源(二或三源)蒸发法,(4)溅射法皆在某个工艺流程中需要对CIGS薄膜进行硫化或硒化处理,通过硫化或硒化处理可以使S、Se原子经扩散作用与Cu-In-Ga进行反应以生成CuInGaSe化合物,此过程称为硫化或硒化。
[0006] 硒化制备具有黄铜矿结构的薄膜太阳能电池的方法存在着一些缺点例如生产周期长、耗能多、消耗Se多、Se的蒸汽有剧毒及Se的分布不均匀,Se存在梯度等等。
[0007] 另外对于调控Ga的梯度分布工艺,上述的各种工艺方法比较难以一步到位的实现。例如美国的NREL实验室开发的三阶段共蒸发法,其实现Ga呈上述的带隙梯度A或V字形带隙梯度是在三个阶段不同的元素参与蒸发反应,工艺非常复杂且需要实时控制精准方能实现。此种方法虽然可以制备高转换效率的太阳能薄膜电池,但是不利于低成本、大面积、规模化的生产。

发明内容

[0008] 本发明提供一种铜铟镓硒薄膜太阳能电池的制备方法,其包括:
[0009] a)在衬底上制备钼背电极;
[0010] b)在该钼背电极上制备铜铟镓硒吸收层:利用真空磁控溅射法,采用CuInxGa1-xSe2合金靶进行溅射,设x=0的CuGaSe2合金靶为靶1,设x=0.8至0.6的CuInxGa1-xSe2合金靶为2 2
靶2,首先以高功率密度4W/cm 至8W/cm 之间的任意高功率密度对靶1先溅射2至4分钟,
2
接着再对靶1和靶2进行共溅射,此时对靶2进行溅射的初始功率密度为0.3W/cm 至1W/
2
cm 之间任意的低功率密度,而对靶1进行溅射的高功率密度设置成在工作中连续递减,在对靶1和靶2进行共溅射的状态下,当对靶1进行溅射的功率密度连续递减时,与此同时对靶2进行溅射的功率密度则为连续递增,最后直至对靶1进行溅射的功率密度递减至0.3W/
2 2 2 2
cm 至1W/cm 之间的任意低功率密度,对靶2进行溅射的功率密度递增至4W/cm 至8W/cm之间的任意高功率密度,执行共溅射的时间为30-60分钟,使得铜铟镓硒吸收层中的Ga浓度形成梯度,其在该吸收层与Mo背电极接触的一侧的浓度最高,在该吸收层的相对另一侧的浓度最低;
[0011] c)进行退火处理:在真空室内以快速加热方式对铜铟镓硒吸收层进行退火处理,其温度为400℃至600℃,退火时间为55至90秒;
[0012] d)在铜铟镓硒吸收层上制备In2Se3或ZnS缓冲层,其厚度为80至120纳米;
[0013] e)在所述In2Se3或ZnS缓冲层上制备本征氧化锌高阻抗层,其厚度为0.1至0.5微米;
[0014] f)在所述本征氧化锌高阻抗层上制备氧化铟锡薄膜低阻抗层,其厚度为0.3至0.8微米;
[0015] g)在氧化铟锡薄膜低阻抗层上制备铝电极。
[0016] 其中:所述铜铟镓硒吸收层的厚度为1.5微米至2微米。
[0017] 其中:在执行步骤b)中,溅射腔体内的工作压力为1×10-4Torr,衬底的温度保持在350℃至450℃之间的任意温度。
[0018] 其中:在执行步骤d)中,利用真空磁控溅射法,采用In2Se3或ZnS合金靶,真空磁-3控溅射的工作压力为1-5×10 Torr并通入Ar气体,衬底的温度保持在室温。
[0019] 其中:在执行步骤e)中,利用射频真空磁控溅射法,靶材为本征氧化锌,射频真空-3磁控溅射的工作压力为1-5×10 Torr,工作频率为400K~2MHz,并通入Ar气体,衬底的温度保持在室温。
[0020] 其中:利用真空直流磁控溅射法,靶材为氧化铟锡In2O3:SnO2,In2O3:SnO2的质量比-3为9∶1,真空直流磁控溅射的工作压力为1-5×10 Torr,并通入掺有2%至5%O2的Ar气体,衬底的温度保持室温。
[0021] 根据本发明的方法,无硒化工艺流程及无镉的In2Se3或ZnS缓冲层,不但可以避免H2Se、H2S的有毒气体,并且使用无镉的化合物,既符合环保又可降低成本,并且使得生产工艺设备简单能源消耗小,生产周期短等优势。
[0022] 本发明与现有技术相比有以下优点:本发明所有的工艺皆为干式工艺流程,工艺过程不使用化学溶剂与溶液。太阳能电池的吸收层制备采用一步操作即可得到稳定结晶的吸收层,不再需要对吸收层进行硒化或硫化的工业程序,大大缩短了生产周期,减少了生产设备,也避免了生产过程中的环境污染和潜在的危险。本发明的工艺步骤简化,能源消耗小,因此降低了生产成本。

附图说明

[0023] 图1是本发明的制备铜铟镓硒薄膜太阳能电池吸收层的方法的流程图;
[0024] 图2是对根据本发明的方法制备的太阳能电池吸收层所做的二次离子质谱(SIMS)分析曲线图。

具体实施方式

[0025] 图1是本发明的制备铜铟镓硒薄膜太阳能电池吸收层的方法的流程图,如图所示:
[0026] 首先在衬底上制备背电极。所述衬底可以选择钠钙玻璃或者不锈钢薄片,一般选用1-3mm厚的钠钙玻璃或者0.2mm厚不锈钢薄片。采用磁控溅射法沉积0.8微米厚的钼(Mo)金属作为背电极。
[0027] 接着在背电极上制备吸收层:本发明采用双靶共溅射来制备吸收层,该靶为CuInxGa1-xSe2合金靶,为了说明方便,可以设x=0的CuGaSe2合金靶为靶1,设x=0.8至0.62
的CuInxGa1-xSe2合金靶为靶2,例如Cu(In0.7Ga0.3)Se2合金靶2。首先以高功率密度4W/cm
2
至8W/cm 之间的任意高功率密度对靶1先溅射2至4分钟,接着再对靶1和靶2进行共溅
2 2
射,此时对靶2进行溅射的初始功率密度为0.3W/cm 至1W/cm 之间任意的低功率密度,而对靶1进行溅射的高功率密度设置成在工作中连续递减。由于此时对靶1和靶2进行共溅射,而且为了确保铜铟镓硒吸收层中的Ga浓度形成梯度,将对靶1和靶2进行溅射的功率密度设计成为:当对靶1进行溅射的功率密度连续递减时,与此同时对靶2进行溅射的功
2 2
率密度则为连续递增,最后直至对靶1进行溅射的功率密度递减至0.3W/cm 至1W/cm 之间
2 2
的任意低功率密度,对靶2进行溅射的功率密度递增至4W/cm 至8W/cm 之间的任意高功率密度。执行共溅射的时间为30至60分钟,使得在钼背电极上沉积铜铟镓硒吸收层的厚度-4
为1.5微米至2微米。溅射腔体内的工作压力为1×10 Torr,衬底的温度保持在350℃至
450℃之间的任意温度。根据该工艺,使得铜铟镓硒吸收层中的Ga浓度形成梯度,其在该吸收层与Mo背电极接触的一侧的浓度最高,在该吸收层的相对另一侧的浓度最低。
[0028] 随后进行退火处理:在真空室内以快速加热方式对铜铟镓硒吸收层进行退火处理,其温度为400℃至600℃,退火时间为55至90秒。在退火过程中不需要通入任何气体。经过退火处理的铜铟镓硒吸收层具有黄铜矿结构,并通过热能进行局部离子扩散,提高结晶状态,提高太阳能电池主吸收层的光伏发电效率。
[0029] 再接着在吸收层上制备缓冲层:利用真空磁控溅射法,采用In2Se3或ZnS合金靶,-3溅射沉积In2Se3或ZnS缓冲层,真空磁控溅射的工作压力为1-5×10 Torr并通入Ar气体,衬底的温度保持在室温。所述In2Se3或ZnS缓冲层的沉积厚度为80至120纳米。
[0030] 再接着在缓冲层上制备本征氧化锌高阻抗层:利用射频真空磁控溅射法,靶-3材为本征氧化锌(ZnO),射频真空磁控溅射的工作压力为1-5×10 Torr,工作频率为
400K~2MHz,并通入Ar气体,衬底的温度保持在室温。所述本征氧化锌高阻抗层的沉积厚度为0.1至0.5微米。
[0031] 再接着在本征氧化锌高阻抗层上制备氧化铟锡(In2O3:SnO2)薄膜低阻抗层:利用真空直流磁控溅射法,靶材为氧化铟锡(In2O3:SnO2),In2O3:SnO2的质量比为9∶1,真空直-3流磁控溅射的工作压力为1-5×10 Torr,并通入掺有2%至5%O2的Ar气体,衬底的温度保持室温。所述氧化铟锡薄膜低阻抗层的沉积厚度为0.3至0.8微米。
[0032] 最后在氧化铟锡薄膜低阻抗层上制备铝电极:利用Al靶材,通过溅射法制备Al电极,最终得到具有Ga的浓度梯度的铜铟镓硒薄膜太阳能电池。
[0033] 图2是对根据本发明的方法制备的太阳能电池吸收层所做的二次离子质谱(SIMS)分析曲线图。Ga的浓度在Mo背电极侧最高,然后到CIGS薄膜表面递减,表明具有梯度分布的禁带宽度。
[0034] 本发明与现有技术相比有以下优点:本发明所有的工艺皆为干式工艺流程,工艺过程不使用化学溶剂与溶液。太阳能电池的吸收层制备采用一步操作即可得到稳定结晶的吸收层,不再需要对吸收层进行硒化或硫化的工艺程序,大大缩短了生产周期,减少了生产设备,也避免了生产过程中的环境污染和潜在的危险。本发明的工艺步骤简化,能源消耗小,因此降低了生产成本。