一种单层MoS2与石墨烯复合纳米材料的制备方法转让专利

申请号 : CN201210187882.8

文献号 : CN102701192B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈卫祥王臻黄国创马琳

申请人 : 浙江大学

摘要 :

本发明公开了一种单层MoS2与石墨烯复合纳米材料的制备方法,该复合材料由单层MoS2与石墨烯复合构成,单层MoS2与石墨烯之间物质量之比为1:0.5-1:4,其制备方法是先将氧化石墨烯超声分散在去离子水中,然后加入阳离子表面活性剂,充分搅拌后再加入硫代钼酸铵,并向上述混合体系中慢慢滴加水合肼,连续搅拌并加热到95℃,在回流下反应,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,离心分离收集固体产物,去离子洗涤,真空干燥,再将所得固体产物在氮气/氢气混合气氛中热处理。本发明方法具有工艺简单,易于工业化扩大应用的特点,可以大规模制备单层MoS2与石墨烯复合纳米材料。

权利要求 :

1.一种单层MoS2与石墨烯复合纳米材料的制备方法,该复合纳米材料是由单层MoS2与石墨烯复合构成,单层MoS2与石墨烯之间物质的量之比为 1:0.5-1:4,其制备步骤如下:(1) 将氧化石墨烯超声分散在去离子水中,然后加入阳离子表面活性剂,并充分搅拌,阳离子表面活性剂浓度为0.01-0.05 M,氧化石墨烯的含量为26.9-60.5 mmol/L;所述的阳离子表面活性剂为十六烷基三甲基溴化铵,十二烷基三甲基溴化铵,八烷基三甲基溴化铵或四正丁基溴化铵;

(2) 将硫代钼酸铵加入到步骤(1)的混合体系中,充分搅拌,硫代钼酸铵与氧化石墨烯的物质的量之比在1:0.5-1:4, 在搅拌下向其中慢慢滴加质量百分比浓度为85%的水合肼,滴加水合肼体积为X,X/mL=Y•Z/mmol,Y=1.24-3.74 , Z代表硫代钼酸铵物质的量与氧化石墨烯物质的量之和,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应5-9 h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子水充分洗涤,然后在100℃真空干燥;

(3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,得到单层MoS2与石墨烯的复合纳米材料。

说明书 :

一种单层MoS2与石墨烯复合纳米材料的制备方法

技术领域

[0001] 本发明涉及复合纳米材料的制备方法,尤其涉及单层MoS2与石墨烯复合纳米材料的制备方法,属于无机复合纳米材料技术领域。

背景技术

[0002] 最近,单层二维纳米材料的研究引起了人们的极大兴趣。众所周知,石墨烯是目前研究的最多单层二维纳米材料,石墨烯以其独特的二维纳米片结构具有众多独特的物理、化学和力学等性能,具有重要的科学研究意义和广泛的应用前景。石墨烯具有极高的比表面积、高的导电和导热性能、高的电荷迁移率,优异的力学性能。石墨烯作为微纳米电子器件、新能源电池的电极材料、固体润滑剂和新型的催化剂载体的具有广泛的应用前景。石墨烯的发现及其应用研究激发了人们对其他无机单层二维纳米材料的研究兴趣,如具有单层结构的过渡金属二硫化物MoS2和WS2。
[0003] MoS2具有类似石墨的典型层状结构。MoS2层状结构为三明治的层状结构,其层内(S-Mo-S)是很强的共价键结合,层间则是较弱的范德华力,层与层之间容易剥离。MoS2具有良好的各向异性与较低的摩擦因数,MoS2能很好地附着在金属表面发挥润滑功能,特别是在高温、高真空等条件下仍具有较低的摩擦系数,是一种优良的固体润滑剂。MoS2也是一种良好的催化脱硫的催化剂载体。具有层状结构的MoS2作为主体材料,通过插入反应,客体原子或分子可以插在主体层间形成插层化合物。由于MoS2层状化合物的层与层之间是通过较弱的范德华力结合的,因此可以允许通过插层在层间引入外来的原子或分子。因此,MoS2层状化合物是一种很有前途的电化学储锂和储镁电极材料。但是作为电化学反应的电极材料,MoS2的导电性能较差。
[0004] 层状结构的无机化合物,但其层数较少时(5层以下),其电子性能与其层数有密切关系。最近研究揭示与体相材料相比,单层结构的MoS2和WS2具有不寻常的物理化学和光电性能, 如:单层结构的MoS2的Raman光谱有明显的变化和显著增强荧光量子效率,单层结构的MoS2制备的晶体管具有极高的开关比。单层结构的MoS2作为锂离子电池负极材料也显示了良好的性能。但是由于MoS2本质上是半导体材料,其电子电导率不够高,作为电极材料的应用需要增强其导电性能。
[0005] 由于单层MoS2与石墨烯具有类似的二维纳米片形貌,两者在微观形貌和晶体结构上具有很好的相似性。单层MoS2和石墨烯纳米片都可以作为电极材料和催化剂应用。如果将单层MoS2与石墨烯纳米片复合制备两者的复合材料,石墨烯纳米片的高导电性能可以进一步提高复合材料的导电性能,增强电化学电极反应和催化反应过程中的电子传递,可以进一步改善复合材料的电化学性能和催化性能。另外单层MoS2与石墨烯纳米片的复合,石墨烯纳米片的大Π键可以与MoS2表面电子结构的相互作用,进一步增强电子传递和电荷迁移的能力。因此,这种单层MoS2与石墨烯纳米片的复合纳米材料作为电极材料和催化剂载体等具有广泛的应用和增强的性能。
[0006] 但是,到目前为止,单层MoS2的制备主要是基于锂离子的插入和剥离的方法,这种方法存在以下缺点:对空气、水分等环境高度敏感,需要消耗大量的有机溶剂,需要较长的时间,所制备的量也很少。从大规模应用考虑,研发一种简单、易于扩大的制备单层MoS2与石墨烯的方法依然是一项具有挑战性的工作。
[0007] 本发明将采用阳离子表面活性剂,以(NH4)2MoS4和氧化石墨烯为原料,用简单的化学还原法制备单层MoS2与石墨烯的复合材料。但是目前为止,这种制备单层MoS2与石墨烯的复合材料的方法还未见公开报道。
[0008] 发明内容
[0009] 本发明的目的在于提供一种单层MoS2与石墨烯复合纳米材料的制备方法。 [0010] 单层MoS2与石墨烯复合纳米材料的制备方法,该复合纳米材料是由单层MoS2与石墨烯复合构成,单层MoS2与石墨烯之间的物质量之比为 1:0.5-1:4,其制备步骤如下: [0011] (1) 将氧化石墨烯超声分散在去离子水中,然后加入阳离子表面活性剂,并充分搅拌,阳离子表面活性剂浓度为0.01-0.05 M, 氧化石墨烯的含量为26.9-60.5 mmol/L; [0012] (2) 将硫代钼酸铵加入到步骤(1)的混合体系中,充分搅拌,硫代钼酸铵与氧化石墨烯的物质量之比在1:0.5-1:4,在搅拌下向其中慢慢滴加质量百分比浓度为85%的水合肼,滴加水合肼体积为X,X/mL=YZ/mmol,Y=1.24-3.74 , Z代表硫代钼酸铵物质的量与氧化石墨烯物质的量之和,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应5-9 h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0013] (3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,得到单层MoS2与石墨烯的复合纳米材料。
[0014] 上述的氧化石墨烯可采用改进的Hummers 方法制备。
[0015] 本发明中,所述的阳离子表面活性剂为十六烷基三甲基溴化铵,十二烷基三甲基溴化铵,八烷基三甲基溴化铵或四正丁基溴化铵。
[0016] 与现有技术比较本发明的方法具有以下突出的优点:
[0017] 氧化石墨烯表面和边缘带有很多含氧官能团(如羟基,羰基,羧基),这些含氧官能团使氧化石墨烯更容易地分散在水或有机液体中,但是这些含氧官能团使氧化石墨烯表面2-
带有负电荷,使得氧化石墨烯与带有负电荷的MoS4 离子不相容,本发明通过静电作用先将阳离子表面活性剂吸附到氧化石墨烯表面,使其带有部分正电荷,然后再与硫代钼酸铵混
2-
合,由于静电作用,MoS4 离子就容易与吸附了阳离子表面活性剂的氧化石墨烯相互作用结合在一起,再通过简单的还原和热处理就制备得到单层MoS2与石墨烯复合纳米材料。本发明的方法具有工艺简单、容易工业化扩大应用的特点。

附图说明

[0018] 图1是单层MoS2与石墨烯复合纳米材料的XRD衍射图,图中*为单层MoS2与单层MoS2之间的层间距,# 为单层MoS2与石墨烯之间的层间距;
[0019] 曲线(a) 为实施例1制备的单层MoS2与石墨烯复合纳米材料;
[0020] 曲线(b) 为实施例2制备的单层MoS2与石墨烯复合纳米材料;
[0021] 曲线(c) 为实施例3制备的单层MoS2与石墨烯复合纳米材料;
[0022] 曲线(d) 为比较例制备的单纯MoS2。
[0023] 图2是单层MoS2与石墨烯复合纳米材料样品的XRD衍射图,其中: [0024] 曲线(a) 为实施例4制备的单层MoS2与石墨烯复合纳米材料;
[0025] 曲线(b) 为实施例5制备的单层MoS2与石墨烯复合纳米材料。
[0026] 图3 是实施例2制备的单层MoS2与石墨烯复合纳米材料的SEM形貌。 [0027] 图4是实施例2制备的单层MoS2与石墨烯复合纳米材料的HRTEM图。 具体实施方式
[0028] 以下结合实施例进一步说明本发明。
[0029] 下述实例中的氧化石墨烯采用改进的Hummers 方法制备:在0oC冰浴下,将5.38-12.10 mmol (0.065-0.145 g)石墨粉搅拌分散到30 mL浓硫酸中,不断搅拌下慢慢加入KMnO4,所加KMnO4的质量是石墨粉的4倍,搅拌50分钟,当温度上升至35℃时,慢慢加入
50 ml去离子水,再搅拌30分钟,加入15 ml 质量浓度30%的H2O2,搅拌30分钟,经过离心分离,依次用质量浓度5%HCl溶液、去离子水和丙酮反复洗涤后得到氧化石墨烯。 [0030] 以下实施例中滴加的水合肼的质量百分比浓度均为85%。
[0031] 实施例1
[0032] 1)将10.76 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.01 mol十六烷基三甲基溴化铵阳离子表面活性剂(浓度0.05 M),并充分搅拌;
[0033] 2)然后将1.4 g (5.38 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应5h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0034] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0035] 其XRD衍射图见图1曲线(a),表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:2。
[0036] 比较例,制备过程中不添加阳离子表面活性剂和氧化石墨烯,按上述类似方法制备了单纯的MoS2,具体制备过程如下:
[0037] 将1.4 g (5.38 mmol) 硫代钼酸铵加入到200 mL去离子水中,充分搅拌使其溶解,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应5h,使硫代钼酸铵还原成MoS2,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥,将得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单纯的MoS2,其XRD衍射图见图1曲线(d), XRD表征显示所制备的单纯的MoS2有很强的(002)面XRD衍射峰,表面所制备的单纯的MoS2为多层结构,其平均层数为18层。
[0038] 实施例2
[0039] 1)将10.76 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.004 mol十六烷基三甲基溴化铵阳离子表面活性剂(浓度0.02 M),并充分搅拌;
[0040] 2)然后将1.4 g (5.38 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应6h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0041] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0042] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:2。XRD图见图1曲线(b),SEM和HRTEM分别见图3和图4。
[0043] 实施例3
[0044] 1)将5.38 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.01 mol十六烷基三甲基溴化铵阳离子表面活性剂(浓度0.05 M),并充分搅拌;
[0045] 2)然后将1.4 g (5.38 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应7h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0046] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0047] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:1。XRD图见图1曲线(c)。
[0048] 实施例4
[0049] 1)将10.76 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.004 mol十二烷基三甲基溴化铵阳离子表面活性剂(浓度0.02 M),并充分搅拌;
[0050] 2)然后将1.4 g (5.38 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应8 h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0051] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0052] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:2。XRD见图2曲线(a)。
[0053] 实施例5
[0054] 1)将10.76 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.01 mol八烷基三甲基溴化铵阳离子表面活性剂(浓度0.05 M),并充分搅拌;
[0055] 2)然后将1.4 g (5.38 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应7 h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0056] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0057] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:2。XRD见图2曲线(b)。
[0058] 实施例6
[0059] 1)将5.38 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.01 mol十六烷基三甲基溴化铵阳离子表面活性剂(浓度0.05 M),并充分搅拌;
[0060] 2)然后将2.8 g (10.76 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼20 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应6.5 h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0061] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0062] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:0.5。 [0063] 实施例7
[0064] 1)将12.10 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.008 mol十六烷基三甲基溴化铵阳离子表面活性剂(浓度0.04 M),并充分搅拌;
[0065] 2)然后将1.05 g (4.03 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼30 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应9h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0066] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0067] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:3。 [0068] 实施例8
[0069] 1)将10.76 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.002 mol十六烷基三甲基溴化铵阳离子表面活性剂(浓度0.01 M),并充分搅拌;
[0070] 2)然后将0.7 g (2.69 mmol)硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼50 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应6h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0071] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0072] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:4。 [0073] 实施例9
[0074] 1)将10.76 mmol氧化石墨烯超声分散在200 mL的去离子水中,加入0.004 mol四丁基溴化铵阳离子表面活性剂(浓度0.02 M),并充分搅拌;
[0075] 2)然后将1.4 g (5.38 mmol) 硫代钼酸铵加入到其中,充分搅拌,在搅拌下向其中慢慢滴加水合肼30 mL,连续搅拌并加热到95℃,在不断搅拌和回流条件下反应7 h,使硫代钼酸铵和氧化石墨烯同时分别还原成MoS2和石墨烯,通过离心分离收集固体产物,并用去离子充分洗涤,然后在100℃真空干燥;
[0076] 3)将所得到的固体产物在氮气/氢气混合气氛中在800℃下热处理2h,混合气体中氢气的体积比为10%,热处理后制备得到单层MoS2与石墨烯的复合纳米材料。
[0077] 用XRD,SEM和HRTEM对热处理后所得到最后产物进行表征,表征结果显示所得到的产物为单层MoS2/石墨烯的复合材料,其中MoS2与石墨烯物质量之比=1:2。