获得地震动样本的方法和装置转让专利

申请号 : CN201210210292.2

文献号 : CN102721978B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张郁山

申请人 : 中国地震灾害防御中心

摘要 :

本发明实施例提供了一种获得地震动样本的方法和装置,涉及地震工程领域,能够获得与天然地震动具有相同非平稳特性的地震动样本,所述方法包括:获取预先存储的天然地震动记录的瞬时幅值和瞬时相位;对所述瞬时相位进行解卷;采用傅立叶(Fourier)变换获取所述解卷后的瞬时相位的幅值谱和相位谱;采用所述相位谱的高频分量构造随机频率过程;采用所述随机频率过程、所述幅值谱及所述相位谱的低频分量构造随机相位过程;根据所述瞬时幅值与所述随机相位过程获得地震动随机过程;根据所述地震动随机过程获得地震动样本。本发明可用于抗震设计领域。

权利要求 :

1.一种获得地震动样本的方法,其特征在于,包括:获取预先存储的天然地震动记录的瞬时幅值和瞬时相位,包括:采用希尔伯特变换获取预先存储的天然地震动记录的瞬时幅值和瞬时相位;

对所述瞬时相位进行解卷;

采用傅立叶变换获取所述解卷后的瞬时相位的幅值谱和相位谱,包括:使用下列公式获取所述解卷后的瞬时相位的幅值谱和相位谱,其中,Aθ,0(f)表示解卷后的瞬时相位的幅值谱,Φθ,0(f)表示解卷后的瞬时相位的相位谱,θ0(t)表示解卷后的瞬时相位,Re表示取复数的实部,Im表示取复数的虚部,i表示虚数单位,i2=-1;

采用汉宁窗函数对所述相位谱分解,得到相位谱的高频分量和低频分量;

采用所述相位谱的高频分量构造随机频率过程,包括:使用下列公式构造随机频率过程,其中,Ψ(f)表示随机频率过程,Φθ,n(f)表示相位谱的高频分量,Θ(f)表示随机频率函数,H表示希尔伯特变换,P表示取广义积分的柯西主值;

采用所述随机频率过程、所述幅值谱及所述相位谱的低频分量构造随机相位过程,包括:使用下列公式构造随机相位过程,其中,θ(t)表示随机相位过程,Aθ,0(f)表示解卷后的瞬时相位的幅值谱,Φθ,d(f)表2

示相位谱的低频分量,Ψ(f)表示随机频率过程,i表示虚数单位,i=-1;

根据所述瞬时幅值与所述随机相位过程获得地震动随机过程,包括:使用下列公式构造地震动随机过程:x(t)=a0(t)cosθ(t);

其中,x(t)表示地震动随机过程,a0(t)表示瞬时幅值,θ(t)表示随机相位过程;

根据所述地震动随机过程获得地震动样本。

2.根据权利要求1所述的获得地震动样本的方法,其特征在于,所述采用希尔伯特变换从预先存储的天然地震动记录获取所述天然地震动记录的瞬时幅值和瞬时相位包括:使用下列公式获取所述天然地震动记录的瞬时幅值和瞬时相位,其中,a0(t)表示瞬时幅值,θ0'(t)表示瞬时相位,x0(t)表示预先存储的天然地震动记录,H表示希尔伯特变换,P表示取广义积分的柯西主值。

3.根据权利要求1所述的获得地震动样本的方法,其特征在于,所述采用汉宁窗函数对所述相位谱分解,得到相位谱的高频分量和低频分量包括:使用下列公式得到相位谱的高频分量和低频分量,

Φθ,d(f)=Hann[Φθ,0(f)],Φθ,n(f)=Φθ,0(f)-Φθ,d(f);

其中,Φθ,d(f)表示相位谱的低频分量,Φθ,n(f)表示相位谱的高频分量,Φθ,0(f)表示解卷后的瞬时相位的相位谱,Hann表示利用汉宁窗函数对信号进行低通滤波处理。

4.根据权利要求1所述的获得地震动样本的方法,其特征在于,所述随机频率函数Θ(f)为在区间[-1,1]均匀分布的随机频率函数,并满足:对任意频率f,Θ(f)为区间[-1,1]均匀分布的随机变量;及若f1≠f2,则Θ(f1)与Θ(f2)为相互独立的随机变量。

说明书 :

获得地震动样本的方法和装置

技术领域

[0001] 本发明涉及地震工程领域,尤其涉及一种获得地震动样本的方法和装置。

背景技术

[0002] 重要工程结构,如超高层建筑、核电站、海洋平台、大跨度桥梁、大型水坝和储液罐等的抗震设计需要进行动力时程分析,以确定工程结构在可能遭受的地震作用下动力响应的全过程,进而实现抗震设防目标。动力时程分析需要一定数量的、并且满足一定地震环境及场地条件的地震动加速度时程作为结构动力反应分析的输入。然而,天然的强震观测记录数量非常有限,无法满足实际工程的多种需求,因此需要利用数值方法进行地震动的模拟,以生成大量满足一定工程特性的样本地震动。
[0003] 传统的非平稳地震动模拟方法可大致分为4大类:基于时域调制的方法、基于演变谱的方法、基于相位差谱的方法以及基于自回归滑移平均模型(ARMA)的方法。上述大部分地震动随机模拟方法主要是将给定天然地震动视为某一随机过程的一个样本,对该样本进行数据分析,从中提取出某一复杂变化的物理量(通常是相位或相位差)作为描述地震动随机性的随机变量并研究其频数分布,进而构造该随机变量的概率模型,并据此最终确定地震动的随机过程模型。然而在该过程中,需要对原始地震动进行非常繁琐的参数估计。

发明内容

[0004] 本发明的实施例提供一种获得地震动样本的方法和装置,能够获得与天然地震动具有相同非平稳特性的地震动样本,无需繁琐的参数估计过程。
[0005] 为达到上述目的,本发明的实施例采用如下技术方案:
[0006] 一种获得地震动样本的方法,包括:
[0007] 获取预先存储的天然地震动记录的瞬时幅值和瞬时相位;
[0008] 对所述瞬时相位进行解卷;
[0009] 采用傅立叶变换获取所述解卷后的瞬时相位的幅值谱和相位谱;
[0010] 采用所述相位谱的高频分量构造随机频率过程;
[0011] 采用所述随机频率过程、所述幅值谱及所述相位谱的低频分量构造随机相位过程;
[0012] 根据所述瞬时幅值与所述随机相位过程获得地震动随机过程;
[0013] 根据所述地震动随机过程获得地震动样本。
[0014] 一种获得地震动样本的装置,包括:
[0015] 第一获取单元,用于从预先存储的天然地震动记录获取所述天然地震动记录的瞬时幅值和瞬时相位;
[0016] 解卷单元,用于对所述第一获取单元获取的瞬时相位进行解卷;
[0017] 第二获取单元,用于采用傅立叶变换获取所述解卷单元解卷后的瞬时相位的幅值谱和相位谱;
[0018] 第一构造单元,用于采用所述第二获取单元获取的相位谱的高频分量构造随机频率过程;
[0019] 第二构造单元,用于采用所述第一构造单元构造的随机频率过程、所述第二获取单元获取的幅值谱及所述第二获取单元获取的相位谱的低频分量构造随机相位过程;
[0020] 第一获得单元,用于根据所述第一获取单元获取的瞬时幅值与所述第二构造单元构造的随机相位过程获得地震动随机过程;
[0021] 第二获得单元,用于根据所述地震动随机过程获得地震动样本。
[0022] 本发明实施例提供的获得地震动样本的方法和装置,通过获取预先存储的天然地震动记录的瞬时幅值和瞬时相位,进而构造随机相位过程,瞬时幅值能够反映天然地震动记录的强度非平稳特性,而随机相位过程则能够反映天然地震动记录的频率非平稳特性,最后根据所述瞬时幅值与所述随机相位过程获得地震动随机过程,进而获得与原始的天然地震动记录具有相同非平稳特性的一系列地震动样本。

附图说明

[0023] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0024] 图1为本发明实施例提供的一种获取地震动样本的方法;
[0025] 图2为本发明实施例提供的另一种获取地震动样本的方法;
[0026] 图3为本发明实施例提供的一种获取地震动样本的装置。

具体实施方式

[0027] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0028] 本发明实施例提供了一种获得地震动样本的方法,如图1所示,包括:
[0029] 101、获取预先存储的天然地震动记录的瞬时幅值和瞬时相位。
[0030] 所述预先存储的天然地震动记录指与要进行抗震设计的工程结构所在的场地具有相似地震环境和场地条件的天然地震动记录,其中天然地震动记录指利用强震仪记录到的天然地震产生的地震动加速度、速度或位移的时间过程。
[0031] 可以采用多种方式获取预先存储的天然地震动记录的瞬时幅值和瞬时相位,其中优选的,可采用希尔伯特(Hilbert)变换获取所述预先存储的天然地震动记录的瞬时幅值和瞬时相位。当然本发明实施例对此是不作限定的,本领域技术人员可根据本领域公知常识或常用技术手段获取所述预先存储的天然地震动记录的瞬时幅值和瞬时相位。
[0032] 具体但不限于此的,所述采用希尔伯特变换从预先存储的天然地震动记录获取所述天然地震动记录的瞬时幅值和瞬时相位包括:
[0033] 使用下列公式获取所述天然地震动记录的瞬时幅值和瞬时相位,[0034]
[0035] 其中,a0(t)表示瞬时幅值,θ′0(t)表示瞬时相位,x0(t)表示预先存储的天然地震动记录,H表示希尔伯特变换,P表示取广义积分的柯西主值。
[0036] 该步骤中,首先对预先存储的天然地震动记录进行希尔伯特变换,得到变换结果y0(t),然后再分别通过公式 和 获得瞬时幅值a0(t)和瞬时相位θ′0(t)。
[0037] 102、对所述瞬时相位进行解卷;
[0038] 对所述瞬时相位进行解卷以获得解卷后的瞬时相位。
[0039] 103、采用傅立叶(Fourier)变换获取所述解卷后的瞬时相位的幅值谱和相位谱。
[0040] 在本步骤中,可以基于傅立叶变换获取所述解卷后的瞬时相位的幅值谱和相位谱。
[0041] 具体但不限于此的,所述傅立叶变换获取所述解卷后的瞬时相位的幅值谱和相位谱包括:
[0042] 使用下列公式获取所述解卷后的瞬时相位的幅值谱和相位谱,
[0043]
[0044]
[0045] 其中,Aθ,0(f)表示解卷后的瞬时相位的幅值谱,Φθ,0(f)表示解卷后的瞬时相位的相位谱,θ0(t)表示解卷后的瞬时相位,Re表示取复数的实部,Im表示取复数的虚部,i2
表示虚数单位,i=-1。
[0046] 该步骤中,首先对解卷后的瞬时相位进行傅立叶变换,得到傅立叶变换结果Ω0(f),然后分别获取傅立叶变换结果的实部和虚部,最后分别通过公式和 获得解卷后的瞬时相位的幅值谱Aθ,0(f)和相位谱Ωθ,0(f)。
[0047] 104、采用所述相位谱的高频分量构造随机频率过程。
[0048] 其中,相位谱的高频分量可以通过多种滤波方法对所述相位谱进行滤波获得。
[0049] 具体但不限于此的,本步骤中使用下列公式构造随机频率过程,[0050] Ψ ( f ) = A ( f ) Θ ( f ) ,
[0051] 其中,Ψ(f)表示随机频率过程,Φθ,n(f)表示相位谱的高频分量,Θ(f)表示随机频率函数,H表示希尔伯特变换,P表示取广义积分的柯西主值。
[0052] 该步骤中,首先对相位谱的高频分量Φθ,d(f)进行希尔伯特变换,得到希尔伯特变换结果 然后通过公式 得到确定性函数A(f),最后通过公式Ψ(f)=A(f)Θ(f),即确定性函数A(f)与随机频率函数Θ(f)的乘积得到随机频率过程Ψ(f)。
[0053] 105、采用所述随机频率过程、所述幅值谱及所述相位谱的低频分量构造随机相位过程。
[0054] 其中,所述相位谱的低频分量可通过多种滤波方法对所述相位谱进行滤波获得。在本步骤中,所述随机频率过程、所述幅值谱及所述相位谱的低频分量均由预先存储的天然地震动的瞬时相位直接或间接得到,构造的随机相位过程反映预先存储的天然地震动记录的频率非平稳特性。
[0055] 具体但不限于此的,使用下列公式构造随机相位过程,
[0056] Ω(f)=Aθ,0(f)exp{i[Φθ,d(f)+Ψ(f)]};
[0057] 其中,θ(t)表示随机相位过程,Aθ,0(f)表示解卷后的瞬时相位的幅值谱,2
Φθ,d(f)表示相位谱的低频分量,Ψ(f)表示随机频率过程,i表示虚数单位,i=-1;
[0058] 106、根据所述瞬时幅值与所述随机相位过程获得地震动随机过程。
[0059] 根据所述瞬时幅值与所述随机相位过程获得地震动随机过程,具体但不限于此的,可采用将所述瞬时幅值与所述随机相位过程的余弦值相乘的方式获得地震动随机过程,也即采用下列公式获得地震动随机过程,
[0060] x(t)=a0(t)cosθ(t);
[0061] 其中,x(t)表示地震动随机过程,a0(t)表示瞬时幅值,θ(t)表示随机相位过程。
[0062] 107、根据所述地震动随机过程获得地震动样本。
[0063] 为随机相位过程设定不同的随机数,利用伪随机数生成算法即可生成与所述给定随机数相对应的随机频率函数的一个样本,进而产生与所述随机数对应的地震动随机过程的一个样本,进而针对不同随机数可得到一系列的用于需要进行抗震设计的工程结构的输入地震动样本。
[0064] 可以理解的是,本发明实施例中的步骤101至106的内容及顺序是不作严格限定的。例如,步骤101可以为获取预先存储的天然地震动记录的瞬时相位,然后在步骤106之前可以增加获取预先存储的天然地震动记录的瞬时幅值的步骤。又如,步骤103可以为采用傅立叶变换获取所述解卷后的瞬时相位的相位谱,然后在步骤105之前可以增加获取采用傅立叶变换获取所述解卷后的瞬时相位的幅值谱的步骤。
[0065] 本发明实施例提供的获得地震动样本的方法,通过获取预先存储的天然地震动记录的瞬时幅值和瞬时相位,进而构造随机相位过程,瞬时幅值能够反映天然地震动记录的强度非平稳特性,而随机相位过程则能够反映天然地震动记录的频率非平稳特性,最后根据所述瞬时幅值与所述随机相位过程获得地震动随机过程,进而获得地震动样本,即获得与原始的天然地震动记录具有相同非平稳特性的一系列地震动样本。通过本发明实施例提供的方法获得地震动样本可作为输入应用于利用蒙特卡洛法对结构地震反应的数值模拟研究工作中,以使得工程结构能够更加合理的抵御可能发生的地震作用。
[0066] 进一步的,在本发明提供的一个实施例中,在步骤104之前还包括:
[0067] 采用汉宁(Hanning)窗函数对所述相位谱分解,得到相位谱的高频分量和低频分量。
[0068] 具体但不限于此的,使用下列公式得到相位谱的高频分量和低频分量,[0069] Φθ,d(f)=Hann[Φθ,0(f)],Φθ,n(f)=Φθ,0(f)-Φθ,d(f);
[0070] 其中,Φθ,d(f)表示相位谱的低频分量,Φθ,n(f)表示相位谱的高频分量,Φθ,0(f)表示解卷后的瞬时相位的相位谱,Hann表示利用汉宁窗函数对信号进行低通滤波处理。
[0071] 进一步的,在本发明提供的一个实施例中,步骤104中的所述随机频率函数Θ(f)为在区间[-1,1]均匀分布的随机频率函数,并满足:
[0072] 对任意频率f,Θ(f)为区间[-1,1]均匀分布的随机变量;及
[0073] 若f1≠f2,则Θ(f1)与Θ(f2)为相互独立的随机变量。
[0074] 针对任意给定的随机数,利用伪随机数生成算法即可生成与所述给定随机数相对应的随机频率函数Θ(f)的一个样本。
[0075] 为了更好的说明本发明提供的获得地震动样本的方法,本发明提供了一个优选的具体实施例,该实施例提供了一种获得地震动样本的方法,如图2所示,包括:
[0076] 201、采用希尔伯特变换获取所述预先存储的天然地震动记录x0(t)的瞬时幅值a0(t)和瞬时相位θ′0(t)。
[0077] 首先对预先存储的天然地震动记录进行希尔伯特变换,得到变换结果y0(t):
[0078]
[0079] 然后获取天然地震动记录x0(t)的瞬时幅值a0(t):
[0080]
[0081] 和天然地震动记录x0(t)的瞬时相位θ′0(t):
[0082]
[0083] 202、对所述瞬时相位θ′0(t)进行解卷,得到解卷后的瞬时相位θ0(t)。
[0084] 203、采用傅立叶变换获取所述解卷后的瞬时相位θ0(t)的幅值谱Aθ,0(f)和相位谱Φθ,0(f)。
[0085] 首先对解卷后的瞬时相位θ0(t)进行傅立叶变换,得到傅立叶变换结果Ω0(f):
[0086]
[0087] 然后获取解卷后的瞬时相位的幅值谱Aθ,0(f):
[0088]
[0089] 获取解卷后的瞬时相位的相位谱Φθ,0(f):
[0090]2
[0091] 其中,Re表示取复数的实部,Im表示取复数的虚部,i表示虚数单位,i=-1。
[0092] 204、采用汉宁窗函数获取相位谱Φθ,0(f)的高频分量Φθ,n(f)和低频分量Φθ,d(f)。
[0093] 首先采用汉宁窗函数对相位谱Φθ,0(f)进行低通滤波,获取其低频分量Φθ,d(f):
[0094] Φθ,d(f)=Hann[Φθ,0(f)]。
[0095] 然后通过相位谱Φθ,0(f)和低频分量Φθ,d(f)获取高频分量Φθ,n(f):
[0096] Φθ,n(f)=Φθ,0(f)-Φθ,d(f)。
[0097] 205、采用所述相位谱的高频分量Φθ,n(f)构造随机频率过程Ψ(f)。
[0098] 首先对高频分量Φθ,n(f)进行希尔伯特变换,得到希尔伯特变换结果[0099]
[0100] 然后构造确定性函数A(f):
[0101]
[0102] 根据确定性函数A(f)与随机频率函数Θ(f)获得随机频率过程Ψ(f):
[0103] Ψ(f)=A(f)Θ(f)。
[0104] 在本步骤中,随机频率函数Θ(f)优选为在区间[-1,1]均匀分布的随机频率函数,并满足:
[0105] 对任意频率f,Θ(f)为区间[-1,1]均匀分布的随机变量;及
[0106] 若f1≠f2,则Θ(f1)与Θ(f2)为相互独立的随机变量。
[0107] 针对任意给定的随机数,利用伪随机数生成算法即可生成与所述给定随机数相对应的随机频率函数Θ(f)的一个样本。
[0108] 206、采用随机频率过程Ψ(f)、幅值谱Aθ,0(f)及相位谱的低频分量Φθ,d(f)构造随机相位过程θ(t)。
[0109] 具体使用下列公式构造随机相位过程θ(t):
[0110] Ω(f)=Aθ,0(f)exp{i[Φθ,d(f)+Ψ(f)]};
[0111] 其中,i表示虚数单位,i2=-1。
[0112] 207、根据瞬时幅值a0(t)与随机相位过程θ(t)获得地震动随机过程x(t)。
[0113] 具体采用以下公式获得地震动随机过程x(t):
[0114] x(t)=a0(t)cosθ(t)。
[0115] 208、根据地震动随机过程x(t)获得地震动样本。
[0116] 为随机相位过程设定不同的随机数,利用伪随机数生成算法即可生成与所述给定随机数相对应的随机频率函数Θ(f)的一个样本,进而产生与所述随机数对应的地震动随机过程的一个样本,进而针对不同随机数可得到一系列的用于需要进行抗震设计的工程结构的输入地震动样本。
[0117] 本发明实施例提供的获得地震动样本的方法,通过获取预先存储的天然地震动记录的瞬时幅值和瞬时相位,进而构造随机相位过程,瞬时幅值能够反映天然地震动记录的强度非平稳特性,而随机相位过程则能够反映天然地震动记录的频率非平稳特性,最后根据所述瞬时幅值与所述随机相位过程获得地震动随机过程,进而获得地震动样本,即获得与原始的天然地震动记录具有相同非平稳特性的一系列地震动样本。通过本发明实施例提供的方法获得的地震动样本可作为输入应用于利用蒙特卡洛法对结构地震反应的数值模拟研究工作中,以使得工程结构能够更加合理的抵御可能发生的地震作用。
[0118] 与上述方法相对应的,本发明还提供了一种获得地震动样本的装置,如图3所示,包括:
[0119] 第一获取单元31,用于从预先存储的天然地震动记录获取所述天然地震动记录的瞬时幅值和瞬时相位;
[0120] 解卷单元32,用于对第一获取单元31获取的瞬时相位进行解卷;
[0121] 第二获取单元33,用于采用傅立叶变换获取解卷单元32解卷后的瞬时相位的幅值谱和相位谱;
[0122] 第一构造单元34,用于采用第二获取单元33获取的相位谱的高频分量构造随机频率过程;
[0123] 第二构造单元35,用于采用第一构造单元34构造的随机频率过程、第二获取单元33获取的幅值谱及第二获取单元33获取的相位谱的低频分量构造随机相位过程;
[0124] 第一获得单元36,用于根据第一获取单元31获取的瞬时幅值与第二构造单元35构造的随机相位过程获得地震动随机过程;
[0125] 第二获得单元37,用于根据第一获得单元36获得地震动样本。
[0126] 本发明实施例提供的获得地震动样本的装置,第一获取单元31获取预先存储的天然地震动记录的瞬时幅值和瞬时相位,进而第二构造单元35将构造随机相位过程,瞬时幅值能够反映天然地震动记录的强度非平稳特性,而随机相位过程则能够反映天然地震动记录的频率非平稳特性,最后第一获得单元36根据所述瞬时幅值与所述随机相位过程获得地震动随机过程,进而第二单元37获得地震动样本,即获得与原始的天然地震动记录具有相同非平稳特性的一系列地震动样本。
[0127] 需要说明的是,本发明实施例提供的装置的各单元是与本发明实施例提供的方法对应设置的。
[0128] 通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
[0129] 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。