用以沉积防反射层于基材上的方法转让专利

申请号 : CN201180006772.0

文献号 : CN102725433B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 奧利佛·雷敦德史蒂芬·伯瑟

申请人 : OC欧瑞康巴尔斯公司

摘要 :

本发明涉及一种用以沉积一防反射层(6)于一基材(1)上的方法,包括下列步骤。提供具有多个太阳能电池结构(2)的基材(1),并将该基材布置于一真空腔室(11)内,该真空腔室具有一含硅固体(13)。在该固体(13)与接地电位(14)之间断开电压期间,将一含氮反应气体(20)在该真空腔室(11)内的一流量调节至一第一值,将该含氮反应气体(20)之流量提高至一第二值并在该固体(13)与接地电位(14)间施加一电压,其中,以该含氮反应气体(20)高于该第一值之流量将一由硅及氮构成之层(6)沉积于该基材(1)上。

权利要求 :

1.一种用以沉积防反射层(6)于基材(1)上的方法,其包括下列步骤:

提供具有多个太阳能电池结构(2)的基材(1);

将该基材(1)布置于真空腔室(11)内,该真空腔室(11)具有含硅的固体(13),其中,该固体(13)与接地电位(14)之间能够施加一定的电压;

在该固体(13)与该接地电位(14)之间断开电压期间,将含氮反应气体(20)在该真空腔室(11)内的流量调节至第一值;

将该含氮反应气体(20)的流量提高至第二值;

在该固体(13)与接地电位(14)间施加一定的电压;以及

以该含氮反应气体(20)高于该第一值的流量将由硅及氮构成的层沉积于该基材(1)上,其中,所述第二值为含氮反应气体的过程额定值。

2.如权利要求1所述的方法,其特征在于,在该固体(13)与该接地电位(14)之间被断开电压时及在该固体(13)与该接地电位(14)之间被施加电压时,流入真空腔室(11)中的非反应性气体(19)保持同等大小的流量。

3.如权利要求1或权利要求2所述的方法,其特征在于,在断开该固体(13)与该接地电位(14)间的电压的步骤和在该固体(13)与接地电位(14)之间施加电压的步骤之间,该含氮反应气体(20)在该真空腔室(11)内的分压变化程度是低于10%。

4.如权利要求1或权利要求2所述的方法,其特征在于,在该含氮气体(20)的流量的该第一值与该第二值之间的差进行设置,使得该含氮反应气体(20)在该固体(13)与该接地电位(14)之间被施加电压后的1秒钟内保持稳定分压。

5.如权利要求1或权利要求2所述的方法,其特征在于,在对该含氮气体(20)的流量的该第一值与该第二值之间的差进行设置,使得在该固体(13)与该接地电位(14)之间被施加电压后的1秒钟内该电压保持稳定一致。

6.如权利要求1或权利要求2所述的方法,其特征在于,对该含氮气体(20)的流量的该第一值与该第二值之间的差进行设置,使得该防反射层(6)的沉积速率在该固体(13)与接地电位(14)之间被施加电压后的1秒钟内保持稳定一致。

7.如权利要求1或权利要求2所述的方法,其特征在于,采用纯氮或含氮化合物作为该含氮反应气体(20)。

8.如权利要求1或权利要求2所述的方法,其特征在于,采用包含多个单晶或多晶太阳能电池的晶片作为该基材(1)。

9.如权利要求1或权利要求2所述的方法,其特征在于,提高该含氮反应气体(20)的流量并延迟一段时间后,接着在该固体(13)与该接地电位(14)之间施加电压。

10.如权利要求1或权利要求2所述的方法,其特征在于,藉由设置针型阀(22)来调节该含氮反应气体(20)的流量。

11.如权利要求1或权利要求2所述的方法,其特征在于,使用质量流量控制器(24)来调节该含氮反应气体(20)的流量,其中,对该质量流量控制器(24)的额定值进行设置,使得在该固体(13)与该接地电位(14)之间被断开电压时及在该固体(13)与该接地电位(14)之间被施加电压时,该含氮反应气体(20)保持同等大小的分压。

12.如权利要求11所述的方法,其特征在于,藉由在该质量流量控制器(24)的下游与该真空腔室(11)的上游所排出气流来调节该含氮反应气体(20)在该真空腔室内的流量。

13.如权利要求12所述的方法,其特征在于,该质量流量控制器(24)的额定值保持不变,藉由在该质量流量控制器(24)的下游与该真空腔室(11)的上游排出气流来设置该含氮反应气体(20)在该真空腔室内的流量,其中,该含氮反应气体(20)在该固体(13)与该接地电位(14)之间被断开电压时及在该固体(13)与该接地电位(14)之间被施加电压时保持同等大小的分压。

说明书 :

用以沉积防反射层于基材上的方法

技术领域

[0001] 本发明系关于防反射层之制造,且特别系关于在太阳能电池上制造防反射层。

背景技术

[0002] 太阳能电池可将光子(通常为太阳光光子)转换成电能。然目前之该种转换过程效率仍不够高,而需加以进一步改良。
[0003] 太阳能电池转换效率的一种改良方案系减小太阳能电池表面之光子反射。因此,更多光子进入太阳能电池并在其中转化为电能。
[0004] US 7,705,236B2揭示一种太阳能电池,其可具有由氮化硅构成之防反射层。设置该防反射层之目的在于减小太阳光射到该太阳能电池之硅表面时的反射损耗。同样,因为与发生在界面上的反射现象一样,太阳光会被防反射层所吸收,所以其降低太阳能电池效率。
[0005] 但仍需做出进一步之改良,方能进一步提高防反射层之性能可靠性,且更进一步改良太阳能电池之效率。

发明内容

[0006] 根据本发明,用以沉积防反射层于基材上的方法包括下列步骤。提供一具有多个太阳能电池结构之基材并将其布置于真空腔室内。该真空腔室具有一含硅固体,其中,该固体与接地电位之间可施加电压。在该固体与接地电位之间断开电压期间,将一含氮反应气体在该真空腔室内之流量调节至第一值。将该含氮反应气体之流量提高至第二值并在该固体与接地电位间施加电压,其中,以该含氮反应气体高于该第一值之流量将一个由硅及氮构成之层沉积于该基材上。
[0007] 用于太阳能电池的防反射层可以使用许多种沉积过程来沉积。在本发明中,采用反应式溅射过程来沉积由SiN构成之防反射层。利用单基材系统可为晶片基单晶及多晶太阳能电池来以高产量制造此种基于氮化硅SiN之防反射层。
[0008] 根据本发明,对气体流量,尤其是含氮反应气体的流量进行调节,以便将防反射层可靠地沉积于基材上。使得该含氮反应气体在沉积过程开始之前及进行过程中保持相似分压,较佳保持尽可能均匀的分压。
[0009] 在该沉积过程进行期间,一部分含氮反应气体结合到已沉积层中。因此,接上电压后,该真空腔室内之含氮反应气体分压较之接电压前有所下降。本发明藉由调节该含氮气体之流量,特定言之系藉由沉积开始前的较低流量值以及藉由在沉积过程进行期间提高该流量来补偿上述分压下降。
[0010] 因此,本发明系有关于又名“真空阴极溅射”之溅射过程中的气体调节。特定言之,本发明系有关于反应式溅射过程中的反应气体调节。本发明之另一重点为处理时间短且其开始阶段(下文将对此概念予以说明)之时长占处理时间较大比重的溅射过程。应用此类溅射过程可在太阳能电池上制造较薄之防反射层。
[0011] 综上所述,本发明系提供一种适用于沉积过程的方法,该方法处理时间短,同时亦能稳定、可靠地沉积反应层,并确保该反应层易于改质。
[0012] 阴极溅射,或曰“溅射”,为一物理过程,在此过程中,某一固体(亦称“靶材”)之原子因高能量离子(主要为某种工作气体之稀有气体离子)轰击而离开该固体并转变成气相。“溅射”通常仅指溅射沉积,PVD领域内的一种真空镀覆技术。“物理气相沉积”(physical vapor deposition,简称PVD)系一类直接藉由凝结母材之蒸汽来形成层的真空镀覆方法或薄膜技术,不同于CVD技术。
[0013] 该技术有以下几点特征:
[0014] 1、将成膜粒子气化(汽化)(“溅射”)
[0015] 2、将蒸汽输送至基材
[0016] 3、使蒸汽在基材上凝结以形成薄膜。
[0017] PVD方法常利用等离子体来将诸如氩气等工作气体电离成稀有气体离子。所用等离子体可在处理室内就地(原位)制造,亦可单独制造(远程等离子体源)。
[0018] 反应式溅射系为PVD技术的一种变体,其中,溅射原子在输送或凝结过程中与被送入靶材与基材之间隙内的附加(反应)气体发生反应。
[0019] 该真空腔室内之非反应性气体流量可调,且不受该含氮反应气体流量之影响。在一实施例中,在该固体与接地电位间被断开电压及被施加电压期间,非反应性气体近乎保持同等大小之流量。
[0020] 在该实施例中,反应气体在真空腔室内的分压仅可藉由调节该反应气体之流量来加以调节。如此可简化反应气体在各处理步骤中的分压调节。
[0021] 固体与接地电位间被断开电压的步骤可称之为“闲置状态”,固体与接地电位间被施加电压的步骤可称之为“溅射步骤”。
[0022] 在断开固体与接地电位间之电压与在固体与接地电位间施加电压两步骤之间,可对含氮反应气体之流量进行调节,使得该含氮反应气体在真空腔室内之分压变化程度低于10%。
[0023] 藉此方法可对氮在真空腔室之气氛内减少及在已沉积层中结合的不同速率进行补偿。
[0024] 在其它实施例中,对该含氮气体之流量的第一值与第二值之差进行调节,以便在短时间内实现稳定之溅射过程。若欲在极短时间内完成沉积过程以镀覆极薄之层,则此实施例乃较佳之选。
[0025] 在一实施例中,对该含氮气体之流量的第一值与第二值之差进行调节,使得该含氮反应气体在该固体与接地电位间被施加电压后的1秒钟内保持稳定分压。
[0026] 在另一实施例中,对该含氮气体之流量的第一值与第二值之差进行调节,使得在该固体与接地电位间被施加电压后的1秒钟内该电压保持稳定。
[0027] 可对该含氮气体之流量的第一值与第二值之差进行调节,使得该防反射层之沉积速率在该固体与接地电位间被施加电压后的1秒钟内保持稳定。
[0028] 可采用纯氮或含氮化合物作为该含氮反应气体。
[0029] 该方法可将由SiN构成之防反射层沉积于不同类型之太阳能电池上。例如,基材可采用包含多个单晶或多晶太阳能电池的晶片。
[0030] 闲置状态结束开始实施沉积过程时,可大致在固体与接地电位间施加电压的同时提高含氮反应气体之流量。作为替代方案,亦可在提高含氮反应气体流量并延迟一段时间后再在固体与接地电位间施加电压。
[0031] 可在自气源至真空腔室之气体管道内布置针型阀并藉由调节此针型阀来调节该含氮反应气体之流量。
[0032] 根据另一实施例,使用质量流量控制器来调节该含氮反应气体之流量。采用该实施例时对该质量流量控制器之额定值进行调节,使得在该固体与接地电位间被断开电压及被施加电压期间,该含氮反应气体保持同等大小之分压。换言之:当该质量流量控制器(即操纵变量)发生变化时,该分压之额定值(即受控变量)保持不变。
[0033] 若设有质量流量控制器,则可藉由在该质量流量控制器下游与该真空腔室上游排出气流来调节该含氮反应气体在真空腔室内之气体流量。
[0034] 若在藉由在该质量流量控制器下游与该真空腔室上游排出气流来调节该含氮反应气体在真空腔室内之流量时,则该质量流量控制器之额定值可保持不变,从而使该含氮反应气体在该固体与接地电位间被断开电压及被施加电压期间均大体保持同等大小之分压。
[0035] WO 2008/080249A2揭示一种溅射系统,此系统可藉由质量流量控制器(Mass flow controller)改良真空腔室内之气体流量的调节效果,由于质量流量控制器总能以恒定之额定值工作,令其不再受气体流量控制器的瞬时响应影响,从而避免精确性与可重复性受到不利影响。
[0036] 概括而言,若想可靠地沉积性能符合要求的层,关键在于如压力调节等沉积条件。通常在单一结构中,层不同,则适用之沉积条件亦不同。

附图说明

[0037] 现在将在下文中透过附图对本发明之实施例进行详细说明。
[0038] 图1示出氩气流量为55sccm时溅射电压与氮气流量间的函数关系;
[0039] 图2a示出波长λ=633时过渡区内之折射率n与N2流量间的函数关系;
[0040] 图2b示出λ=350nm时过渡区内之吸收系数k与N2流量间的函数关系;
[0041] 图2c示出过渡区内之镀覆速率与N2流量间的函数关系;
[0042] 图3示出以40sccm之Ar流量与47.5sccm之N2流量在Si的反应式溅射期间的电压变化曲线,以处理时间为横坐标;
[0043] 图4示出以40sccm之氩气流量与47.5sccm之N2流量在Si的反应式溅射期间的溅射电压变化曲线,该过程设定了不同的N2闲置流量及一延迟时间0s;
[0044] 图5a示出以55sccm之氩气流量与35sccm之N2流量在Si的反应式溅射期间的溅射电压变化曲线,该过程设定了不同的N2闲置流量;
[0045] 图5b示出以55sccm之氩气流量与35sccm之N2流量在Si的反应式溅射期间的氮气分压变化曲线(RGA测量),该过程设定了不同的N2闲置流量;
[0046] 图6示出一供气系统之原理图,该供气系统之排气管(针型阀)具有可变截面以产生理想之气体瞬时响应;
[0047] 图7示出该针型阀采用各种设置时气压与时间之关系图(逆时针转数,“0”表示阀门完全关闭);
[0048] 图8示出一包括防反射层之太阳能电池的示意图;
[0049] 图9示出用于以反应式溅射防反射层之系统的第一实施例;及
[0050] 图10示出用于以反应式溅射防反射层之系统的第二实施例。

具体实施方式

[0051] 下文将对藉由反应式溅射SiN的实施例予以说明,该实施例所用之固体(亦称“靶材”)由硅构成,所用之反应气体气氛含有氮气或含氮化合物;但以下全部说明亦适用于许多藉由金属靶材来沉积氧化层或氮化层之反应性过程。因此,“氮化模式”在上下文中相应系指反应气体流量较高之范围。
[0052] 在反应气体气氛下沉积层期间发现,反应气体之分压可为决定(基材上之)沉积速率及层之光学特性的决定性变量。
[0053] 藉由金属硅靶材以N2或N2+NH3为反应气体采用PVD沉积SiN或SiN:H时,溅射电压(即给定功率的电源电压)可用于辨识金属模式或氮化模式。请参照图1,其显示氩气流量为55sccm时溅射电压与氮气流量间的函数关系。
[0054] 其中,若当氮气流量较低时靶材上产生高(对地)电压,则溅射过程处于所谓的“金属模式”。而当氮气流量较高时靶材上产生低电压,则此为“氮化模式”。图1中电压曲线转折点周围之区域名为“过渡区”。已知的,此区域极为敏感。即使处理参数发生再小变化,亦会使已沉积层之特性发生变化。
[0055] 金属模式下之折射率(n)与吸收率(尤其在可见光谱之短波范围内)的值皆较大(见图2a至图2c)。
[0056] 具体言之,图2a示出波长λ=633nm时该过渡区内之折射率n与N2流量间的函数关系,图2b示出λ=350nm时该过渡区内之吸收系数k与N2流量间的函数关系,图2c示出该过渡区内之镀覆速率与N2流量间的函数关系。过程之“敏感性”在该过渡区内比较明显,在45sccm N2与50sccm N2之间尤为明显。
[0057] 在图2a至图2c中,实线表示40sccm之氩气流量,虚线表示55sccm之氩气流量。
[0058] 在溅射过程进行期间,一部分反应气体结合到层中,即被消耗,故通电(power ON)时之反应气体分压小于未上电(系统处于所谓闲置状态)时的反应气体分压。在通电时,自高分压无等离子体状态过渡至低分压有等离子体状态,但该过渡过程在过程进行期间并非在瞬间发生,而是视具体过程及具体系统会相应持续数秒钟。此过渡区下称反应性过程之“开始阶段”。
[0059] 较高之反应气体分压在该开始阶段内使层产生不同之特性(例如,折射率相对较小),其结果如图1所示,过程开始时溅射电压相对较低(参照图3)。愈接近过渡区,此效应自然愈明显,在该过渡区内,反应气体流量哪怕发生再小变化,亦会产生极大之影响。图3为以40sccm Ar与47.5sccm N2用反应式溅射Si时该过渡区附近的电压变化曲线,以处理时间为横坐标。
[0060] 该开始阶段之较高反应气体分压会使已沉积层产生不均匀的层特性,该开始阶段之持续时间占总处理时间比重愈大,则此层特性之影响愈明显。为了在处理时间较短的情况下仍能获得理想之层特性(例如,预定的折射率),须对反应气体之气体流量进行调节,使得镀覆过程结束时更多地处于金属模式下,以便补偿开始阶段中的较高反应气体含量。过程控制上的这样的妥协将会对层系统之整体性能产生有害影响。
[0061] 此外,层特性依然受设定处理时间影响,这是因为,镀覆时间愈短,开始阶段(氮化模式)所占相对百分比即愈大,其结果为折射率变小,镀覆速率下降,参见图2a至图2c。此种关联性会使个别参数的调整(例如常需实施之层厚调整)变得异常困难,这是因为有大量处理参数需加以重新调整。
[0062] 尤其对用于太阳能电池的SiN/SiN:H防反射层而言,在过程进行期间实施上述折衷方案虽能获得理想的有效折射率,然此梯度层之吸收率会增大,这是因为金属模式下之层的吸收率会显著增大。在图2b中通过吸收系数k在短波长下的非线性变化对此进行了示出。然而,防反射层吸收率上升会导致太阳能电池效率下降,这是因为被吸收的光无法再应用于电荷载流子之获取。
[0063] 综上所述,本发明系提供一种适用于沉积过程的方法,该方法处理时间短,同时亦能稳定、可靠地沉积反应层,并确保该反应层易于改质。
[0064] 本发明之方法在镀覆过程停止期间(系统处于闲置状态)藉由调整反应气体之气体流量使该反应气体之分压在过程所有阶段中皆能尽量保持恒定。
[0065] 为此,根据本发明,在闲置阶段(等离子体断开)期间减小反应气体进入处理室之有效流量,使得开始阶段之反应气体分压与剩余之等离子体处理期间的反应气体分压相符。将该种气体调节方法命名为“闲置流量修正”(Idle Flow Correction,IFC)。
[0066] 视情况可在自闲置气体控制转换至过程气体控制之间的转换操作与等离子体接通操作(power ON)之间添设一延迟时间(“wait-time”)。由此而产生之附加参数有助于反应气体在系统之各种瞬时响应下保持恒定分压。
[0067] 根据本发明,用以可以减小进入处理室之有效气体流量的方法有以下几种:
[0068] 在第一实施例中,气体流量控制器之闲置阶段额定值(Setpoint)小于其过程额定值。其中,开始阶段期间之反应气体分压与该闲置额定值、上述延迟时间(即所谓的wait-time)及该气体流量控制器之控制响应成函数关系。
[0069] 图4示出利用藉由Si靶材以40sccm Ar与47.5sccm N2进行反应式SiN沉积期间在该敏感之过渡区内的(溅射)电压变化曲线,该过程设定了不同的N2闲置流量及一等待时间(wait time)0s。在此情况下,“No IFC”对应于N2气体流量控制器为47.5sccm之恒定额定值,产生如图1所示之电压变化曲线。比较图1后可看出,在大约35sccm之闲置流量下可获得极其稳定的溅射电压,此溅射电压能使整个过程保持均匀的N2分压。
[0070] 如图5所示,采用剩余气体质谱仪(RGA)所进行的测量证明溅射电压与反应气体(氮气)分压间存在此前所猜想的关联。若过程开始时未采取IFC(亦即,氮气流量恒定,即本实施例中的35sccm,亦在闲置阶段期间也是如此),则t=0s时会产生较高之氮气分压,而当闲置流量为30sccm时,大约0.75秒后即会产生恒定分压,从而使得此过程条件下的溅射电压亦恒定。若闲置流量降幅较大,则溅射过程开始时亦会出现分压下降,其结果为溅射电压上升。
[0071] 其它实施例均基于如图6示意性示出之电路技术方案,亦即,在闲置阶段期间将反应气体(或一部分反应气体)直接送入前置真空管(“排气管”)而非送入处理室。亦可采用如WO 2008/080249A2所揭示之装置。
[0072] 此方案之优点在于,质量流量控制器(MFC)总能以恒定之额定值工作,而不再受气体流量控制器的瞬时响应影响,从而避免期望的精确性与可重复性受到不利影响。此外亦可如WO 2008/080249A2所述,透过排气管之可调有效抽吸能力对气体压力之瞬时响应进行极为精确的调节,请参见图6与图7。
[0073] 图8示出基材1之截面示意图。基材1为一具有多个太阳能电池结构2的晶片。该太阳能电池结构具有:第一导电层3,此层布置于基材1上并构成第一电极;布置在第一电极3上的p型掺杂硅层4;布置于该p型掺杂非晶硅层上的n型掺杂非晶硅层5;在本实施例中布置于该p型掺杂非晶硅层上之防反射层6;及一由透明导电层如氧化铟锡(ITO)构成的第二电极7。
[0074] 用箭头8表示的太阳光射在第二电极7上并穿透该第二电极与防反射层6,其中,光子在两非晶硅层5、6间之p-n结9上转化为电能。
[0075] 图9为一可应用本发明方法在如图8所示包括多个太阳能电池之晶片上制造防反射层之系统10的第一实施例。
[0076] 系统10具有一个可用泵12(如涡轮分子泵)抽空的真空腔室11。装置10进一步具有由硅构成之固体13。该固体13亦称“靶材”。固体13与接地电位14之间可施加电压,从而在真空腔室11中固体13之表面附近形成等离子体。此等离子体之高能离子以物理方式使固体13之材料离开该固体并沉积于基材15上,从而在基材15上形成一层。该基材15系一包括多个太阳能电池结构之晶片,该等太阳能电池结构用虚线16示意性地表示。
[0077] 另设有两气体管道17、18,在本发明方法中系用于将不同气体送入真空腔室11。第一气体管道17用于输送惰性气体19,如氩气,第二气体管道18用于输送反应气体20,如氮气或含氮化合物。“反应气体”在这里的上下文中指一种与分离自固体13之材料发生反应的气体,反应所形成之沉积层既具有固体13之元素又具有该气体之元素。藉由阀门22(如针型阀)可对反应气体20在第二气体管道18中的流量进行调节,且该调节操作不受惰性气体19在第一气体管道17中的流量影响。第一气体管道17同样具有一个用于调节惰性气体19之流量的阀门23。
[0078] 藉由如图9所示之系统10在基材15上溅射防反射层21时可按下述方法操作。将基材15布置于真空腔室11内并用泵12抽空真空腔室11。在固体13与接地电位14之间断开电压期间,藉开启阀门22、23来调节惰性气体19及反应气体20在真空腔室11内之分压。惰性气体19之流量可为40sccm左右,氮气20之流量约为35sccm。
[0079] 在一种实施例中,大致在接通固体13上之电压的同时将氮气20之流量提高至47.5sccm以启动沉积过程。惰性气体19的流量不变,保持在40sccm。
[0080] 在该方法之另一实施例中,在提高氮气流量与接通电压两操作之间设一延迟时间。
[0081] 图10示出用于以反应式溅射防反射层之系统10′的第二实施例。在本实施例中,用于输送反应气体20的气体管道18′具有质量流量控制器24、阀门25及排气管27,该排气管布置在质量流量控制器24上游,以便反应气体20在质量流量控制器24之后、阀门25之前由气体管道18′予以排出。排气管27同样配有阀门28。此种装置由WO 2008/080249A2揭示。
[0082] 因此,反应气体20在气体管道18′及排气管27中的流量可藉由调节两阀门25、28来加以调节,质量流量控制器24之额定值则保持恒定。如此可避免气流之瞬时响应对该溅射过程之精确性或可重复性产生有害影响。