一种自动化螺旋铣孔装置及其方法转让专利

申请号 : CN201210300281.3

文献号 : CN102794491B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 柯臻铮黄小东黄浦缙潘泽民柯映林

申请人 : 浙江大学

摘要 :

本发明公开了一种自动化螺旋铣孔装置及其方法。装置包括底座、主轴滑座、外偏心套筒、内偏心套筒、力矩电机、圆光栅、电主轴、压脚、工业相机、直线光栅、四个激光距离传感器、伺服电机、滚珠丝杠副、同步带等;其中,内、外偏心套筒的内、外轮廓的轴线采用偏置设计,内偏心套筒安装在外偏心套筒内部,外偏心套筒的内轮廓轴线与内偏心套筒的外轮廓轴线重合。本发明通过控制内、外偏心套筒间的相对转角实现刀具径向偏置;主轴进给采用双光栅反馈,保证锪窝深度的精确性;采用工业相机检测工件上的预制孔位置,通过4个激光距离传感器检测制孔位置的法矢,与工业机器人、数控机床等自动化数控装备配合使用,可实现高精度、高效率的自动化制孔。

权利要求 :

1.一种自动化螺旋铣孔装置,其特征在于包括底座(1)、安装法兰(2)、滚珠丝杠副(3)、螺母座(4)、第一伺服电机(5)、直线导轨(6)、辅助支撑座(7)、防转螺杆(8)、过孔滑环(9)、滑环套筒(10)、圆光栅(11)、圆光栅安装盘(12)、力矩电机(13)、内偏心套筒(14)、外偏心套筒(15)、主轴滑座(16)、电主轴(17)、刀具(18)、螺旋防护套(19)、压脚压头(20)、排屑管(21)、压脚(22)、工业相机(23)、第一直线光栅(24)、气缸(25)、气缸转接头(26)、第二直线光栅(27)、第二伺服电机(28)、同步带(29)、激光距离传感器(30)、小同步带轮(31)、大同步带轮(32);安装法兰(2)、滚珠丝杠副(3)、第一伺服电机(5)、气缸(25)、第一直线光栅(24)、第二直线光栅(27)和工业相机(23)安装在底座(1)上,主轴滑座(16)通过螺母座(4)安装在滚珠丝杠副(3)上,滚珠丝杠副(3)与第一伺服电机(5)相连,第一伺服电机(5)带动滚珠丝杠副(3)旋转能推动主轴滑座(16)沿直线导轨(6)做进给运动,主轴滑座(16)内部设有外偏心套筒(15),外偏心套筒(15)、圆光栅安装盘(12)、滑环套筒(10)通过螺栓固联,主轴滑座(16)外侧安装第二伺服电机(28),第二伺服电机(28)通过小同步带轮(31)、同步带(29)、大同步带轮(32)带动外偏心套筒(15)旋转,外偏心套筒(15)内部设有内偏心套筒(14),力矩电机(13)安装在外偏心套筒(15)和内偏心套筒(14)之间,圆光栅(11)安装在圆光栅安装盘(12)内,力矩电机(13)带动内偏心套筒(14)相对外偏心套筒(15)旋转,内偏心套筒(14)内设有电主轴(17),电主轴(17)上安装刀具(18),过孔滑环(9)安装在滑环套筒(10)上,并通过防转螺杆(8)与辅助支撑座(7)相连接,辅助支撑座(7)可随主轴滑座(16)在直线导轨(6)上移动;压脚(22)通过气缸转接头(26)与气缸(25)顶杆相连,在气缸(25)的推动下可沿直线导轨(6)运动,压脚(22)上设有四个激光距离传感器(30)、压脚压头(20)、排屑管(21)和螺旋防护罩(19)。

2.根据权利要求1所述的一种自动化螺旋铣孔装置,其特征在于所述的外偏心套筒

(15)、内偏心套筒(14)的内、外轮廓轴线间的距离为5mm。

3.根据权利要求1所述的一种自动化螺旋铣孔装置,其特征在于所述的第一直线光栅(24)和第二直线光栅(27)为绝对式直线光栅,为第一伺服电机(5)的位置反馈元件。

4.一种使用如权利要求1所述装置的自动化螺旋铣孔方法,其特征在于它的步骤如

下:

1)将自动化螺旋铣孔装置固定在自动化数控装备上;

2)由自动化数控装备将自动化螺旋铣孔装置移动到工件上预制孔的理论位置,使用安装在底座(1)前部的工业相机(23)检测预制孔的位置偏差,根据所测量的位置偏差和工件理论坐标得出实际制孔位置的坐标,再将自动化螺旋铣孔装置移动到实际制孔位置;

3)自动化螺旋铣孔装置移动到实际制孔位置后,由4个激光距离传感器(30)检测工件表面法向,自动化数控装备调整自动化螺旋铣孔装置的位姿,使主轴滑座(16)轴线与工件表面法向重合,所述的4个激光位移传感器(30)的安装面呈四棱锥形;

4)气缸(25)通过气缸转接头(26)将压脚(22)推出,使压脚压头(20)压紧工件;

5)根据孔径D和刀具直径d,驱动力矩电机(13)转动,使内偏心套筒(14)相对外偏心套筒(15)转动,调整刀具(18)径向偏置距离 ,调整完毕后,通过液压锁紧,保持刀具(18)偏置距离不变,所述的刀具(18)径向偏置距离最大值为10mm;

6)开启第二伺服电机(28),通过小同步带轮(31)、同步带(29)、大同步带轮(32)带动外偏心套筒(15)转动,电主轴(17)将以e为半径绕主轴滑座(16)轴线作旋转运动;开启电主轴(17);驱动第一伺服电机(5)带动滚珠丝杠副(3)旋转推动主轴滑座(16)沿直线导轨(6)做进给运动,使得刀具(18)沿螺旋线轨迹进给,直至完成制孔;

7)主轴滑座(16)退回,压脚(22)退回,关闭第二伺服电机(28),关闭电主轴(17),自动化数控装备移动到下一位置制孔或者停止。

5.根据权利要求4所述的一种自动化螺旋铣孔方法,其特征在于所述的自动化数控装备为工业机器人或数控机床。

说明书 :

一种自动化螺旋铣孔装置及其方法

技术领域

[0001] 本发明属于飞机数字化装配自动化制孔领域,涉及一种自动化螺旋铣孔装置及其方法。

背景技术

[0002] 随着航空产业迅猛发展,为了有效提高飞机的结构强度,减轻飞机结构重量,降低飞机能耗,飞机上大量使用由铝合金、钛合金、碳纤维复合材料(CFRP)等构成的叠层结构。由于材料可加工性能相差甚远,采用传统工艺在由铝合金、钛合金、碳纤维复合材料构成的叠层结构上制孔过程非常复杂。为了达到孔的精度要求,传统工艺加工一个叠层结构孔需要钻、扩和多次铰削加工,不仅制孔效率低、自动化程度低、劳动强度大,而且由于需要钻、扩和多次铰削加工,制一个孔需要大量的加工刀具,所以经济效益差。
[0003] 螺旋铣孔工艺与传统的钻孔加工有很大的区别,其特点是刀具直径小于孔直径,刀具在高速旋转的同时绕孔的中心作螺旋线进给运动,刀具切削刃间歇地切削材料完成孔加工。根据螺旋铣孔工艺的运动学特点,允许采用同一刀具加工不同直径的孔,而且可以用圆柱形刀具加工锥孔;由其较小的制孔轴向力,可减少金属材料毛刺形成,抑制复合材料的分层现象;刀具直径小于孔直径,刀具只有局部切削刃对工件进行断续切削,有利于制孔过程中的排屑及散热。
[0004] 鉴于螺旋铣孔良好的制孔特性,尤其针对钛合金、复合材料等难加工材料,这种新型的加工工艺逐渐在飞机制造行业得到了推广和应用。自动化的螺旋铣孔设备可发挥螺旋铣孔加工工艺的优点,作为数字化、自动化、智能化钻孔系统的关键部件,与工业机器人、数控机床等自动化数控装备配合使用,能够精确定位,便于自动化集成控制,形成高精度、高效率、低成本的柔性化自动制孔系统,对提升我国航空航天制造装备业自动化水平,加快推动我国飞机数字化制造装配的进步有着重大意义。

发明内容

[0005] 本发明的目的是针对飞机大部件中钛合金、复合材料等难加工材料,克服传统制孔方法中容易导致复合材料加工分层和刀具损耗大的工艺缺陷和不足,提供一种自动化螺旋铣孔装置及其方法。
[0006] 自动化螺旋铣孔装置包括底座、安装法兰、滚珠丝杠副、螺母座、第一伺服电机、直线导轨、辅助支撑座、防转螺杆、过孔滑环、滑环套筒、圆光栅、圆光栅安装盘、力矩电机、内偏心套筒、外偏心套筒、主轴滑座、电主轴、刀具、螺旋防护套、压脚压头、排屑管、压脚、工业相机、第一直线光栅、气缸、气缸转接头、第二直线光栅、第二伺服电机、同步带、激光距离传感器、小同步带轮、大同步带轮;安装法兰、滚珠丝杠副、第一伺服电机、气缸、第一直线光栅、第二直线光栅和工业相机安装在底座上,主轴滑座通过螺母座安装在滚珠丝杠副上,滚珠丝杠副与第一伺服电机相连,第一伺服电机带动滚珠丝杠副旋转能推动主轴滑座沿直线导轨做进给运动,主轴滑座内部设有外偏心套筒,外偏心套筒、圆光栅安装盘、滑环套筒通过螺栓固联,主轴滑座外侧安装第二伺服电机,第二伺服电机通过小同步带轮、同步带、大同步带轮带动外偏心套筒旋转,外偏心套筒内部设有内偏心套筒,力矩电机安装在外偏心套筒和内偏心套筒之间,圆光栅安装在圆光栅安装盘内,力矩电机带动内偏心套筒相对外偏心套筒旋转,内偏心套筒内设有电主轴,电主轴上安装刀具,过孔滑环安装在滑环套筒上,并通过防转螺杆与辅助支撑座相连接,辅助支撑座可随主轴滑座在直线导轨上移动;压脚通过气缸转接头与气缸顶杆相连,在气缸的推动下可沿直线导轨运动,压脚上设有四个激光距离传感器、压脚压头、排屑管和螺旋防护罩。
[0007] 所述的外偏心套筒、内偏心套筒的内、外轮廓轴线间的距离为5mm。所述的第一直线光栅和第二直线光栅为绝对式直线光栅,为第一伺服电机的位置反馈元件。
[0008] 自动化螺旋铣孔方法的步骤如下:
[0009] 1)将自动化螺旋铣孔装置固定在自动化数控装备上;
[0010] 2)由自动化数控装备将自动化螺旋铣孔装置移动到工件上预制孔的理论位置,使用安装在底座前部的工业相机检测预制孔的位置偏差,根据所测量的位置偏差和工件理论坐标得出实际制孔位置的坐标,再将自动化螺旋铣孔装置移动到实际制孔位置;
[0011] 3)自动化螺旋铣孔装置移动到实际制孔位置后,由4个激光距离传感器检测工件表面法向,自动化数控装备调整自动化螺旋铣孔装置的位姿,使主轴滑座轴线与工件表面法向重合,所述的4个激光位移传感器的安装面呈四棱锥形;
[0012] 4)气缸通过气缸转接头将压脚推出,使压脚压头压紧工件;
[0013] 5)根据孔径D和刀具直径d,驱动力矩电机转动,使内偏心套筒相对外偏心套筒转动,调整刀具径向偏置距离
[0014] 调整完毕后,通过液压锁紧,保持刀具偏置距离不变,所述的刀具径向偏置距离最大值为10mm;
[0015] 6)开启第二伺服电机,通过小同步带轮、同步带、大同步带轮带动外偏心套筒转动,电主轴将以e为半径绕主轴滑座轴线作旋转运动;开启电主轴;驱动第一伺服电机带动滚珠丝杠副旋转推动主轴滑座沿直线导轨做进给运动,使得刀具沿螺旋线轨迹进给,直至完成制孔;
[0016] 7)主轴滑座退回,压脚退回,关闭第二伺服电机,关闭电主轴,自动化数控装备移动到下一位置制孔或者停止。
[0017] 所述的自动化数控装备为工业机器人或数控机床。
[0018] 本发明与现有技术相比具有的有益效果:1) 通过调整内、外偏心套筒相对转角实现刀具径向偏置量的自动化调整,在调整完毕后通过液压锁紧装置实现偏置量保持不变,结构设计紧凑,加上后部辅助支撑结构,保证了加工精度;2) 双光栅反馈提高主轴进给量的控制精度,实现锪窝深度的精确控制;3) 通过激光距离传感器检测制孔部位法矢,通过工业相机测量预制孔的位置,保证了制孔加工精度及安全性;4) 可与工业机器人、数控机床等自动化数控装备配合使用,实现高精度、高效率自动化制孔;5) 使用小尺寸刀具能够加工大尺寸的孔,而且制孔加工力小,可以用于孔的纠偏加工,避免传统铰孔加工可能引起的工艺缺陷。

附图说明

[0019] 图1(a)是自动化螺旋铣孔装置的主视图;
[0020] 图1(b)是自动化螺旋铣孔装置的左视图;
[0021] 图1(c)是自动化螺旋铣孔装置的俯视图;
[0022] 图中:底座1、安装法兰2、滚珠丝杠副3、螺母座4、第一伺服电机5、直线导轨6、辅助支撑座7、防转螺杆8、过孔滑环9、滑环套筒10、圆光栅11、圆光栅安装盘12、力矩电机13、内偏心套筒14、外偏心套筒15、主轴滑座16、电主轴17、刀具18、螺旋防护套19、压脚压头20、排屑管21、压脚22、工业相机23、第一直线光栅24、气缸25、气缸转接头26、第二直线光栅27、第二伺服电机28、同步带29、激光距离传感器30、小同步带轮31、大同步带轮32。

具体实施方式

[0023] 如图1所示,自动化螺旋铣孔装置包括底座1、安装法兰2、滚珠丝杠副3、螺母座4、第一伺服电机5、直线导轨6、辅助支撑座7、防转螺杆8、过孔滑环9、滑环套筒10、圆光栅
11、圆光栅安装盘12、力矩电机13、内偏心套筒14、外偏心套筒15、主轴滑座16、电主轴17、刀具18、螺旋防护套19、压脚压头20、排屑管21、压脚22、工业相机23、第一直线光栅24、气缸25、气缸转接头26、第二直线光栅27、第二伺服电机28、同步带29、激光距离传感器30、小同步带轮31、大同步带轮32;安装法兰2、滚珠丝杠副3、第一伺服电机5、气缸25、第一直线光栅24、第二直线光栅27和工业相机23安装在底座1上,主轴滑座16通过螺母座4安装在滚珠丝杠副3上,滚珠丝杠副3与第一伺服电机5相连,第一伺服电机5带动滚珠丝杠副3旋转能推动主轴滑座16沿直线导轨6做进给运动,主轴滑座16内部设有外偏心套筒
15,外偏心套筒15、圆光栅安装盘12、滑环套筒10通过螺栓固联,主轴滑座16外侧安装第二伺服电机28,第二伺服电机28通过小同步带轮31、同步带29、大同步带轮32带动外偏心套筒15旋转,外偏心套筒15内部设有内偏心套筒14,力矩电机13安装在外偏心套筒15和内偏心套筒14之间,圆光栅11安装在圆光栅安装盘12内,力矩电机13带动内偏心套筒14相对外偏心套筒15旋转,内偏心套筒14内设有电主轴17,电主轴17上安装刀具18,过孔滑环9安装在滑环套筒10上,并通过防转螺杆8与辅助支撑座7相连接,辅助支撑座7可随主轴滑座16在直线导轨6上移动;压脚22通过气缸转接头26与气缸25顶杆相连,在气缸25的推动下可沿直线导轨6运动,压脚22上设有四个激光距离传感器30、压脚压头20、排屑管21和螺旋防护罩19。
[0024] 所述的外偏心套筒15、内偏心套筒14的内、外轮廓轴线间的距离为5mm。所述的第一直线光栅24和第二直线光栅27为绝对式直线光栅,为第一伺服电机5的位置反馈元件。
[0025] 自动化螺旋铣孔方法的步骤如下:
[0026] 1)将自动化螺旋铣孔装置固定在自动化数控装备上;
[0027] 2)由自动化数控装备将自动化螺旋铣孔装置移动到工件上预制孔的理论位置,使用安装在底座1前部的工业相机23检测预制孔的位置偏差,根据所测量的位置偏差和工件理论坐标得出实际制孔位置的坐标,再将自动化螺旋铣孔装置移动到实际制孔位置;
[0028] 3)自动化螺旋铣孔装置移动到实际制孔位置后,由4个激光距离传感器30检测工件表面法向,自动化数控装备调整自动化螺旋铣孔装置的位姿,使主轴滑座16轴线与工件表面法向重合,所述的4个激光位移传感器30的安装面呈四棱锥形;
[0029] 4)气缸25通过气缸转接头26将压脚22推出,使压脚压头20压紧工件; [0030] 5)根据孔径D和刀具直径d,驱动力矩电机13转动,使内偏心套筒14相对外偏心套筒15转动,调整刀具18径向偏置距离
[0031] 调整完毕后,通过液压锁紧,保持刀具18偏置距离不变,所述的刀具18径向偏置距离最大值为10mm;
[0032] 6)开启第二伺服电机28,通过小同步带轮31、同步带29、大同步带轮32带动外偏心套筒15转动,电主轴17将以e为半径绕主轴滑座16轴线作旋转运动;开启电主轴17;驱动第一伺服电机5带动滚珠丝杠副3旋转推动主轴滑座16沿直线导轨6做进给运动,使得刀具18沿螺旋线轨迹进给,直至完成制孔;
[0033] 7)主轴滑座16退回,压脚22退回,关闭第二伺服电机28,关闭电主轴17,自动化数控装备移动到下一位置制孔或者停止。
[0034] 所述的自动化数控装备为工业机器人或数控机床。