具有聚焦光学器件的光生物传感器转让专利

申请号 : CN201080028082.0

文献号 : CN102803930B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J·J·H·B·施莱彭D·M·布鲁斯

申请人 : 皇家飞利浦电子股份有限公司

摘要 :

本发明涉及一种用于生物传感器(10)的聚焦光学器件(100),该聚焦光学器件允许使用简单装置以将延伸的调查区域(13)精确地成像到探测器平面(P)上。为此,聚焦光学器件(100)包括至少两个聚集小透镜(LL),所述至少两个聚集小透镜设置为彼此相邻以使得它们将沿着主光轴(MOA)导向的入射平行光束(L2)成像在公共平面(P)上。由聚焦光学器件(100)接收的输出光束(L2)可以优选源自平行输入光束(L1)在透明载体的调查区域(13)的全内反射。

权利要求 :

1.一种用于光生物传感器(10)的聚焦光学器件(100-500),包括至少两个聚焦小透镜(LL),所述至少两个聚焦小透镜在与所述光学器件的主光轴(MOA)相交的方向上设置为彼此相邻以使得它们将沿着所述光学器件的所述主光轴(MOA)导向的入射平行光束(L2)成像在公共平面(P)上,其中,每个小透镜(LL)的放大率小于1,并且其中,由至少一个小透镜(LL)生成的所述图像朝向所选轴(MOA)偏移,其中,所述主光轴对应于所述聚焦光学器件的对称轴和/或所述主光轴平行于所述至少两个聚焦小透镜在所述聚焦光学器件的物侧的各自光轴。

2.根据权利要求1所述的聚焦光学器件(100-500),其特征在于:所述小透镜(LL)在物侧的各自光轴(OA1、OA2、OA3)彼此平行。

3.根据权利要求1所述的聚焦光学器件(300-500),其特征在于:所述小透镜(LL)在像侧的各自光轴(OA1′、OA2′、OA3′)会合。

4.根据权利要求1所述的聚焦光学器件(300-400),其特征在于:至少一个小透镜(LL)在像侧的面相对于所述主光轴(MOA)倾斜。

5.根据权利要求4所述的聚焦光学器件(400),其特征在于:倾斜角度(β1、β2、β3)随着不同小透镜(LL)与所选轴(MOA)的距离而增加。

6.根据权利要求1所述的聚焦光学器件(500),其特征在于:至少一个小透镜(LL)相对于其接收的所述输出光束(L2)的子光束(L2′、L2″)偏心。

7.一种光生物传感器(10),包括:

a)用于生成基本上平行的输出光束(L2)的装置(21,12),所述基本上平行的输出光束从调查区域(13)发出并且沿着主光轴(MOA)导向;

b)具有探测器平面(P)的光探测器(31);

c)根据权利要求1-6中任一项所述的聚焦光学器件(100-500),用于将所述输出光束(L2)聚焦到所述探测器平面(P)上。

8.根据权利要求7所述的光生物传感器(10),其特征在于:通过输入光束(L1)在所述调查区域(13)的全内反射来生成所述输出光束(L2)。

9.根据权利要求7所述的光生物传感器(10),其特征在于:所述探测器平面(P)包括探测器像素的阵列。

10.根据权利要求7所述的光生物传感器(10),其特征在于:所述生物传感器(10)包括图像处理设备(32),用以处理由不同小透镜(LL)生成的图像。

11.根据权利要求7所述的光生物传感器(10),其特征在于:所述调查区域(13)覆盖多个井(2),其中每一个井能够提供样品。

12.根据权利要求1所述的聚焦光学器件(100-500)或根据权利要求7所述的光生物传感器(10)的用途,用于分子诊断、生物样品分析、化学样品分析、食品分析和/或法医分析。

13.一种用于将调查区域(13)成像到光探测器(31)的探测器平面(P)上的方法,所述方法包括以下步骤:a)生成基本上平行的输出光束(L2),所述基本上平行的输出光束从所述调查区域(13)沿着主光轴(MOA)发出;

b)通过根据权利要求1-6中任一项所述的聚焦光学器件(100-500)的小透镜(LL),将所述输出光束(L2)的相邻子光束(L2′、L2″)分别聚焦到所述探测器平面(P)上。

14.根据权利要求13所述的方法,其特征在于:通过输入光束(L1)在所述调查区域(13)的全内反射来生成所述输出光束(L2)。

15.根据权利要求13所述的方法,其特征在于:所述探测器平面(P)包括探测器像素的阵列。

16.根据权利要求13所述的方法,其特征在于:所述生物传感器(10)包括图像处理设备(32),用以处理由不同小透镜(LL)生成的图像。

17.根据权利要求13所述的方法,其特征在于:所述调查区域(13)覆盖多个井(2),其中每一个井能够提供样品。

说明书 :

具有聚焦光学器件的光生物传感器

技术领域

[0001] 本发明涉及用于光生物传感器的聚焦光学器件、包括这样的光学器件的生物传感器以及用于将调查区域成像在光探测器的探测器平面上的方法。

背景技术

[0002] WO2008/155716公开了一种光生物传感器,在该光生物传感器中输入光束被全内反射,并且针对反射表面处的目标成分的量探测和评价所产生的输出光束。当在这样的或类似的生物传感器并行测试多个分析物时,通常必须将样品提供在空间隔开的腔室中。这将增加必须被调查的视场,从而或者导致成像区域的边缘处图像劣化,或者导致复杂的光学系统。
[0003] US5412705公开一种X射线装置,其中透镜阵列用于将荧光屏映射到多个图像传感器上。并且,JP2004317376公开一种波前测量方法,包括多个设置为彼此邻接并用于聚焦入射光束的透镜。

发明内容

[0004] 基于该情况,本发明的目的是提供允许在光生物传感器的若干不同的样品腔室中同时探测分析物的手段。
[0005] 该目的通过根据权利要求1所述的聚焦光学器件、根据权利要求2所述的光生物传感器、根据权利要求3所述的方法以及根据权利要求13所述的用途来实现。优选实施例在从属权利要求中公开。
[0006] 根据其第一方面,本发明涉及用于光生物传感器的聚焦光学器件,所述光学器件包括至少两个聚焦小透镜,所述至少两个聚焦小透镜设置为彼此相邻以使得它们将沿着聚焦光学器件的主光轴导向的入射平行光束成像在公共平面上。
[0007] 在此使用的术语“小透镜(lenslet)”表示基本上与常规光学透镜相对应,但是尺寸相对较小的透镜。更准确地说,这样的小透镜的尺寸小于将由光学器件处理的光束的直径。因此,完整光束的处理需要应用小透镜阵列。优选地,各个小透镜相对于彼此固定,例如通过附接到公共框架上。随后,聚焦光学器件可以作为单个物体操作。“主光轴”用于表征聚焦光学器件的几何特性。通常,该主光轴对应于聚焦光学器件的对称轴和/或其平行于小透镜在物侧的各自光轴。在许多情况下,主光轴对应于所有单独光轴的平均。通常,折射光学元件的“光轴”被定义为沿其具有元件(并且,因此,关于其光学特性)的某种程度的旋转对称的方向。而且,术语“物侧”用于表示小透镜和整个聚焦光学器件的一侧;在应用期间,物通常设置在聚焦光学器件的物侧,而在相对侧生成其图像,因此该相对侧被称为“像侧”。
[0008] 根据其第二方面,本发明涉及一种光生物传感器,该光生物传感器包括以下组件:
[0009] a)用于生成基本上平行的“输出光束”的装置,所述基本上平行的输出光束从调查区域发出并且沿着被称为“主光轴”的轴导向。调查区域通常是能够由样品接触的某个表面的子区域,其中调查区域的图像的评价将生成关于所述样品的某些信息。
[0010] b)具有光敏探测器平面的光探测器。光探测器可以包括能够探测给定光谱的光的任意适合的一个传感器或多个传感器,例如光电二极管、光敏电阻、光电管、CCD/CMOS芯片或光电倍增管。
[0011] c)包括至少两个聚焦小透镜的聚焦光学器件,所述至少两个聚焦小透镜设置为彼此相邻以用于将所述输出光束聚焦到探测器平面上。换句话说,光生物传感器的聚焦光学器件是根据本发明的第一方面的聚焦光学器件,并且其物侧朝向调查区域取向。
[0012] 根据第三方面,本发明涉及一种用于将调查区域成像到光生物传感器的光探测器的探测器平面上的方法,所述方法包括以下步骤:
[0013] a)生成基本上平行的输出光束,所述基本上平行的输出光束从调查区域发出并沿着被称为“主光轴”的轴传播;
[0014] b)通过聚焦光学器件的小透镜将前述输出光束的相邻子光束分别聚焦到所述探测器平面上。
[0015] 根据本发明以上方面的聚焦光学器件、光生物传感器和方法均允许将大的平行输出光束的若干子光束聚焦到探测平面的不同区域上。因此,能够处理具有大直径的输出光束,同时因为处理是相对于有限扩展的子光束进行的,因此避免了边缘区域的光学畸变。这允许使用高精度的光学测量来检查光生物传感器相对大的调查区域,而不需要可能难以调节的复杂光学系统。或者,包括多个设置为彼此相邻的小透镜的聚焦光学系统可以满足需要。
[0016] 以下,将描述根据本发明以上方面所涉及的聚焦光学系统、光生物传感器以及方法的本发明的进一步进展。
[0017] 从调查区域发出并由聚焦光学器件处理的平行输出光束通常能够以许多不同方式生成,例如将光透射通过调查区域。在本发明的优选实施例中,通过输入光束在调查区域的全内反射生成输出光束。输入光束可以由光生物传感器的光源生成,该光源例如为可选地设置有用于成形和引导输入光束的某些光学器件的激光器或发光二极管(LED)。
[0018] 光探测器优选包括多个单独的探测器单元,该探测器单元以下通常称为“像素”。这样的像素化的光探测器尤其可以由图像传感器实现,例如从数字照相机中已知的CCD或CMOS设备。多个探测器像素允许评价以空间分辨方式包含在输出光束中的相对于调查区域的信息。
[0019] 根据另一个实施例,生物传感器包括图像处理设备,例如具有用于数字图像处理的相关软件的计算机,所述图像处理设备能够处理由不同小透镜生成的图像。具体来说,图像处理设备可以适于合并由不同小透镜生成的图像。如果由不同小透镜生成的各个图像在探测器平面由包含无用信息的边界彼此分离,则该方法是有用的。随后可以隔离包括有效图像的探测器平面的区域,并且通过图像处理设备将它们缝合在一起。
[0020] 调查区域可以优选覆盖多个物理上分开的、并可以分别提供样品的样品腔室,称为“井(well)”。这样的井例如可以在(透明的)载体的表面实现。提供分开的井允许在不同的条件下制备一个或多个样品,并且允许并行评价这些制备。多个分开的井通常意味着相当大的、拉长形状的调查区域。然而,借助于聚焦光学器件,可以将该调查区域精确地成像到探测平面上。
[0021] 具有所需成像特性(即,将平行光束成像在公共平面上)的聚焦光学器件可以例如由各自光轴在物侧平行的小透镜来实现。
[0022] 为了避免由不同小透镜生成的图像相互重叠,小透镜的放大率M选择为小于1,即|M|<1。然而,应该注意,放大率大于1的情况也应可以工作,尽管随后由于重叠图像的一些部分将被认为是无用的(如果样品腔室经过适当地设计,这将可以容忍)。
[0023] 根据本发明,由至少一个小透镜生成的图像朝向所选轴偏移(相对于其光轴从物侧到像侧的延伸)。如果小透镜具有小于1的放大率,通过将探测器平面上的这些图像朝向所述选择轴偏移,能够避免由各个小透镜产生的图像周围的“无用”边界。所选轴通常选择为对应于聚焦光学器件的主光轴。
[0024] 小透镜图像的前述偏移能够以不同方式实现。根据第一方法,通过使小透镜在聚焦光学器件的像侧的各自光轴会合来实现(朝向所选轴)。在此,“小透镜的像侧的各自光轴”由沿着小透镜的物侧的各自光轴进行的光线的像侧路径来限定。
[0025] 根据本发明的另一实施例,至少一个小透镜在像侧的(优选为平坦的)面相对于主光轴倾斜。这意味着所述小透镜在其像侧的前述各自光轴也是倾斜的,这允许在探测器平面上偏移由小透镜生成的图像。
[0026] 根据前述实施例的进一步发展,多个小透镜在它们的像侧具有这样的倾斜表面,其中倾斜角度随着小透镜与所选轴(例如,与聚焦光学器件的主光轴)的距离而增大。利用该实施例,可以实现小透镜在像侧的各自光轴的会合,并且因此朝向所选轴偏移小透镜的图像。
[0027] 根据该发明的另一个实施例,至少一个小透镜相对于该小透镜所暴露于的输出光束的子光束偏心。这意味着该小透镜的光轴并不与所述子光束的中轴重合。采用多个这样的偏心小透镜,可以实现小透镜图像朝向所选轴的会合。
[0028] 该发明还涉及用于上述生物传感器的聚焦光学器件的用途,用于分子诊断、生物样品分析、化学样品分析、食品分析和/或法医分析。分子诊断可以例如借助于直接或间接附接到目标分子的磁珠或荧光颗粒来实现。

附图说明

[0029] 参考下文描述的一个或多个实施例,本发明的这些和其它方面将明显并清楚。这些实施例将通过借助于附图示例的方式进行描述,其中:
[0030] 图1a以侧视图示意性地示出根据本发明的光生物传感器;
[0031] 图1b以俯视图示出图1a的生物传感器;
[0032] 图2示出包括两个相邻小透镜的聚焦光学器件的实施例;
[0033] 图3示出包括两个在像侧具有斜面的相邻小透镜的聚焦光学器件的实施例;
[0034] 图4示出包括三个在像侧具有不同斜面的小透镜的聚焦光学器件的实施例;
[0035] 图5示出具有偏心小透镜的聚焦光学器件的实施例。
[0036] 在附图中相差整数100的附图标签表示相同或相似的组件。

具体实施方式

[0037] 尽管以下将相对于特定的设置(使用磁性颗粒和受抑全内反射作为测量原理)来描述本发明,但本发明并不限于这样的方法并可以有利地用于许多不同的应用和设置中。
[0038] 图1a和图1b分别以侧视图和俯视图示出根据本发明的具有光生物传感器的常规设置。生物传感器10设置包括例如可以由玻璃或像聚苯乙烯之类的透明塑料制成的载体11。载体11包括在其上“接触表面”12上的多个物理分开的样品腔室或井2,在该样品腔室或井中可以提供具有待探测的目标成分(例如,药品、抗体、DNA等等)的样品液。样品还包括磁性颗粒,例如超顺磁性珠,其中通常将这些颗粒结合(例如,经由具有抗体的涂层)作为前述目标成分的标签(label)。为了简单起见,在附图中仅示出了目标成分和磁性颗粒的组合,并以下将称为“目标颗粒1”。应该注意,也可以使用代替磁性颗粒的其它标签颗粒,例如带电荷或荧光颗粒。载体11和井2之间的界面通常涂覆有可以特定地结合到目标颗粒的例如抗体的捕获元素。
[0039] 传感器设备可以优选地包括用于在接触表面12和井2的邻近空间中可控地生成磁场的磁场生成器(未图示),例如具有线圈和磁芯的电磁体。借助于该磁场,可以操控目标颗粒1,即被磁化和被移动(如果使用具有梯度的磁场)。因此,能够例如将目标颗粒1吸引到接触表面12,以加速它们结合到所述表面,或在测量之前将未结合的目标颗粒冲离接触表面。
[0040] 传感器设备还包括光源21,该光源21生成通过“入射窗”传输到载体11的输入光束L1。可以使用例如商用CD(λ=780nm)、DVD(λ=658nm)或BD(λ=405nm)激光二极管、或准直LED源作为光源21。准直透镜可用于使输入光束L1平行,并且针孔可以用于控制光束直径。输入光束以大于全内反射(TIR)的临界角θc的角度到达接触表面12的调查区域13,并且因此全内反射为输出光束L2。输出光束L2通过另一表面(“出射窗”)离开载体11并且由光探测器31探测。光探测器31确定输出光束L2的光量(例如,由整个光谱或某部分光谱中该光束的光强度表示)。在所示的实施例中,这借助于成像有调查区域13的探测器平面P来实现。在观察时段内通过耦合到探测器31的评价和记录模块31来评价和可选地监控所探测的图像信号I。
[0041] 所描述的光生物传感器使用光学装置进行目标颗粒1的探测。为了消除或至少最小化背景的影响(例如,诸如唾液、血液等样品液的影响),探测技术应是特定于表面的。如上所指出的,这将通过使用受抑全内反射(FTIR)的原理来实现。该原理基于以下事实:在入射光束L1被全内反射时,衰减波穿进(在强度上指数地下降)样品腔室2中。如果随后该衰减波与类似所结合的目标颗粒1的另一介质相互作用,则部分输入光将耦合到样品液中(这被称为“受抑全内反射”),并且反射强度将减少(而对于干净的界面并且没有相互作用,则反射强度将是100%)。取决于干扰的量,即在TIR表面上或非常接近(在大约200nm内)TIR表面(不在样品腔室2的其余部分中)的目标颗粒的量,反射强度将因此下降。该强度下降是对于所结合的目标颗粒1的量,并且因此是对于样品中目标颗粒的浓度的直接测量。对于通常应用的材料,载体11的介质A可以是玻璃和/或具有1.52或更大的典型折射率的透明塑料。样品腔室2中的介质B将是含水的并且具有接近1.3的折射率。这对应于60°的临界角θc。
[0042] 所描述的与用于刺激的磁性标签结合的光读取具有以下优点:
[0043] -廉价的测试盒(cartridge):载体11可以包括相对简单的、聚合物材料的注塑件。
[0044] -激励和感测是正交的:目标颗粒的磁激励(通过大磁场和磁场梯度)不影响感测过程。因此,光学方法允许在激励期间连续地监控信号。这有利于测定过程,并且允许基于信号斜率的简单动力学探测方法。
[0045] -对于多分析物测试的大的复用可能性:可以在大区域内光扫描一次性测试盒中的接触表面12。可替换的,大区域成像能够允许大的探测阵列。可以通过例如在光表面上喷墨打印不同的结合分子来制成这样的阵列(位于光透明的表面)。
[0046] -该方法还能够通过使用多个光束、多个探测器以及多个激励磁体(或者机械地运动或电磁激励)在(特定设计的)井板(well-plate)中进行高通量测试。
[0047] 所描述的生物传感器的一些应用是心脏病发作的探测或药物滥用的使用。通过在生物测定中将磁珠结合或不结合到接触表面,可以在例如唾液或人体血浆中探测多个生物标记物。通过使用(受抑)全内反射作为与磁激励磁珠结合的探测技术,与短的测量/测定时间相结合取得了非常低的探测限(在pM范围和甚至更低)。然而,如果多生物测定将在同一时间进行,则当一个单独的反应腔室中同时探测特定的生物标记物时,会出现问题。在同一时间进行时,一些生物测定表现出干扰。而且,每个测定的最佳反应条件会改变,例如,pH;盐、糖、特定的缓冲组件等等的使用。因此,如图1所示,在一些情况中需要每个测定在其自己的反应腔室或井2中进行。
[0048] 因为井2需要具有壁来限制液体、缓冲剂等,所以在传感器的表面需要更多空间以分开容纳所有分离的生物测定。这意味着必须被成像的调查区域13的传感器表面增加。由于光平面的所选几何形状,最容易沿着光平面的长度(图1中y方向)延伸传感器表面,即调查区域13变成非对称的,并且仅在一个方向拉长。这对于成像系统具有严重的后果,因为在保持紧凑的光学器件的同时需要更“长”的视场。
[0049] 在生物传感器10的实际实现中,使用成像透镜将调查区域13成像在CCD/CMOS照2
相机上。对于大约2×1mm的物尺寸,使用单个廉价的折叠准直透镜可以获得清楚的图像。
2
如上所述,需要将物尺寸增加到具有6.5×1mm或者甚至更大的典型尺寸的更加拉长的区域。因此,需要通过图像透镜对更大的场成像,并且光像差将部分地恶化图像质量。这可以通过使用多于一个透镜元件的多个复杂透镜的设计来克服。该方法的缺点在于增加了制造成本,因为在制造过程期间,这些单独的透镜元件需要相对于彼此精确地对准,并且需要多个光学组件。
[0050] 为了克服所述问题,这里建议仅使用包括一系列更小的小透镜的单个透镜元件。该小透镜阵列可以例如使用标准的塑料注塑成型技术来生产。因此,所建议的方法仅使用一个单独的透镜元件并且仅需要过程对准用以校正图像聚焦。
[0051] 应该注意,该方法仅可以合理地应用在来自物的光束是良好准直的、基本上平行的光束的成像系统中。对于图1中所示的应用,这是作为通过平行输入光束L1的全内反射(并且未通过例如散射),产生到达成像透镜的平行输出光束L2来对物成像的例子。在技术方面:因为使用来自光源21的良好准直光束进行照明,物空间数值孔径在生物传感器应用中几乎是零。
[0052] 因此,所建议解决方案的主要操作原理是将主物(调查区域13)细分成具有输出光束L2的相应子光束L2′、L2″的更小的子物,从而使用作为小透镜阵列或聚焦光学器件100的一部分的单个小透镜LL对每个子物成像。结果是在探测器平面P上的一系列子图像,这一系列子图像可以在图像处理设备32中使用标准的和简单的图像处理技术缝合成一个单独的图像。
[0053] 图2示出特殊聚焦光学器件200的操作原理,该特殊聚焦光学器件包括两个(相同的)设置为彼此相邻的小透镜LL。小透镜LL具有直径D、焦距f以及彼此平行并且平行于整个聚焦光学器件200的主光轴MOA的各自的光轴OA1、0A2(在物侧,即,在图2中的左侧)。通常来说,各自的光轴OA1、0A2是各自小透镜LL的旋转对称轴。通过减小最大视场角(由于对物进行划分并且通过分离的透镜元件分别对子物成像),使主图像的边缘的像差最小化。
[0054] 只要物空间数值孔径(NA)几乎是零,即来自单个子物的光仅通过一个小透镜LL成像,则所建议的方法就可工作。否则,单个子物的多个图像将在探测器平面P上成像,从而造成该成像无效。
[0055] 还应该注意,在两个子图像之间存在空的空间或边界。该空的空间定义了可以用作探测器平面P的有限尺寸的放大率M的上限。显然,小透镜的放大率M应该小于1(|M|<1)以防止这两个图像重叠。
[0056] 在一般情况下,总的物尺寸由Hobj给定,要使用的小透镜LL的数量是N>2,放大率由M(-1<M<0)给定,以及探测器尺寸是Hdet。随后的两个过程可以是:
[0057] 1、在使用图像处理的软件中缝合数字化图像I。随后放大率的上限由|M|max,并且-|M|max<M<0,以及下式给出:
[0058]
[0059] 2、使用成像光学器件将子图像向主光轴偏移。在该情况下,可以使用整个传感器表面,并且随后最大放大率由下式简单给出:
[0060] |M|max=Hdet/Hobj
[0061] 现在将从子图像的缝合开始,更具体地描述这些过程。如图2所示,在探测器平面P上,由小透镜阵列200形成宽度D.M的子图像阵列。这些子图像可以通过使用已知图像处理技术而缝合在一起。在该情况下,由于子图像之间空的空间,实际使用的传感器区域大于净图像区域。因此能够使用的光学放大率M受限。
[0062] 在第二过程中,各自的子图像可以在探测器平面P中偏移,以使得它们之间空的空间减小到最小以允许更大的放大率M。这可以在光学领域使用两个方法来进行:
[0063] 2A、使用其中心相对于子物的中心的小透镜LL,但是该小透镜具有第二倾斜表面,其中在远离小透镜阵列的主光轴时倾斜子表面的倾斜角增加(参考图3、图4)。
[0064] 2B、使用其中心相对于子物的中心偏离的小透镜LL(图5)。
[0065] 图3和图4示出用于各自具有两个和三个的聚焦光学器件300和400的第一方法2A(具有倾斜表面的小透镜阵列)。由小透镜阵列成像的物可以认为是一系列子物,每个子物由该阵列的单个小透镜在像距b处单独成像。
[0066]
[0067] 使用小于1的放大率对每个子物进行成像以防止子图像重叠。因此,在每个子图像之间存在空的空间,使得完整的图像跨度没有必要地大于所需的跨度。为了消除图像中的这些空的空间,透镜阵列可以配备有稍微倾斜的表面,将子图像朝向光轴折射。这等于说小透镜LL在像侧的各自光轴OA1′、OA2′、OA3′会合,其中由沿着物侧(单独的和主的)光轴OA1、OA2、OA3、MOA传播的光线的路径来限定这些光轴。
[0068] 对于每个子图像所引用的倾斜量(角度β1、β2、β3)取决于子图像相对于主光轴MOA的位置以及放大率M。对于每一个子图像j,透镜表面的所需倾斜角βj可以如下计算(其中j=0对应于最接近主光轴MOA的子图像;当朝向物/透镜阵列的外缘时,对于每个随后的透镜j增加1):
[0069] 子物的宽度是D。小透镜LL的放大率|M|小于1,产生一系列在距离D上彼此分离的具有尺寸D.|M|的子图像。因此,在每一个具有宽度D.(1-|M|)的子图像之间存在空的空间。为了制成单个完整的图像,所有子图像必须朝向主光轴MOA偏移。对于第一子图像,偏移角度Δα1计算如下:
[0070]
[0071]
[0072]
[0073] 当然可以使用同样的方法进行主图像更大的细分。进一步远离主光轴的子图像应该朝向光轴偏移更大角度。只要小角度逼近是有效的,对于其他子图像的该偏移等于:
[0074] Δαj=(2j-1)·Δα1;j≥1
[0075] 可以通过在像侧轻微倾斜小透镜的面来获得子图像的这一横向偏移,以使得它用作为楔子,具有的线偏差为:
[0076] Δα楔子=(n-1)·β
[0077] (再次对于小角度Δα和β,其中n是透镜材料的折射率)。对于不同子图像,类似楔子结构的阵列可以结合到透镜阵列中,每一个均具有楔形角度β。根据下式,这导致了用于聚焦系统400(图4)的各自小透镜LL的倾斜角度βj的规定:
[0078]
[0079] 图5示出用于将子图像朝向主光轴MOA偏移的第二方法2B(偏离中心的小透镜)。这里将偏离中心的小透镜LL用在聚焦光学器件500中,其中各个小透镜的各自光轴相对于它们的子物Oj(或各自的子光束L2′、L2″)的中心偏移。现在,将先前方法中由倾斜表面引入的所需倾斜结合到小透镜的成像中,其中对每个具有相对于对应小透镜LL的光轴OAj′的偏移量的子物Oj成像。在图5中,各个小透镜LL的各自光轴OA1′、OA2′的位置由yj给出。这里放大率是M,以及每个子物的尺寸由h=Hobj/N给出。
[0080] 从几何性质考虑,使用图5中的阴影三角形可以推导出:
[0081]
[0082] 对于yj,这得出以下等式,给出每个小透镜的光轴相对于小透镜阵列的中心主光轴MOA的位置:
[0083]
[0084] 应该注意,在该等式中j>1。因为小透镜阵列相对于主光轴MOA是对称的,所以等式可以改写为:
[0085]
[0086] 尽管以上参照具体实施例描述了本发明,然而能够进行各种修改和扩展,例如:
[0087] -分子目标常常确定诸如细胞、病毒、或细胞或病毒的片段、组织提取物等之类的较大部分的浓度和/或存在。
[0088] -除了分子测定,还可以使用根据本发明的传感器设备探测诸如细胞、病毒、或细胞或病毒的片段、组织提取物等之类的较大部分。
[0089] -可以使用或不使用传感器元件相对于传感器表面的扫描进行探测。
[0090] -测量数据可以作为端点测量来取得,还可以通过动力学或间歇性记录信号取得。
[0091] -用作标签的颗粒可以由感测方法直接探测。而且,在探测前,可以对颗粒进行进一步处理。进一步处理的示例是添加材料或者修改标签的(生物)化学或物理特性以便于探测。
[0092] -该设备和方法可以与若干生物化学测定类型的,诸如粘合/非粘合测定、夹心法测定、竞争测定、位移测定、酶测定等一起使用。因为大规模复用容易实现并且可以经由喷墨打印在基板上散布不同的寡核苷酸(oligos),其特别适于DNA探测。
[0093] -该设备和方法适合于传感器复用(即,不同传感器和传感器表面的并行使用)、标签复用(即,不同类型标签的并行使用)以及腔室复用(即,不同反应腔室的并行使用)。
[0094] -对于小的样品体积,该设备和方法可以用作快速、稳定以及容易的用于医疗点的生物传感器。反应腔室可以是与紧凑读取器一起使用的可一次性产品,包括一个或多个场生成装置或一个或多个探测装置。而且,本发明的设备、方法以及系统可以用在自动高通量测试中。在这个情况下,反应腔室例如是适配于自动化仪器的井板或比色杯。
[0095] -其中纳米粒子是具有至少一个范围在3nm和5000nm之间的尺寸,优选于在10nm和3000nm之间,更优选在50nm和1000nm之间的意义上的粒子。
[0096] 最后指出的是,在本申请中术语“包括”不排除其它元件或者步骤,“一”或者“一个”不排除多个,并且单个处理器或者其它单元可以实现若干装置的功能。本发明在于所有与各个新颖的特性特征以及所有与各个特性特征的组合。而且,权利要求中的附图标记不应该理解为是对范围的限制。