烹调器具和使用该烹调器具的加热装置转让专利

申请号 : CN201180014554.1

文献号 : CN102811649B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 福田祐岛田良治河合祐

申请人 : 松下电器产业株式会社

摘要 :

本发明涉及烹调器具,其为具有基材和发热层(3)的烹调器具,该基材具有载置食品的载置面,该发热层(3)形成在基材的表面,并由包含因吸收微波能量而发热的铁氧体的微波发热体来形成;其中,铁氧体含有Fe2O3与MnO及ZnO,Fe2O3相对于ZnO的重量比在11~24的范围;通过具备该构成,可使作为烹调器具的烤盘的载置面在短时间内升温到规定温度,且可使烤盘载置面的温度在烤盘构成材料所容许的耐热温度以下达到饱和,从而可提高烤盘烹调的性能、且可谋求耐久性、安全性、可靠性。

权利要求 :

1.一种烹调器具,其为具有基材和发热层的烹调器具,该基材具有载置食品的载置面,该发热层形成在上述基材的表面,并由包含因吸收微波能量而发热的铁氧体的微波发热体来形成;其中,上述铁氧体含有Fe2O3与MnO及ZnO,上述Fe2O3相对于上述ZnO的重量比在

11~24的范围。

2.如权利要求1所述的烹调器具,其中,使在所述食品未载置于所述载置面的状态下达到饱和的所述载置面的温度为240℃~300℃。

3.如权利要求1所述的烹调器具,其中,所述发热层含有铁氧体颗粒与有机化合物。

4.如权利要求3所述的烹调器具,其中,所述发热层中所含有的所述有机化合物为有机硅橡胶。

5.如权利要求1所述的烹调器具,其中,在所述发热层中,从常温至200℃为止的复相对磁导率虚部具有常温下的复相对磁导率虚部的至少50%。

2 2

6.如权利要求1所述的烹调器具,其中,所述发热层的面积为0.1m 或小于0.1m。

7.如权利要求1所述的烹调器具,其中,所述基材的热传导率在50W/m·K~150W/m·K的范围。

8.如权利要求1所述的烹调器具,其中,在所述载置食品的载置面上形成有被覆层,该被覆层由红外线辐射率大于所述基材的材料形成。

9.如权利要求8所述的烹调器具,其中,向所述被覆层赋予了防污性。

10.如权利要求8或9的任一项所述的烹调器具,其中,所述被覆层含有二氧化硅。

11.一种加热装置,其中,该加热装置具备加热室、向上述加热室内供给微波的微波发生部、以及配置在上述加热室内的权利要求1~9的任一项所述的烹调器具。

说明书 :

烹调器具和使用该烹调器具的加热装置

【技术领域】

[0001] 本发明涉及烤盘等烹调器具和使用该烹调器具的加热装置,所述烹调器具利用发热层的热来烹调食品,该发热层通过吸收所照射的微波能量而发热。【背景技术】
[0002] 近年来,对于微波炉(電子レンジ)等微波加热装置来说,除了通过对食品直接照射微波来对食品进行加热的微波加热功能之外,还存在使用设置于微波加热装置内的烹调器具、即所谓的烤盘(グリル皿,grill pan)的烹调功能。下面将其称为烤盘烹调功能。
[0003] 该烤盘烹调功能为如下的功能:将形成有发热层的烤盘设置于加热室内,该发热层由吸收微波能量而发热的微波发热体形成;将食品载置于该烤盘的上面,利用因微波能量的照射而由发热层发出的热,对该食品进行烹调。
[0004] 以往,对于设置有由吸收微波能量而发热的微波发热体形成的发热层的烤盘来说,存在有如图8、图9所示的构成的烤盘(例如,参见专利文献1)。参照附图对于上述现有技术进行说明。
[0005] 图8为专利文献1所记载的设置有由现有的微波发热体形成的发热层的烤盘的立体图。图9为设有由同样的微波发热体形成的发热层的烤盘的截面图。如图8、图9所示,在烤盘101的底面设置有由微波发热体形成的发热层102。
[0006] 如图9所示,由微波发热体形成的发热层102被设置于烤盘101的载置食品的载置面103的背面。另外,为了抑制食品焦烧、提高烹调后烤盘的清洗性,在载置面103形成有氟材料的涂覆层。
[0007] 由现有的微波发热体形成的发热层102是由吸收微波能量而发热的微波吸收材料粉末与有机硅橡胶材料的复合物来构成的。将微波吸收材料粉末与橡胶材料进行混炼,通过热压等方法将微波吸收材料的颗粒均匀分散在橡胶的状态的混合物粘接在作为烤盘基材的金属面、或者涂布面上,由此来形成发热层102。
[0008] 将载置食品的烤盘101配置在搭载有产生微波的磁控管的微波加热装置的规定位置,开始烧烤烹调(グリル調理)。由此使得由磁控管产生的微波能量被设于烤盘101的由微波发热体形成的发热层102所吸收,从而将微波能量转换为热。由此对烤盘101的载置面103进行加热,对载置于载置面103的食品进行烹调。
[0009] 一般来说,在烧烤烹调中,为了兼具美味与适于食用的焦痕(焦げ目),需要在短时间内将烤盘101的载置面103升温至高温。但是,尚未发现兼具优异的升温速度与到达温度的高温化的微波吸收材料。以往,对于由微波发热体形成的发热层102的微波吸收材料来说,使用的是从吸收微波能量进行发热这一观点考虑而选择的Mn-Zn系铁氧体。
[0010] 另外,根据专利文献2,已知有在配置于旋转台的旋转体的金属板的背面设置由微波发热体形成的发热层的烹调器具。该由微波发热体形成的发热层使用了因其居里温度低于烹调中金属板的最高温度而选择的铁氧体材料。
[0011] 若铁氧体材料达到居里温度,则微波的吸收停止。通过在由微波发热体形成的发热层中使用所具有的居里温度低于烹调中的最高温度的铁氧体材料,可由铁氧体本身来对微波的吸收·停止进行控制,从而可均匀地维持金属板的温度。
[0012] 但是,现有烤盘中,由微波发热体形成的发热层中所用的铁氧体的居里温度为220℃左右,或者为比适于高温烹调的温度低的居里温度。
[0013] 对于使用了这类铁氧体的发热层来说,在吸收微波能量而达到居里温度附近的温度时,微波能量的吸收会降低,因此仅能够升温至220℃以下的温度。
[0014] 其结果,在汉堡肉饼(ハンバーグ)或鱼等的烹调中,为了获得适度的焦痕,需要加长烹调时间。进一步地,与此同时还具有下述课题:一部分微波也会被食品吸收,使得食品内部的油或水分被加热而变成蒸气挥发,因此食品变干而丧失多汁感和美味。
[0015] 另一方面,通过向上述铁氧体材料中加入金属氮化物等电介质的材料,可使烤盘载置面的到达温度达到300℃水平的高温化。但是存在下述课题:到达温度会随加热时间而上升,从而会超过在烤盘101的载置面所形成的氟涂覆层或由微波发热体形成的发热层102中所用的有机硅橡胶所容许的耐热温度,因而会产生剥离或破裂等,从而使烤盘发生破损。
[0016] 因此,需要按照下述方式进行设计:通过搭载温度传感器对烤盘载置面的温度进行检测由此来对微波输出功率进行控制,或者根据微波加热时间的经过来控制微波输出功率,使得烤盘载置面的温度为构成烤盘的材料所容许的耐热温度以下。
[0017] 但是,考虑到因传感器的错误动作或故障、烹调食谱选择错误、或在未载置食品的状态下所进行的烹调(空烧)会导致温度上升至300℃以上的高温,因而具有难以确保安全性与可靠性这样的课题。
[0018] 【现有技术文献】
[0019] 【专利文献】
[0020] 专利文献1:日本特开2006-52932号公报
[0021] 专利文献2:日本特开平4-263705号公报【发明内容】
[0022] 本发明中,烤盘的载置面在短时间内升温至规定温度、且使烤盘的食品载置面的温度在构成烤盘的材料所容许的耐热温度以下达到饱和。由此,可实现缩短食品烹调时间和防止烤盘的过升温,可使微波加热装置中的需要高温的烤盘烹调的性能得到提高,可谋求耐久性、安全性、可靠性。
[0023] 本发明的烹调器具为具有支持体和发热层的烹调器具,该支持体具有载置食品的载置面,该发热层形成在上述支持体的表面,并由包含吸收微波能量而发热的铁氧体的微波发热体来形成,该烹调器具具备下述构成:铁氧体含有Fe2O3与MnO及ZnO,Fe2O3相对于ZnO的重量比在11~24的范围。
[0024] 通过这样的构成,本发明的烹调器具可在短时间内使载置面的温度升温到高温,同时可使烤盘的温度为构成材料所容许的耐热温度以下。因而,可缩短食品的烹调时间,可提高需要高温的烤盘烹调的性能。进一步地,可防止烤盘的构成材料的破损、劣化,可提高耐久性、可靠性。
[0025] 另外,本发明的烹调器具为具有基材和发热层的烹调器具,该基材具有载置食品的载置面,该发热层形成在上述基材的表面,由包含吸收微波能量进行发热的铁氧体的微波发热体来形成,该烹调器具具备下述构成:使在食品未载置于载置面的状态下达到饱和的载置面的温度为240℃~300℃。
[0026] 通过这样的构成,按照食品载置面的饱和温度呈高温的方式进行设计,从而可在短时间内升温至规定烹调温度,可谋求烹调时间的缩短化。并且可在食品未干燥的状态下赋以适度的焦痕,可使高温下烤盘烹调的性能得到提高。
[0027] 另外,使在未载置食品的状态下食品载置面达到饱和的最高温度为300℃,由此可以使作为烹调器具的烤盘的温度为构成材料的耐热容许温度以下,从而可防止烤盘构成材料的劣化或破损,可提高安全性、耐久性、可靠性。
[0028] 另外,本发明的加热装置具备下述构成:所述构成具备加热室、向加热室内供给微波的微波发生部、以及配置在加热室内的上述烹调器具。
[0029] 通过这样的构成,可以使加热装置中的烤盘烹调的性能得到提高。【附图说明】
[0030] 图1为本发明的实施方式1中作为烹调器具的烤盘的截面图。
[0031] 图2为示出该实施方式1中作为烹调器具的烤盘的详细结构的局部截面图。
[0032] 图3为示出该实施方式1中由微波发热体形成的发热层的结构的示意图。
[0033] 图4为搭载有该实施方式1中作为烹调器具的烤盘的加热装置的截面图。
[0034] 图5为示出该实施方式1中烹调器具的其它形状的烤盘的立体图。
[0035] 图6为示出该实施方式1中由微波发热体形成的发热层的效果的升温特性曲线图。
[0036] 图7为示出本发明实施方式2中作为烹调器具的烤盘的详细结构的局部截面图。
[0037] 图8为现有的作为烹调器具的烤盘的立体图。
[0038] 图9为现有的作为烹调器具的烤盘的截面图。【具体实施方式】
[0039] 下面参照附图对本发明的实施方式进行说明。需要说明的是,本发明并不受该实施方式的限定。
[0040] (实施方式1)
[0041] 图1为形成有本发明实施方式1的微波发热体的烹调器具(下文中记为烤盘)的截面图。需要说明的是,本实施方式的烤盘与图8所述的现有烤盘为同样形状。
[0042] 在图1中,烤盘1由盘状的支持体2与发热层3构成,发热层3设置于支持体2的任意一侧表面上,由吸收微波能量而发热的微波发热体形成。对于由微波发热体形成的发热层3,如图1所示,优选其形成在支持体2的与载置食品侧的表面2A不同的表面2B(相当于烤盘1的背面)上。需要说明的是,如图1所示,在烤盘1中,为了将从食品中渗出的油脂等与食品分离,在食品的载置面设置有槽部2C。
[0043] 图2为示出了形成有由本实施方式1的微波发热体形成的发热层3的烤盘1的详细结构的局部截面图。
[0044] 在图2中,烤盘1的支持体2由下述部分构成:金属基材等基材4;形成在基材4的两面的以聚醚砜树脂材料为主成分的被覆层5;以及在载置食品侧的表面2A的被覆层5上形成的、以氟树脂为主成分的氟涂覆层6。需要说明的是,作为金属基材以外的基材4,也可以使用陶瓷或结晶化玻璃等耐热玻璃。由于金属基材以外的基材4的耐蚀性高,因而发热层3侧基材表面并非一定需要以聚醚砜树脂材料为主成分的被覆层5。因此,可简化烤盘1的支持体2的构成。
[0045] 由微波发热体形成的发热层3形成在表面2B的被覆层5的表面上,该表面2B与载置食品侧的表面2A不同。作为基材4,可应用铁钢板或镀覆有铝、锌的表面处理钢板。
[0046] 图3为示出由微波发热体形成的发热层3的结构的示意图。在图3中,由微波发热体形成的发热层3为包含吸收微波而发热的铁氧体粉末7与有机化合物8的组成。进一步地,可根据需要添加分散剂、橡胶抗老化剂、抗氧化剂等。铁氧体粉末7呈均匀分散在有机化合物8中的状态。
[0047] 接下来,对形成有由本发明的微波发热体形成的发热层3的烤盘1的制造方法的一例进行叙述。
[0048] 在熔融覆铝钢板等基材4的两面涂布以聚醚砜树脂材料为主成分的涂料来形成被覆层5,其后,在其中一个被覆层5的表面涂布主成分由氟树脂形成的涂料,形成氟涂覆层6。接下来,如图1所示,按照氟涂覆层6为食品载置面(表面2A)的方式冲压加工成烤盘1的形状。
[0049] 另一方面,在发热层3中所用的铁氧体粉末7需要具有使烤盘1的食品载置面在短时间内升温至高温、且在烤盘1所容许的耐热温度以下达到饱和的升温特性。实现该特性的铁氧体粉末7可以含有Fe2O3与MnO以及ZnO、Fe2O3相对于ZnO的重量比在11~24的范围。将作为起始原料的含有Fe、Mn、Zn的碳酸盐及硝酸铅等按规定比例进行混合使之呈该重量比范围,通过高温烧制使其发生反应,制造具有铁氧体结晶结构的复合氧化物。通过对该铁氧体的复合氧化物进行粉碎来得到规定重量比的铁氧体粉末7。
[0050] 接下来,使用开放式辊或捏合机等混炼加工装置对规定混合量的铁氧体粉末7与作为有机化合物8而选择的有机硅橡胶进行混炼,直至铁氧体粉末7均匀分散在有机硅橡胶中,其后添加交联剂,再次进行混炼。
[0051] 接下来,采取必要量的该混炼物的块状物、或者利用开放式辊以片状分出的片状物,将其配置在表面2B的被覆层5上面,通过热压进行加压结合和一次硫化,该表面2B与冲压加工成烤盘1的形状的食品载置面不同。其后,根据需要进行二次硫化等热处理,由此形成由微波发热体形成的发热层3,得到本实施方式中作为烹调器具的烤盘1。
[0052] 需要说明的是,在进行混炼时,可根据需要添加用于对由微波发热体形成的发热层3进一步赋予耐热性的耐热剂、抗老化剂、用于赋予柔软性的油脂剂等。
[0053] 另外,为了提高由微波发热体形成的发热层3与被覆层5的粘接性,可以在由微波发热体形成的发热层3的粘接面或者被覆层5的面上涂布具有粘接功能的底漆,藉由该底漆进行由微波发热体形成的发热层3与被覆层5的粘接。并且,也可以预先在铁氧体粉末7与有机化合物8的混炼时添加接合剂。
[0054] 另外,在上述的制造方法中,在被覆层5的上面形成了由微波发热体形成的发热层3,但是,也可在不设置形成发热层3一侧的表面2B的被覆层5的情况下,直接与基材4的面(表面2B)进行粘接。
[0055] 图4为本发明的搭载有作为烹调器具的烤盘1的加热装置的截面图。
[0056] 在图4中,加热装置40具有加热室9。加热室9利用下述部分构成为大致长方体形状(包括长方体),所述部分为作为由金属材料构成的金属边界部的右侧壁面10、左侧壁面11、后壁(奥壁)面12、上壁面13、底壁面14、以及作为使食品在加热室9内出入的开关壁面的开关门(未图示)。由此,所供应的微波能量实质上被封闭在其内部。开关门被设于与后壁面12相向的位置(图4的近前(手前)侧)。
[0057] 对于构成本实施方式加热装置40的作为微波发生部的磁控管15来说,其用于产生供给至加热室9的微波。加热装置40中设有导波管16与微波辐射部17,导波管16用于将由磁控管15产生的微波能量导入到加热室9内,微波辐射部17将微波能量由导波管16照射到加热室9内。底壁面14设有由可透过微波的玻璃系或陶瓷系材料形成的封口部
18。
[0058] 另外,在加热室9的上部设有加热器19,在加热室9的后壁面12的最内处设有对流加热单元(未图示)。由此,加热装置40具有食品的微波烹调、烧烤烹调、烘箱烹调的功能。
[0059] 作为本实施方式的烹调器具的烤盘1沿着轨道部20被插入配置在加热室9内,该轨道部20为设于加热室9的右侧壁面10和左侧壁面11的卡止部。本实施方式中,轨道部20在右侧壁面10和左侧壁面11分别设有3处。由此,可对烤盘1的设置高度进行三段调整。
[0060] 另外,在加热室9中设有用于检测加热室9内的温度的热敏电阻21、用于检测食品或烤盘1等的温度的红外线传感器22。热敏电阻21、红外线传感器22、磁控管15、加热器19与对它们的动作进行控制的调节部23电连接。
[0061] 接下来,使用由以上构成而形成的加热装置40对本实施方式的烤盘1的动作与作用进行说明。
[0062] 在加热室9内,将载置有食品(未图示)的烤盘1配置于轨道部20,在关闭开关门的状态下进行规定指示操作。由此,通过调节部23使磁控管15工作来产生微波能量。所产生的微波能量经由导波管16、从微波辐射部17透过由陶瓷等形成的封口部18而照射到加热室9内。
[0063] 照射至加热室9内的微波能量被构成烤盘1的由微波发热体形成的发热层3所吸收、转换为热。该热传递至载置烤盘1的食品的载置面(表面2A),对食品进行加热。
[0064] 铁氧体的借助微波而发热的机理可如下进行研究。
[0065] 微波炉等微波加热装置中所使用的微波的频率为2.45GHz。在这样的高频区域中,作为铁氧体的磁特性的磁通密度(磁化)无法追从于磁场,会发生磁损耗。该磁损耗以复相对磁导率的虚部来表示,该值越大,则基于微波能量吸收的发热性能越高。
[0066] 另一方面,若铁氧体的温度上升,则磁通密度减小,与此同时复相对磁导率的虚部减小、微波能量的吸收量减少。在铁氧体的温度达到居里温度时,磁通密度为0,复相对磁导率的虚部消失而不会发热,导致铁氧体不升温。
[0067] 如上所述,对于适用于本实施方式的烤盘1中所应用的由微波发热体形成的发热层3的铁氧体材料,出于升温迅速、在较高温度下达到饱和为优选的原因,优选铁氧体的磁通密度与复相对磁导率的虚部大、居里温度高。
[0068] 通过应用具有这样的特性的铁氧体,可以得到基于微波能量的发热性能优异的发热层3。
[0069] 铁氧体的发热机理如上所述,此外还存在有由介电损耗、导电损耗而产生的发热。
[0070] 为使烤盘1的载置食品的载置面在规定温度下达到饱和,优选为不具有磁性损耗以外的发热作用的铁氧体材料、或者具有不使规定饱和温度发生变化的程度的发热作用的铁氧体材料。
[0071] 另外,对于构成烤盘1的被覆层5、氟涂覆层6、由微波发热体形成的发热层3中所用的有机化合物8来说,为了确保长期的耐久性,需要使食品的载置面达到饱和的温度在构成烤盘1的材料所容许的耐热温度(300℃)以下。
[0072] 另一方面,在烤盘烹调中,若从食品的焦痕、缩短烹调时间的角度进行判断,则优选烤盘1的饱和温度高。但是,在载置食品的情况下,需要加上食品的热容量,因而食品与载置面接触的部位的温度要低于无食品的状态的烤盘的食品载置面的温度。
[0073] 通常,汉堡肉饼或鱼等需要高温的食品的烹调温度为200℃左右,为了确保该烹调温度,烤盘1的食品载置面的温度在未载置食品的状态下需要为240℃以上;烤盘1的构成材料的耐热温度为300℃,因而为了兼具烹调性能与耐久性·可靠性,优选使烤盘1的饱和温度为240℃~300℃。
[0074] 为了实现该条件,需要下述的铁氧体材料:该材料具有能够加速从常温起的升温速度的较高的饱和磁通密度与复数磁导率的虚部、且具有使烤盘1的食品载置面的饱和温度为240℃~300℃的居里温度。
[0075] 需要说明的是,以下实施方式中所用的上述饱和温度指的是在烤盘1的食品载置面上无食品的状态(空烧)下达到饱和的温度。
[0076] 但是,并没有作为由微波发热体形成的发热层3的用途而市售的铁氧体材料,其大多作为铁氧体磁芯等电源线、电源变压器等的噪音对策来使用。另外,对于市售的铁氧体材料来说,公开了其在kHz~MHz带的频率下的复相对磁导率,但并未公开其在烤箱(オーブンレンジ)等中使用的2.45GHz等GHz带的频率特性。
[0077] 因而,满足作为微波发热体、特别是满足烤盘1中所用的发热层3的要求规格(即,具有较高的饱和磁通密度与复相对磁导率的虚部、并且烤盘1的食品载置面的饱和温度为240℃~300℃)的有用的铁氧体材料及组成尚不明确。
[0078] 于是,对铁氧体材料进行了探索,对其作为微波发热体的性能进行了研究,结果发现,在各种铁氧体磁芯材料中,在电源变压器中所用的铁氧体磁芯材料是有用的。该铁氧体磁芯为含有Fe2O3、MnO、ZnO的Mn-Zn系铁氧体,在0℃的饱和磁通密度约为550mT、居里温度约为290℃。通过对该铁氧体磁芯进行粉碎来制作铁氧体粉末7,与有机化合物8(有机硅橡胶)混合,由此来在烤盘1的背面形成由微波发热体形成的发热层3。
[0079] 使用图4所示的加热装置40,供给800W微波电力。其结果确认到,从常温到200℃的升温速度迅速,在最高温度约280℃达到饱和。
[0080] 由此,以上述市售的铁氧体材料为基础,对满足烤盘1的上述要求规格的铁氧体材料进行了研究,结果发现,将铁氧体粉末7制成烧结体时,在0℃下的饱和磁通密度为400mT以上;制成含有铁氧体粉末7与有机化合物8的发热层3时,在常温下的复相对磁导率的虚部在微波区域的频率下为1.3以上;铁氧体粉末7的居里温度为250℃~330℃;该情况为有用的。
[0081] 进一步地,为了对用于体现出上述磁特性的Mn-Zn系铁氧体的组成进行研究,改变Fe2O3相对于ZnO的重量比来制作铁氧体粉末,将它们与作为有机化合物的有机硅橡胶进行混炼,制作发热层,使用形成了该发热层的烤盘,对烤盘的升温特性、复相对磁导率、居里温度进行评价。结果发现,通过使铁氧体粉末中的Fe2O3相对于ZnO的重量比在11~24的范围,烤盘1的升温特性优异。
[0082] 即,铁氧体粉末的Fe2O3相对于ZnO的重量比小于11的情况下,发热层的复相对磁导率的虚部小于1.3、居里温度小于250℃。因此,烤盘食品载置面的升温变慢、同时食品载置面的饱和温度小于240℃,烹调性能变差。
[0083] 另一方面,铁氧体粉末的Fe2O3相对于ZnO的重量比超过24的情况下,食品载置面的升温变快,但居里温度超过330℃。其结果,食品载置面的饱和温度升温至300℃这一所容许的耐热温度以上,因而烤盘的构成材料劣化、或者破损,无法长期作为烹调器具使用。
[0084] 如上所述,若使Fe2O3相对于ZnO的重量比在11~24的范围,则可获得含有铁氧体粉末7的发热层3的复相对磁导率的虚部为1.3以上、铁氧体粉末7的居里温度为250℃~330℃的特性。另外确认到,食品载置面(表面2A)的温度在240℃~300℃达到饱和。
[0085] 因而,通过使铁氧体粉末7的Fe2O3相对于ZnO的重量比在11~24的范围,可实现烹调性能以及耐久性、可靠性。
[0086] 通过使作为铁氧体粉末7使用的Mn-Zn系铁氧体为含有Fe2O3与MnO以及ZnO、并且使Fe2O3相对于ZnO的重量比在11~24的范围的组成,可以提高铁氧体的居里温度。因而,可使烤盘1的载置面的温度呈高温,可缩短烤盘烹调的烹调时间、可提高烹调性能。
[0087] 并且,通过使作为铁氧体粉末7使用的Mn-Zn系铁氧体为含有Fe2O3与MnO以及ZnO、并且使Fe2O3相对于ZnO的重量比在11~24的范围的组成,可使铁氧体粉末的居里温度提高至250℃~330℃。并且,通过提高铁氧体粉末7的居里温度,可使烤盘1的食品载置面(表面2A)的饱和温度高于现有烤盘,达到240℃~300℃。
[0088] 因而,可使烤盘1的食品载置面(表面2A)的温度为高温,可以缩短烤盘烹调的烹调时间、可以提高烹调性能。
[0089] 另外,在铁氧体粉末7处于居里温度附近时,可以进行自身调节来减少微波能量的吸收量,因而,能够使食品载置面的温度在构成作为烹调器具的烤盘1的材料所容许的耐热温度以下达到饱和,即在300℃以下达到饱和。
[0090] 如上所述,通过使铁氧体粉末7的组成中含有Fe2O3与MnO以及ZnO、且使Fe2O3相对于ZnO的重量比在11~24的范围,可以防止烤盘1的构成材料由于过升温所致的破损、烤盘1的构成材料的起火、或向其它部件的延烧,可以提高耐久性、可靠性。
[0091] 进一步地,由于不需要用于防止烤盘1的过升温的安全装置,因而不需要复杂的电子调节·控制器件,可以谋求低成本化。
[0092] 尽管已经叙述了烤盘1的构成材料的耐热容许温度为300℃,但是,若从长期耐久性的方面判断,烤盘1的饱和温度的上限为低于300℃的280℃,为了谋求兼具烹调性能,优选该饱和温度为240℃~280℃。
[0093] 为了实现240℃~280℃的烤盘1饱和温度,由本发明的微波发热体形成的发热层3中所用的铁氧体粉末7的居里温度优选为250℃~300℃。体现该居里温度的Mn-Zn系铁氧体粉末7的Fe2O3相对于ZnO的重量比优选在11~17.5的范围。
[0094] 进一步地,为了提高烹调性能,优选使烤盘1的饱和温度为260℃以上。进一步,为了兼具烹调性能和优异的耐久性、可靠性,优选使烤盘1的饱和温度为260℃~280℃。用于使食品载置面(表面2A)的饱和温度为260℃~280℃的铁氧体粉末7的居里温度优选为280℃~300℃,实现这一点的铁氧体粉末7的Fe2O3相对于ZnO的重量比优选在14.5~17.5的范围。
[0095] 进一步优选的是,Fe2O3相对于ZnO的重量比为使居里温度为280℃~300℃的14.5~17.5。
[0096] 另外,在Fe2O3相对于ZnO的重量比在11~24的范围中,Mn-Zn系铁氧体粉末7中的Fe2O3的含量优选在70重量%~76重量%的范围。
[0097] Fe2O3的含量小于70重量%的情况下,有助于升温的磁特性(饱和磁通密度、复相对磁导率的虚部)降低而导致升温速度的降低、或居里温度小于240℃。含量超过76重量%的情况下,有助于升温的磁特性降低而导致升温速度的降低、或居里温度超过330℃。即,在Fe2O3的含量不处于70重量%~76重量%的范围的情况下,无法达成本发明的目的。
[0098] 另外,在铁氧体粉末7的Fe2O3相对于ZnO的重量比的范围为11~17.5与14.5~17.5的情况下,Fe2O3的适当含量分别为70重量%~74重量%与72重量%~74重量%。
[0099] 另外,对于本实施方式1中所用的铁氧体粉末7来说,通过利用发热层3的复相对磁导率的虚部所致的磁损耗、以及铁氧体粉末7的居里温度,使该铁氧体粉末7达到饱和,以使得烤盘1的食品载置面的温度为烤盘1的耐热容许温度以下,因而需要使介电损耗等其它作用而产生的发热减小。
[0100] 例如,只要含有铁氧体粉末7与作为有机化合物8的有机硅橡胶的发热层3的复素相对介电常数的虚部(介电损耗)为0.7以下,就能够抑制由介电损耗而产生的发热。因此,可使由微波发热体形成的发热层3在规定温度下达到饱和。
[0101] 作为铁氧体材料,除Mn-Zn系铁氧体之外,还存在有Mg-Zn系、Ni-Zn系的铁氧体。这些之中,只要满足本实施方式中优选的磁特性、居里温度即可应用。
[0102] 食品载置面(表面2A)的温度的饱和现象是由发热量与放热量的平衡所引起的,该发热量为由微波发热体形成的发热层3吸收微波能量而发热的发热量,该放热量为由被加热的烤盘1的传导、对流、辐射所产生的放热量。即,在本实施方式1中,在食品未载置于载置面(表面2A)的状态下,使由发热层3所致的发热与来自作为烹调器具的烤盘1的放热达到平衡从而使达到饱和的载置面(表面2A)的温度为240℃~300℃。
[0103] 另外,根据本实施方式,若发热层3所含有的铁氧体粉末7的温度接近于居里温度,则作为铁氧体特性的饱和磁通密度、复相对磁导率的虚部降低,微波能量的吸收降低。因而,随着食品载置面的温度升高,发热量减少,食品载置面在低于铁氧体粉末7的居里温度的温度下达到饱和。
[0104] 另外,若使得兼备烤盘1的烹调性能与构成材料所容许的耐热温度这两方面的温度为240℃~300℃,则用于在该温度下达到饱和的居里温度为250℃~330℃,该居里温度为由微波发热体形成的发热层3中所用的铁氧体粉末7的居里温度。
[0105] 通过使食品载置面(表面2A)的饱和温度为240℃~300℃的高温,可以在短时间内升温至规定的烹调温度,可以谋求烹调时间的缩短化。进一步地,可以在食品未干燥的状态下赋以适度的焦痕,可使高温下的烤盘烹调的性能得到提高。
[0106] 另外,通过在未载置食品的状态下使食品载置面发生饱和的最高温度为300℃,可以使作为烹调器具的烤盘的构成材料处于耐热容许温度以下。因而,可以防止烤盘的构成材料的劣化或破损,可以提高安全性、耐久性、可靠性。
[0107] 另一方面,若发热层3达到发热层3所含有的铁氧体粉末7的居里温度或更高的温度,则微波能量的吸收消失。
[0108] 若在该温度下继续对加热室9照射微波,则有可能发生下述情况而损害安全性、可靠性:微波的电场集中在发热层3以外的位置(构成加热室9的右侧壁面10、左侧壁面11、后壁面12、上壁面13、底壁面14等)而产生火花;微波在加热室9内发生反射,经由导波管16返回至磁控管15中,使微波辐射部17发生破损;等等。
[0109] 在本实施方式中,由于为食品载置面在低于铁氧体粉末7的居里温度的温度下达到饱和的构成,因而发热层3的铁氧体粉末7可以持续地吸收照射至加热室9的微波。
[0110] 因而,可抑制电场向加热室9的其它部件的集中或微波向磁控管15的反射,可防止加热室9内的火花或磁控管15的破损,从而可以确保安全性、可靠性。
[0111] 尽管根据食品种类的不同而稍有不同,但从经验考虑,在烤盘烹调中,烤盘1的食品载置面的温度达到200℃以上的时间优选为2分钟以内。因此,至少从常温到200℃的温度范围内,需要增大吸收微波能量的发热层3的复相对磁导率的虚部。
[0112] 由微波发热体形成的发热层3在常温下的复相对磁导率的虚部优选为1.3以上。通过使复相对磁导率的虚部为1.3以上,可以使发热层3的微波能量的吸收增高,可以加快烤盘1食品载置面的温度上升。
[0113] 另一方面,若发热层3的温度上升,则发热层3的复相对磁导率的虚部会因铁氧体粉末7的饱和磁通密度的降低而减小。其结果,随着发热层3的温度上升,升温速度变慢,到达烹调所需要的温度的时间有变长的倾向。
[0114] 因而,为了加快升温速度,需要使发热层3中从常温到200℃为止的复相对磁导率虚部的降低减少。
[0115] 只要使从常温到200℃为止的发热层3的复相对磁导率的虚部为常温下的复相对磁导率的虚部值的50%以上,就能够抑制发热层3的升温速度的降低,可使烤盘1的食品载置面的温度在2分钟以内达到200℃以上。
[0116] 据认为,复相对磁导率虚部的温度依赖性与铁氧体的饱和磁通密度、居里温度相关,若饱和磁通密度增大、居里温度增高,则复相对磁导率的虚部增大。
[0117] 基于上述内容,为实现烤盘1的食品载置面的优异的升温性能,优选发热层3在常温下的复相对磁导率的虚部为1.3以上、从常温至200℃为止的复相对磁导率的虚部至少为常温下复相对磁导率虚部的值的50%以上。在发热层3中所用的Mn-Zn系铁氧体粉末7中,只要Fe2O3相对于ZnO的重量比在11~24的范围,复相对磁导率的虚部就能够实现1.3以上。
[0118] 其结果,可使作为烹调器具的烤盘1的食品载置面的温度在短时间内升温至铁氧体粉末7的居里温度附近。结果可进一步缩短烹调时间、可进一步提高烹调性能。
[0119] 另外,由于能够快速地对与烤盘1的载置面接触的食品进行烧烤,因而可抑制食品向载置面的附着,可容易地进行烹调后将食品从烤盘中的取出、和烤盘清洗等处理。
[0120] 另外,复相对磁导率是使用网络分析仪、通过S参数法将试样样品架加热至规定温度来进行测定的。
[0121] 作为有机化合物8的材料,可以举出耐热性高的橡胶或树脂。通过使用这些有机化合物8,可以通过热压加工等容易地在烤盘1上形成由包含铁氧体粉末7的微波发热体形成的发热层3。
[0122] 另外,有机化合物8可以实现烤盘1的支持体2与发热层3的强固粘接,因而可提高耐久性。
[0123] 并且,由于可在较低的温度下形成发热层3,因而可防止烤盘1的构成材料的劣化。
[0124] 作为有机化合物8,特别优选为有机硅橡胶、氟橡胶。其中有机硅橡胶的耐热性高、且可进一步提高发热层3与烤盘1的支持体2的粘接性。因此,可以防止发热层3的剥离或裂纹,可在很长时期内保持初期的发热性能,可以实现始终稳定的烤盘烹调性能。
[0125] 另外,有机硅橡胶具有优异的耐热性与耐化学药品性,因而可实现耐久性、可靠性高的发热层3。
[0126] 并且,通过使用有机硅橡胶,能够膜厚较厚地形成发热层3,因而可大量含有微波吸收所必须的铁氧体粉末7。
[0127] 通过该构成,可以增多铁氧体粉末7的微波能量的吸收量,可以实现升温速度迅速的微波发热体。
[0128] 本实施方式的烤盘1是利用由微波发热体形成的发热层3进行加热的,若烤盘1的尺寸增大,则来自烤盘1的放热量增大,食品载置面的饱和温度降低。另一方面,若烤盘1变小,则放热量减少,食品载置面的饱和温度增高。
[0129] 只要对应来自烤盘1的放热量,使用具有在烤盘1的容许耐热温度附近达到饱和这样的居里温度的铁氧体粉末7即可。
[0130] 但是,若考虑到与之相匹配的新颖铁氧体的开发及制造中所用的投资,则其并不实用。为了有效利用具有下述特性的铁氧体粉末7,需要对在烤盘1上形成的以发热体为主成分的发热层3的面积进行规定,所述特性为:将铁氧体粉末7制成烧结体时,在0℃下的饱和磁通密度为400mT以上;在制成含有铁氧体粉末7与有机硅橡胶的发热层3时,常温的复相对磁导率的虚部为1.3以上,从常温至200℃为止的复相对磁导率的虚部至少为常温的复相对磁导率的虚部值的50%以上;且铁氧体粉末7的居里温度为250℃~330℃。
[0131] 使用烤盘1的烧烤烹调通常使用800W左右的微波输出功率。在以800W对烤盘12
进行加热的情况下,若发热层3的面积超过0.1m,则烤盘1增大,从而热容量增大。因此,食品载置面(表面2A)的升温要花费时间,无法在适于烤盘烹调的2分钟以内升温至200℃。
[0132] 另外,食品载置面的面积也会增大,从而使被加热的面所放出的放热量增多,食品载置面(表面2A)的饱和温度小于240℃。其结果,使烹调时间加长,同时无法得到食品的适当的焦痕、美味。
[0133] 另一方面,若发热层3的面积小于0.05m2,则发热层3所含有的铁氧体粉末7的量减少,从而使发热层3的微波能量的吸收减少。其结果,微波电场集中在发热层3以外的部件而产生火花、或者由于反射的微波而发生磁控管的破损等,有可能损害耐久性、安全性。并且,食品中的微波能量的吸收也会增加,成为食品的水含量降低等破坏美味的原因。
[0134] 因而,通过使发热层3的面积为0.05m2~0.1m2,可在短时间内进行食品载置面(表面2A)的升温、同时可将该食品载置面加热至规定的饱和温度,因而可实现优异的烹调性能。
[0135] 另外,可谋求烹调时间的缩短化与节能化。进一步地,可防止磁控管的破损或火花的产生,可以确保加热装置40的耐久性、安全性。
[0136] 在食品载置面(表面2A)的饱和温度为260℃~280℃的情况下,发热层3的微2
波能量吸收量与来自烤盘1的放热量的平衡幅度变窄,因而发热层3的面积为0.06m ~
2
0.08m 的范围是适宜的。
[0137] 本实施方式的由微波发热体形成的发热层3的膜厚超过2mm的情况下,由于发热层3的重量增加所致的热容量的增加、以及热传导变差所致的向食品载置面(表面2A)的热传递的降低,使得食品载置面(表面2A)的升温速度变慢。并且,成本也会因膜厚增厚而提高。
[0138] 另一方面,若发热层3的膜厚小于0.5mm,则铁氧体粉末7的量不足,导致食品载置面(表面2A)的饱和温度降低。
[0139] 因而,为了兼备升温速度的提高与食品载置面(表面2A)实现240℃~300℃的饱和温度,优选使发热层3的膜厚为0.5mm~2mm。并且,通过使发热层3的膜厚为0.5mm~2mm,可以实现优异的烹调性能与烹调时间的缩短化。
[0140] 另外,在食品载置面的饱和温度为260℃~280℃的情况下,由于发热层3的微波能量吸收量与来自烤盘1的放热量的平衡幅度狭窄,因而发热层3的膜厚为0.7mm~1.5mm的范围是合适的。
[0141] 进一步地,为了得到稳定的升温性能,优选使发热层3的膜厚在0.9mm~1.1mm的范围。
[0142] 并且,铁氧体粉末7的混合量变多时,尽管发热层3的升温性能会提高,但会出现以下3个问题。
[0143] 第1,有机化合物8与食品载置面的粘接性变差,发热层3容易发生剥离。第2,有机化合物8与铁氧体粉末7的发热体组合物变硬,在热压时发热体组合物的流动性变差,无法得到膜厚均匀的发热层3。从而,发热层3的加热不均会增大,烹调性能降低。第3,由于所形成的发热层3变硬,使得耐热冲击性、耐机械冲击性降低,在烤盘1的掉落或反复冷热时,发热层3可能会破损。
[0144] 另一方面,若铁氧体粉末7的混合量少,则发热层3的微波能量的吸收性能降低,无法得到令人满足的升温性能。
[0145] 在食品载置面的饱和温度为240℃~300℃的情况下,为了解决上述课题,得到耐久性、升温性能、烹调性能优异的发热层3,发热层3的铁氧体粉末7的混合量优选在50重量%~90重量%的范围。
[0146] 另外,食品载置面的饱和温度为260℃~280℃的情况下,发热层3的微波能量吸收量与来自烤盘1的放热量的平衡幅度狭窄,因而铁氧体粉末7的混合量在65重量%~85重量%的范围是适当的。
[0147] 进一步地,为了得到稳定的升温性能,优选使铁氧体粉末7的混合量在75重量%~80重量%的范围。
[0148] 在对加热室9进行微波照射时,在加热室9内产生微波的驻波。其结果,在加热室9内产生微波能量的强弱变化,粘接于烤盘1底面的由微波发热体形成的发热层3的面也会因微波能量的强弱变化而导致微波的吸收量不同,呈不均匀的温度分布。
[0149] 对于烤盘1的支持体2的材料来说,热传导率越高,则越可有效地传递来自发热层3的热,越可使食品载置面的温度分布均匀。但是,若热传导过高,则热也会传递到食品的载置面以外,来自烤盘1的放热量增加,食品载置面的饱和温度降低。
[0150] 另一方面,若作为支持体2为热传导率过低的材料,则无法使发热层3中产生的不均匀的温度分布呈均匀态,会产生食品的烧烤不均,使烹调性能变差。
[0151] 作为热传导率过高的材料,可以举出铝或铜等热传导率为200W/m·K以上的材料。作为热传导率过低的材料,可以举出陶瓷或玻璃等热传导率为10W/m·K以下的材料。作为支持体2不优选这些材料。
[0152] 作为本实施方式的烤盘1的支持体2,优选热传导率为50W/m·K~150W/m·K的材料。作为该材料,可以举出以铁为主成分的钢板、经铝或锌镀覆的以铁为主成分的表面处理钢板、经涂料涂布的以铁为主成分的表面处理钢板。
[0153] 以铁为主成分的钢板的热传导率为约85W/m·K,低于铝,但其机械强度高,使支持体2的厚度变薄。因此,可减小从发热层3向食品载置面的热阻、可有效地进行热传递。
[0154] 另外,与铝相比,以铁为主成分的钢板的温度分布均匀性差,但其可使食品载置面整体的温度分布均匀化。
[0155] 进一步地,以铁为主成分的钢板可以增大从发热层3向食品载置面以外的方向的热阻。由此可以抑制向食品载置面以外的热损失,从而可使食品载置面的温度在较高温度下达到饱和。
[0156] 烤盘1的支持体2更优选的热传导率为80W/m·K~150W/m·K。
[0157] 另外,本实施方式的烤盘1是为了提高高温下的烤盘烹调的性能的,对于在不需要高温的烤盘烹调、例如解冻烹调、温热烹调来说,可以通过调节微波电力的输出功率来应对。
[0158] 另外,在铁氧体粉末7中混合居里温度低于铁氧体粉末7、且介电损耗大于磁损耗的电介质粉末来构成发热层3也是有用的。
[0159] 这种情况下,食品载置面的饱和温度由铁氧体的居里温度来确定,因而可为烤盘1构成材料所容许的耐热温度以下,可以确保耐久性、可靠性。
[0160] 并且,也可以相反地在居里温度低的铁氧体粉末中混合居里温度高于铁氧体粉末的电介质粉末来构成发热层3,这种情况也是适用的。
[0161] 这种情况下,通过使电介质粉末具有在烤盘1构成材料所容许的耐热温度以下饱和的功能,可得到同样的效果。
[0162] 进一步地,也可应用将居里温度相同的介电损耗大的电介质粉末与磁损耗大的铁氧体粉末混合而构成的发热层3,可得到同样的效果。
[0163] 铁氧体粉末与电介质粉末的组成、配合是以具有提高升温速度、使烤盘1的食品载置面在规定温度发生饱和的功能为前提,根据需要考虑发热层3的制造、成本、与支持体2的粘接性、使用环境的适用性等优点来进行选择的。
[0164] 图5示出了本实施方式中形状不同的烤盘的立体图。由本实施方式的微波发热体形成的发热层3对于图5所示的烤盘形状也是适用的。
[0165] 如图5所示,烤盘24的载置食品载置面(表面2A)为中央部2E比端部2D宽的构成。由此,可使载置食品的可能性高的烤盘24中央附近的载置面面积增大。
[0166] 利用该烤盘24,可以增大食品与载置面(表面2A)的接触面积。因此,相比于与图8相同形状的烤盘1(参照图1),可增加从发热层3传递到食品的热,从而进一步谋求烹调时间的缩短化、烤盘烹调的性能提高。
[0167] 另外,通过增大与食品的接触面积,可减少食品的焦痕不均,从而可提高食品的最终状态。进一步地还可抑制食品的干燥不均,从而可提高多汁感、美味。
[0168] 接下来,对本实施方式1的具体温度特性进行叙述。图6为示出了由本实施方式1的微波发热体形成的发热层3的效果的升温特性的曲线图。图6示出了下述评价的结果,所述评价为:在使用图4所示的加热装置,将未载置食品的烤盘1配置于加热室9内的规定位置,照射800W的微波电力时,在每一加热时间下对由微波发热体形成的发热层3的发热性能进行评价。
[0169] 另外,作为比较例,对于2种形成了由现有的微波发热体形成的发热层的烤盘也同样地进行评价。
[0170] 在图6中,线A为形成了本实施方式的下述发热层3的烤盘1的食品载置面的升温特性,该发热层3由使用了下述含有Fe2O3、MnO、ZnO的Mn-Zn系铁氧体粉末7的微波发热体形成,所述铁氧体粉末7的居里温度为约300℃、0℃的饱和磁通密度为约550mT、Fe2O3相对于ZnO的重量比为15.5。
[0171] 线B示出了作为比较例的现有发热层的升温特性,其为形成了下述发热层3的烤盘的食品载置面的升温特性,该发热层3由使用了下述Mn-Zn系的铁氧体粉末7的微波发热体形成,所述铁氧体粉末7中,Fe2O3相对于ZnO的重量比为9.8、居里温度为约220℃、0℃的饱和磁通密度为约540mT。
[0172] 线C示出了作为比较例的其它的现有发热层的升温特性,其为形成了由下述微波发热体形成的发热层3的烤盘的食品载置面的升温特性,该微波发热体使用了在与具有线B的特性的发热层相同的铁氧体粉末7中加入电介质材料而成的组合物。
[0173] 需要说明的是,具有线A特性的本实施方式的发热层3中,相对于常温下的复相对磁导率的虚部,至200℃为止的复相对磁导率的虚部为约69%,在以线B为其升温特性的发热层的情况下,为41%。
[0174] 如图6所示,对于具有本实施方式发热层3(线A)的烤盘1的食品载置面的温度来说,其升温速度迅速,在加热时间为2分钟时达到230℃以上、在3分钟时达到约270℃,在5分钟以上时,在约280℃倾向于达到饱和。
[0175] 另一方面,对于具有呈线B特性的发热层的烤盘来说,尽管其食品载置面在加热时间达到1分钟为止显示出了与本实施方式的发热层3(线A)大致同等的升温速度,但加热时间为更长的时间的情况下,其升温速度变慢,在5分钟以上时,在约250℃倾向于达到饱和。
[0176] 这是由于,相比于具有线B特性的发热层来说,本实施方式的发热层3(线A)中,0℃的饱和磁通密度、至200℃为止的复相对磁导率的虚部相对于常温下的复相对磁导率的虚部均较高,磁损耗所致的发热性能的降低少;用于本实施方式发热层3(线A)的铁氧体粉末7的居里温度高于具有线B特性的发热层中所用的铁氧体粉末。
[0177] 设置了具有线B特性的发热层的烤盘中,尽管铁氧体粉末的居里温度为约220℃,但其升温至约250℃的温度,对于其原因,认为是由于所使用的Mn-Zn系铁氧体粉末的组成或杂质所致的介电损耗使其产生了发热。
[0178] 进一步地,设置了具有线C特性的发热层的烤盘中,食品载置面在加热时间为3分钟以内时为与线B大致同等的升温速度,但加热时间为更长的时间的情况下,温度缓慢上升,呈食品载置面的温度不达到饱和的倾向。
[0179] 据认为,具有线C特性的发热层与具有线B特性的发热层的情况为相同的铁氧体粉末,因而初期升温特性与线B相同,但具有线C特性的发热层中进一步加入了电介质粉末,因而该电介质粉末出现了介电损耗,升温值高于具有线B特性的发热层。
[0180] 另外,认为在线C中,食品载置面的温度不发生饱和的理由是由于所加入的电介质粉末的居里温度高,持续产生基于微波能量吸收的发热。
[0181] 如线C所示,若增高食品载置面的温度,则烤盘烹调的性能得到提高,但由于食品载置面的温度未达到饱和,因而若延长加热时间,则可能会超过构成烤盘的材料所容许的耐热温度,可能会损害耐久性。
[0182] 如上所述,本实施方式的烤盘1中形成了由使用下述含有Fe2O3、MnO、ZnO的Mn-Zn系铁氧体粉末7的微波发热体形成的发热层3,从而可在短时间内对食品载置面的温度进行升温,可以实现优异的烤盘烹调的性能,所述铁氧体粉末7的居里温度为约290℃、0℃的饱和磁通密度为约550mT、Fe2O3相对于ZnO的重量比为15.5。
[0183] 另外,通过使用居里温度为290℃的铁氧体粉末7,可使食品载置面的温度在居里温度以下达到饱和,从而可确保烤盘1的构成材料所容许的耐热温度,可以实现优异的耐久性。
[0184] 进一步地,即使由于某些原因而使电场集中在发热层3的一部分而产生异常加热,也可以防止超过铁氧体粉末7的居里温度的温度上升,因而可防止构成发热层3的橡胶材料的发烟、起火,也可提高安全性。
[0185] 需要说明的是,本实施方式中,对于铁氧体,以Fe2O3相对于ZnO的重量比的范围为11~24、在载置面无载置的状态下达到饱和的温度为240℃~300℃的示例进行了说明,但并不限定于此。例如,只要为可使在载置面无载置的状态下达到饱和的温度为240℃~300℃的构成,Fe2O3相对于ZnO的重量比的范围并非一定需要为11~24。即,通过作为烤盘1的发热层3使用的发热材料和组成、或温度控制,可以实现载置面无载置的状态下的
240℃~300℃的饱和温度。
[0186] (实施方式2)
[0187] 图7为示出了形成有由本发明实施方式2中的微波发热体形成的发热层3的烤盘1的详细结构的局部截面图。
[0188] 其与实施方式1不同的方面在于:其不使用氟涂覆层6而是设置了红外线辐射率为0.9以上的被覆层26、以及将发热层3直接形成在基材4上;其它材料使用与实施方式1相同的材料。
[0189] 在图7中,支持体25具有基材4以及在载置食品侧(表面2A)的基材4上形成了红外线辐射率为0.9以上的被覆层26的构成。由微波发热体形成的发热层3形成于基材4的与载置食品一侧的表面2A不同的表面2B这一表面。作为基材4,应用镀覆了铝或锌的表面处理钢板、铁板。
[0190] 对于实施方式1中所用的烤盘1来说,在2μm~20μm的波长范围中使食品载置面的温度为200℃~250℃时,氟涂覆层6的表面的红外线辐射率为约0.8。
[0191] 在烤盘1中,如图1所示,为了将从食品中渗出的油脂等与食品分离,在食品的载置面设有槽部2C。但是,由于该槽部2C不与食品接触,因而微波发热体的发热层3的热不易传递至食品,产生了烧烤不均,从而使得食品的最终状态变差。
[0192] 根据本实施方式2,通过在烤盘1的食品载置面(表面2A)设有红外线辐射率为0.9以上的被覆层26来代替氟涂覆层6,可使因微波发热体的发热层3而被加热的食品载置面(表面2A)的辐射率增大。由此,可通过辐射热对不与载置面(表面2A)接触的食品部位(烤盘1的槽部2C)进行加热,从而可提高食品的烹调性能。
[0193] 本实施方式2的红外线辐射率为0.9以上的被覆层26优选为以二氧化硅(シリカ)为主成分的陶瓷材料、或者玻璃材料(珐琅)。
[0194] 二氧化硅具有透过微波的特性,因而不会吸收绕到被覆层26的烤盘1食品载置面侧(表面2A侧)的微波能量。因此,可防止食品对微波能量的吸收量的减少,可提高烹调性能。
[0195] 另外,作为被覆层26,通过为以二氧化硅为主成分的陶瓷质或玻璃质,可以提高烤盘1的构成材料所容许的耐热温度。由此,可以进一步提高烤盘1的食品载置面(表面2A)的温度,从而可进一步提高烤盘烹调的性能。
[0196] 此外,被覆层26可以增大表面硬度。因而,即使在取出食品时使用金属铲、或在清洗烤盘1时使用较硬的尼龙刷,也不会使被覆层26产生划痕或剥离,可以实现优异的耐久性。
[0197] 进一步地,向被覆层26赋予防污性也是有用的。由此,在烹调时,可以降低食品本身、从食品中渗出的油脂、烹调时使用的调味料等的附着。因而,可以更为容易地进行烤盘1的清洗等处理、可以提高烤盘1的耐污染性。
[0198] 为了体现出防污性,有2种方法。1种方法为,使食品载置面(表面2A)体现出防水性,减少污染物的附着量,同时降低污染物的附着能量,由此在清洗时污染物易于被洗掉。被覆层26上的因防水而产生的防污性的体现可通过在被覆层26的基础材料中添加食品卫生上无问题的硅油等有机物成分来实现。
[0199] 另外,防水以外的防污性的体现还可通过在被覆层26的表面形成微小的凹凸来实现。该微小凹凸的形成可通过控制被覆层26的烧制条件、有机物的选择等形成条件来实现。
[0200] 另一方法为,与防水性相反,使食品载置面(表面2A)体现出亲水性,使得清洗中所用的水易于渗透到所附着的污染物与食品载置面(表面2A)之间,使污染物易于被洗掉。被覆层26上的因亲水而产生的防污性的体现可通过在被覆层26的基础材料中添加使表面能量减小的材料来实现。
[0201] 需要说明的是,在实施方式2中,由微波发热体形成的发热层3直接设于基材4的表面2B。但并不限定于此,为了提高基材4的耐蚀性,也可以设有实施方式1中所述的被覆层5或其它具有耐热性的被覆层,在其上形成发热层3。
[0202] 另外,在实施方式1、2中,对于由微波发热体形成的发热层3,使用橡胶材料、特别是有机硅橡胶作为有机化合物8。但是,除了这些材料以外,也可以使用在珐琅中所用的玻璃料(フリット)、氧化铝溶胶、硅溶胶等无机质粘结剂等作为被覆层26使用的材料。
[0203] 通过在发热层3中使用上述材料,可以使烤盘的耐热容许温度高于实施方式1中所述的烤盘1,可以进一步提高耐久性、可靠性。
[0204] 并且,代替发热层3中的有机化合物8,使用在珐琅中所用的玻璃料、氧化铝溶胶、硅溶胶等无机质粘结剂等作为被覆层26使用的材料,从而可以使烤盘的构成材料为不燃性的,因而除了耐久性外,还可提高安全性。
[0205] 另外,为了进一步提高由微波发热体形成的发热层3的耐久性,也可以在发热层3的上面设有对微波的透过性高的材料的保护层。作为保护层的材料,可以举出上述的在珐琅中所用的玻璃料、氧化铝溶胶、硅溶胶等无机质粘结剂、以及作为被覆层26使用的材料。
[0206] 如以上所说明的那样,本发明的烹调器具为具有基材与发热层的烹调器具,该基材具有载置食品的载置面,该发热层形成在基材的表面,由含有吸收微波能量而发热的铁氧体的微波发热体形成,其中,铁氧体具备下述构成:其含有Fe2O3与MnO以及ZnO,Fe2O3相对于ZnO的重量比在11~24的范围。
[0207] 利用这样的构成,可以提高铁氧体的居里温度,从而可使烤盘载置面的温度为高温。因而,可以缩短烤盘烹调的烹调时间、可以提高烤盘烹调的性能。
[0208] 另外,若铁氧体处于居里温度附近,则其可进行自身调节以减少微波能量的吸收量,因而可使作为烹调器具的烤盘的温度在构成材料所容许的耐热温度以下达到饱和。从而,可以防止烤盘的构成材料由于过升温所致的破损、起火、或向其它部件的延烧,可以提高安全性、耐久性、可靠性。
[0209] 进一步地,由于无需用于防止烤盘过升温的安全装置,因而不需要复杂的电子调节·控制器件,可以谋求低成本化。
[0210] 另外,本发明的烹调器具为具有基材与发热层的烹调器具,该基材具有载置食品的载置面,该发热层形成在基材的表面,由含有吸收微波能量而发热的铁氧体的微波发热体形成,其中,在食品未载置于载置面的状态下,使达到饱和的载置面的温度设为240℃~300℃。
[0211] 通过为这样的构成,按照食品载置面的饱和温度呈高温的方式进行设计,从而可在短时间内升温至规定的烹调温度,可以谋求烹调时间的缩短化。
[0212] 并且,可在食品为未干燥的状态下赋以适度的焦痕,可以提高高温下的烤盘烹调的性能。
[0213] 另外,通过在未载置食品的状态下,使食品的载置面达到饱和的最高温度为300℃,可以使作为烹调器具的烤盘的温度为构成材料的耐热容许温度以下,从而可防止烤盘的构成材料的劣化或破损,可以提高安全性、耐久性、可靠性。
[0214] 另外,在本发明中,发热层含有铁氧体的颗粒与有机化合物。通过为这样的构成,可以容易地在烤盘上形成由含有铁氧体的微波发热体形成的发热层。
[0215] 另外,可利用有机化合物来实现作为烹调器具的烤盘的基材与发热层的强固粘接性,从而可提高耐久性。
[0216] 并且,可在较低的温度下形成发热层,因而可防止烤盘的构成材料的劣化。
[0217] 另外,在本发明中,作为发热层所含有的上述有机化合物,包括有机硅橡胶。
[0218] 通过为这样的构成,可以提高发热层的耐热性、同时可更为优异地实现烤盘与发热层的粘接。
[0219] 另外,可增加发热层的厚度,因而可使微波吸收所需要的铁氧体的量增多,可以实现升温速度迅速的微波发热体。
[0220] 并且,在本发明中,至200℃为止的复相对磁导率的虚部至少具有常温下的复相对磁导率的虚部的50%。
[0221] 通过为这样的构成,即使在发热层的温度上升的过程中,也可抑制发热层本身的微波吸收的降低。因此,可抑制发热层的升温速度的降低,可在短时间内使作为烹调器具的烤盘的载置面升温至高温。
[0222] 另外,在本发明中,发热层的面积为0.1m2或小于0.1m2。
[0223] 通过为这样的构成,即使利用通常使用的800W左右的微波输出功率对作为烹调器具的烤盘进行加热,也可抑制烤盘热容量的增加、和由被加热的烤盘所放出的放热量。因此,可在短时间内升温至规定温度,可谋求烹调时间的缩短化与节能化。
[0224] 并且,在不降低升温速度的条件下,可将通过发热与放热达到平衡而达到饱和的温度容易地设定在铁氧体的居里温度附近且低于居里温度的温度,因而可以实现烹调性能优异的烤盘。
[0225] 另外,在本发明中,基材的热传导率为50W/m·K~150W/m·K的范围。
[0226] 通过为这样的构成,可以抑制由于热传导过高而导致的向烤盘的食品载置面以外的热传递、由于放热面积的扩大而引起的放热量的增加、由于热传导过低而引起的食品载置面的温度分布的不均匀性,从而可以实现食品加热效率优异的烤盘。
[0227] 并且,在本发明中,在载置食品的载置面形成了被覆层,该被覆层由红外线辐射率高于基材的材料形成。
[0228] 通过为这样的构成,可以使得通过由微波发热体形成的发热层的发热而被加热的载置面的热辐射量增多。因而,可以通过辐射对未与载置面接触的食品部位进行加热,可以提高食品的烹调性能。
[0229] 另外,在本发明中,向被覆层赋予了防污性。通过为这样的构成,可以抑制食品、从食品中渗出的油脂、调味料等污染物的附着,同时可容易地进行烤盘的清洗等处理。因而,作为烹调器具可以总是维持在清洁的状态。
[0230] 另外,在本发明中,被覆层含有二氧化硅。通过为这样的构成,可以提高被覆层的耐热性,同时可以进一步提高烤盘的载置面的温度。因而,可以进一步提高烤盘烹调的性能与耐久性。
[0231] 并且,可提高被覆层的硬度,因而即使在取出食品时使用金属铲、或在清洗烤盘时使用较硬的尼龙刷,也可防止产生被覆层的伤痕或剥离,可以实现优异的耐久性。
[0232] 另外,本发明为具备加热室、向加热室内供给微波的微波发生部、以及配置在加热室内的烹调器具的加热装置。
[0233] 通过为这样的构成,可以提高加热装置中的烤盘烹调的性能。
[0234] 【工业实用性】
[0235] 本发明的烹调器具可提高烤盘烹调的性能,因而可适用于微波炉等微波加热装置中,同时以微波发热体为主成分的发热层可以作为干燥机等烹调机器以外的微波加热机器而适用。
[0236] 【符号的说明】
[0237] 1,24,101 烤盘
[0238] 2,25 支持体
[0239] 2A,2B 表面
[0240] 2C 槽部
[0241] 2D 端部
[0242] 2E 中央部
[0243] 3,102 发热层
[0244] 4 基材
[0245] 5,26 被覆层
[0246] 6 氟涂覆层
[0247] 7 铁氧体粉末
[0248] 8 有机化合物
[0249] 9 加热室
[0250] 10 右侧壁面
[0251] 11 左侧壁面
[0252] 12 后壁面
[0253] 13 上壁面
[0254] 14 底壁面
[0255] 15 磁控管
[0256] 16 导波管
[0257] 17 微波辐射部
[0258] 18 封口部
[0259] 19 加热器
[0260] 20 轨道部
[0261] 21 热敏电阻
[0262] 22 红外线传感器
[0263] 23 调节部
[0264] 40 加热装置
[0265] 103 载置面