用于获得陶瓷复合材料的方法、以及可通过所述方法获得的材料转让专利

申请号 : CN201080037790.0

文献号 : CN102811970B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 拉蒙·托雷西拉斯桑米兰奥尔加·加西亚莫雷诺阿道弗·费尔南德斯瓦尔德斯

申请人 : 西班牙高等科研理事会

摘要 :

本发明涉及一种用于获得陶瓷复合材料的方法以及所得的材料。所述方法包括以下步骤:由作为起始复合材料的按照组成LixAlySizOw的LAS组分开始,其中x在0.8至1.2之间变化,y在0.8至1.2之间变化,z在0.8至2之间变化,而w在4至6之间变化;使所述LAS组分与SiC纳米颗粒混合,由此获得稳定的均匀悬浮液;干燥所得的悬浮液;成形获得的材料;最后,烧结在前述步骤中获得的材料。所得的材料具有大于98%理论密度的密度,并且可以用于航空和航天工业、微电子学和精密光学中。

权利要求 :

1.用于获得陶瓷复合材料的方法,所述方法包括以下步骤:a.由按照组成LixAlySizOw的LAS组分的β-锂霞石相固溶体开始,其中x在0.8至1.2之间变化,y在0.8至1.2之间变化,z在0.8至2之间变化,而w在4至6之间变化,b.将在a)中获得的所述LAS组分的β-锂霞石固溶体与SiC混合,其中SiC为具有小于100nm的中值粒径的纳米颗粒的形式,用于获得稳定的、均匀的、具有β锂霞石的含量按体积计小于75%的悬浮液,c.干燥所得的悬浮液,

d.成形在c)中获得的材料,

e.烧结在d)中获得的材料。

2.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,步骤b)的所述混合是在以超过100rpm操作的研磨机中进行的。

3.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,步骤c)的所述干燥通过喷雾干燥来进行,用于获得纳米复合材料颗粒。

4.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,步骤d)的所述成形是通过在100至400MPa之间范围的压力下的冷等静压压制来进行的。

5.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,步骤d)通过铸件浇注在b)中获得的所述悬浮液来进行。

6.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,步骤e)的所述烧结在

1100℃到1600℃之间范围的温度下在惰性气氛中进行。

7.根据权利要求6所述的用于获得陶瓷复合材料的方法,其中,步骤e)在氩气氛中进行。

8.根据权利要求6所述的用于获得陶瓷复合材料的方法,其中,烧结步骤e)的持续时间大于10分钟。

9.根据权利要求6所述的用于获得陶瓷复合材料的方法,其中,使用在2至10℃/min之间的加热斜率,维持最终温度在30分钟至10小时之间范围的时间段,并且随后以2至

10℃/min之间的斜率冷却至900℃。

10.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,步骤d)和e)包括热-压步骤。

11.根据权利要求10所述的用于获得陶瓷复合材料的方法,其中,热-压工艺进行到在

900℃至1400℃之间范围的最终温度。

12.根据权利要求10所述的用于获得陶瓷复合材料的方法,其中,在热-压工艺中,在石墨模具中施加5至150MPa之间的单轴压力。

13.根据权利要求10所述的用于获得陶瓷复合材料的方法,其中,在热-压工艺中,使用在2至50℃/min之间的加热斜率,维持最终温度在30分钟至10小时之间范围的时间段。

14.根据权利要求1所述的用于获得陶瓷复合材料的方法,其中,所述烧结是火花等离子体烧结(SPS)

15.根据权利要求14所述的用于获得陶瓷复合材料的方法,其中,所述火花等离子体烧结工艺进行到在700℃至1400℃之间范围的最终温度。

16.根据权利要求14所述的用于获得陶瓷复合材料的方法,其中,在所述火花等离子体烧结工艺中,在石墨模具中施加在5至100MPa之间的单轴压力。

17.根据权利要求14所述的用于获得陶瓷复合材料的方法,其中,在所述火花等离子体烧结工艺中,使用在2至300℃/min之间的加热斜率,维持最终温度在1至30分钟之间范围的时间段。

18.根据权利要求17所述的用于获得陶瓷复合材料的方法,其中,所述加热斜率为

5℃/min。

19.可根据前述权利要求中任一项所述的方法获得的陶瓷材料,其特征在于,所述陶瓷-6 -6 -1材料在[-150至+150]℃的温度范围内显示出在[-1x10 至+1x10 ]K 之间范围的热膨胀系数,其中所述陶瓷材料的最终密度大于理论密度的98%。

20.权利要求19中所述的陶瓷材料在用于航空航天工业的工业过程中的部件、设备、产品或物品的制备、制造和使用中的应用。

21.权利要求19中所述的陶瓷材料在微电子学的任何工业过程中的部件、设备、产品或物品的制备、制造和使用中的应用。

22.权利要求19中所述的陶瓷材料在精密光学的任何工业过程中的部件、设备、产品或物品的制备、制造和使用中的应用。

说明书 :

用于获得陶瓷复合材料的方法、以及可通过所述方法获得

的材料

技术领域

[0001] 本发明涉及具有热膨胀系数非常接近于零的陶瓷,其可用于制造要求高尺寸稳定性的部件(components)。因此,本发明中公开的技术属于新材料领域,而其应用属于微电子学、精密光学以及航空和航天领域。
[0002] 本发明的目的涉及用于获得在范围(-150℃,+150℃)内具有小于1x10-6K-1的热膨胀系数(TEC)的陶瓷复合材料(复合物,composites)的方法,以及可通过所述方法获得的材料。

背景技术

[0003] 具有低热膨胀系数(TEC)的材料在非常不同的领域中具有各种各样的应用。在高技术系统、微电子学工业和精密光学中的许多类型的精密设备和仪器设备中需要这些类型的材料。总之,在所有那些应用中,其中必需确保随着温度变化精密元件的尺寸稳定性,构成这些元件的材料的TEC必须减少。还可以通过设计具有所需(和均匀)的TEC的复合材料来解决在用不同的材料制造的元件中的热膨胀不平衡的问题。可以通过将组分(部件)与正膨胀和负膨胀相结合来实现这些具有“定制”的TEC的材料的设计。复合材料的TEC的这种定制设计可以针对不同温度来实施,使得具有零TEC的组分应用的最终领域将取决于是否也达到所述应用的特定功能所需的其余特性。在从用于厨房的玻璃陶瓷到用于人造卫星的镜子的许多应用领域中,锂铝硅酸盐(LAS)陶瓷和玻璃陶瓷系列(家族)频繁地被用于该目的。该系列的一些矿物相具有负TEC,这使得可以在具有受控的、定制的TEC的复合材料中使用它们。经常地,具有负TEC的材料具有低断裂阻力(抗断裂性,fracture resistance),因为它们的负特性是由于不同的晶体取向之间的强各向异性,其中负行为通常在其中之一发现,而正行为在其他两种中发现。这种各向异性通常引起导致对于这些材料的机械性能低值的微裂纹。无论如何,在制造具有零TEC的复合材料中这些膨胀性质的利用在工程、光子学、电子学和具体结构应用中的应用中具有广泛的潜力(Roy,R.et al.,Annual Review of Materials Science,1989,19,59-81)。在LAS体系中,具有负膨胀的相是β-锂霞石(LiAlSiO4),这是由于在其晶轴之一的方向中的较大的负膨胀。锂辉石(LiAlSi2O6)和透锂长石(LiAlSi4O10)相具有接近于零的TEC。用于制造具有LAS组成的材料的传统方法是用来生产玻璃陶瓷的玻璃加工。这种方法需要玻璃的成形(成型)以便随后在较低的温度下施加热处理,用于结晶性LAS相的随后沉淀,因此控制其TEC。偶然地,该方法产生多相材料,并且自然地,因为它是玻璃,所以与其他陶瓷相比,其机械性能(刚性和抗性(强度))对于许多工业应用来说不是足够高的。这是 (由Schott商品化)的情况,其广泛用于许多应用中,但是具有非常低的断裂阻力值(抗断裂性值)。因此,如果要获得更好的机械性能,对于玻璃陶瓷的选择是必要的。存在其他具有接近于零的TEC的陶瓷材料,诸如如在US4403017中所描述的堇青石或 具有低TEC材料的制备中的备选方案是向具有负TEC的LAS陶瓷基体(基质)中加入具有正热膨胀系数的第二相,如在US6953538、JP2007076949或JP2002220277的情况中。这种最后的选项是非常感兴趣的,因为TEC值和其余性质可能通过在基体中加入适当比例的第二相而调整。另一方面,考虑到材料的最终性能是两种或多种组分的组合的结果,这些复合材料的主要困难在于对于宽范围的温度保持接近于零的TEC值。因此,在上面提到的情况中,达到高尺寸稳定性的温度范围在30℃-50℃之间。而且,很难利用可以形成复杂形状的简单制造方法来获得致密材料。
[0004] 在申请号P200803530的专利中,申请人公开了一种用于在溶液中由高岭土、碳酸锂和硅石以及氧化铝前体合成锂铝硅酸盐的方法,由此可以通过在Al2O3-Li2O-SiO2相图内选择不同的组成来获得具有受控的、定制的TEC的LAS陶瓷。所提出的方法是简单且经济的,并且使得可以获得具有改善的密度和机械性能的陶瓷。利用该方法获得的具有负TEC的LAS粉末可以应用于本发明中从而获得具有零TEC的混合物。

发明内容

[0005] 本发明解决了通过简单方法来获得在从低温条件到大于室温的温度(-150℃到150℃)的温度范围内具有高尺寸稳定性的材料的问题。这种宽的其中TEC(热膨胀系数)-6 -1
保持小于1x10 K 的温度范围增加了应用,其中材料的使用可以从作为日常每天使用的一个实例的玻璃陶瓷的制造到用于人造卫星的镜子,到提到不是作为公众熟知的更为专门的技术的一个实例。
[0006] 本发明中提出的备选方案是获得在宽范围的温度下具有低热膨胀系数的陶瓷材料,这使得它们能够适于许多应用。
[0007] 通过用于制造纳米复合粉末的简单方法来进行制备,其利用不同技术以固态成形(成型)和烧结,防止玻璃的形成,并因此实现改善的机械性能。对β-锂霞石基体和以纳米颗粒形式的纳米碳化硅(n-SiC)的第二相进行选择,以便获得具有良好的机械性能、电性能和热性能的最终材料。
[0008] 本发明是基于用于获得基于锂铝硅酸盐(LAS)和纳米碳化硅(n-SiC)的复合陶瓷材料的新方法。该材料的最终组成可以作为在所使用的LAS组分中的β-锂霞石含量的函-6 -6 -1数而被调整,其决定需要获得具有在-1x10 至1x10 K 之间的TEC的最终材料的第二相(SiC纳米颗粒)的量。因此,锂铝硅酸盐(LAS)的TEC值取决于其组成,并且达到为或多或少负的程度;这将决定获得具有零热膨胀系数的最终材料所需的碳化硅纳米颗粒(n-SiC)的含量。
[0009] 本发明的创新方法使得可以通过无压烧结方法在常规的炉子中制备具有非常低TEC的材料,由此获得具有高相对密度的材料,其将影响其弹性模量、机械性能和抛光能力。
[0010] 此外,本发明是值得注意的,因为烧结方法在所获得的片的尺寸(大小)和形状中提供大的通用性:一方面,它覆盖除通常在压力方法中获得的圆盘之外的形状,另一方面,尺寸可能比利用迄今所述的方法所获得的那些更大。
[0011] 复合材料的加工条件决定性地影响成形材料(成型材料)的关键特性(诸如,其密度或孔隙分布),这将很大程度上决定是否可以通过固态烧结来获得致密材料。在纳米复合粉末的加工(处理)期间,有必要实现不同组分的均匀混合物,以便防止团块(附聚物)的形成,这在纳米粉末的情况下尤其重要。
[0012] 因此,本发明的一个方面是用于获得属于在-150℃至150℃之间的温度范围内-6 -1TEC小于1x10 K 的LAS/SiC体系的复合材料的方法。加工参数的最佳化,如,例如,研磨类型和时间、搅拌速度或干燥方法,以及烧结条件,加热速度,最终温度或停留时间,使得可以获得密度大于理论密度的90%以及断裂阻力和杨氏模量分别大于130MPa和135Gpa的材料。复合材料的加工条件的调整使得可以改善其显微结构,由此在其孔隙率方面实现显著降低。
[0013] 如上面所讨论的本发明的优选方面是通过在不施加压力的情况下在常规炉子中进行烧结来使材料致密的可能性,这使得可以获得具有以其他方式难以达到的尺寸和形状的片(pieces)。
[0014] 本发明的一个方面是用于制备陶瓷材料的方法,其特征在于所述方法包括下列步骤:
[0015] a.起始材料是按照组成LixAlySizOw的LAS组分,其中x在0.8至1.2之间变化,y在0.8至1.2之间变化,z在0.8至2之间变化,而w在4至6之间变化,
[0016] b.将在a)中定义的LAS组分与SiC纳米颗粒混合,以获得稳定的、均匀的悬浮液,[0017] c.干燥所得的悬浮液,
[0018] d.成形在c)中获得的材料,
[0019] e.烧结在d)中获得的材料。
[0020] 本发明的更优选的方面是用于制备复合陶瓷材料的方法,其中LAS组分是β-锂霞石固溶体。
[0021] 本发明的优选方面是用于制备陶瓷材料的方法,其中步骤b)的LAS粉末与SiC纳米颗粒的混合是在研磨机中进行的,优选以100-400rpm操作。
[0022] 本发明的优选方面是用于制备陶瓷材料的方法,其中所得混合物的β-锂霞石含量按体积计小于75%。
[0023] 本发明的优选方面是用于制备陶瓷材料的方法,其中步骤c)中的由两种组分混合产生的悬浮液的干燥是通过喷雾干燥进行的,以获得纳米复合材料颗粒。
[0024] 本发明的优选方面是用于制备陶瓷材料的方法,其中步骤d)中的材料的成形是通过在100至400MPa之间的压力下的冷等静压压制而实施的。
[0025] 本发明的优选方面是用于制备陶瓷材料的方法,其中成形步骤d)通过铸件浇注(浇铸,浇注)在b)中获得的悬浮液来进行。
[0026] 本发明的优选方面是用于制备陶瓷材料的方法,其中步骤e)的成形材料的烧结是在常规炉子中在1100℃到1600℃之间的温度下在惰性气氛(优选氩气氛)中实施大于10分钟的时间段。
[0027] 本发明的具体实施方式是用于制备陶瓷材料的方法,其中步骤e)的成形材料的烧结是在常规炉子中在氩气氛下在1390℃下进行的。
[0028] 本发明的优选方面是用于制备陶瓷材料的方法,其中在烧结中使用2至10℃/min之间的加热斜率(heating slope),维持最终温度在0.5至10小时之间的时间段,并且随后通过2至10℃/min之间的加热斜率冷却优选至900℃。
[0029] 本发明的优选方面是用于制备陶瓷材料的方法,其中步骤d)和e)包括热-压步骤。
[0030] 热-压技术是基于压力和高温的同时施加,以加快致密化速率。在该技术中,加热通过使用石墨电阻进行。
[0031] 本发明的优选方面是用于制备陶瓷材料的方法,其中热-压步骤是在范围在900℃到1400℃之间,优选1150℃的温度下进行的。
[0032] 本发明的优选方面是用于制备陶瓷材料的方法,其中热-压步骤通过在石墨模具中施加5至150MPa,优选50MPa的单轴压力来进行。
[0033] 本发明的优选方面是用于制备陶瓷材料的方法,其中热-压步骤使用2至10℃/min,优选5℃/min的加热斜率,维持最终温度在30分钟至10小时之间的时间段而进行。
[0034] 本发明的优选方面是用于制备陶瓷材料的方法,其中所述烧结是火花等离子体烧结(SPS)
[0035] 火花等离子体烧结(SPS)技术也是基于压力和高温的同时施加。与热-压技术不同,在该技术中通过施加经过石墨模具且还经过样品的放电而使产生加热,这使得可以以每分钟上百数量级的加热速率工作。
[0036] 本发明的优选方面是用于制备陶瓷材料的方法,其中火花等离子体烧结(SPS)步骤是在700℃至1400℃之间,优选1150℃的温度下进行的。
[0037] 本发明的优选方面是用于制备陶瓷材料的方法,其中火花等离子体烧结(SPS)步骤通过在石墨模具中施加在5至150MPa之间,优选40MPa的单轴压力来进行。
[0038] 本发明的优选方面是用于制备陶瓷材料的方法,其中火花等离子体烧结(SPS)步骤使用在2至300℃/min之间,优选5℃/min的加热斜率,维持最终温度在1至30分钟之间的时间段来进行。
[0039] 本发明中获得的材料具有大于98%的理论密度的最终密度,并且其热膨胀系数6 6 -1
在-150℃至150℃的温度范围内在-1x10 至1x10K 之间。
[0040] 本发明的另一优选方面是通过上面描述的任何方法制备的陶瓷材料在制造要求高尺寸稳定性的部件中的应用,如在人造卫星中的天文望远镜和X射线望远镜的镜子结构,在彗星探针、气象卫星和显微光刻法中的光学元件,在环形激光陀螺仪中的镜子和框架,在共振激光器中的距离指示器,在高精度测量技术中的量杆和标准等的情况中。

附图说明

[0041] 为了补充所进行的描述,并有助于更好的理解本发明的特征,根据其优选的实用示例性实施例,附上一组附图作为所述描述的整体部分,其中以下所表示的是用于说明性的、非限制的目的:
[0042] 图1.-Li2O-Al2O3-SiO2体系的相图,其示出了在示例性实施例中使用的组成。
[0043] 图2.-加工(处理)条件对LAS/SiC材料的最终微结构的影响。
[0044] 图3-对应于通过在常规炉子中在氩气氛、热-压和SPS中进行烧结所获得的LAS/SiC材料的热膨胀系数(α曲线)。

具体实施方式

[0045] 在(-150,150)℃的范围内具有小于1x106K-1的TEC的复合LAS/SiC材料。
[0046] 实施例1
[0047] 起始原料为:
[0048] ●具有组成LiAlSiO4(图1中的组成A)的LAS粉末,具有1μm的中值粒径(平3
均粒径)和2.39g/cm 的密度。
[0049] ●来自制造商Hubei的SiC粉末,具有小于100nm的中值粒径和3.20g/cm3的密度。
[0050] ●无水乙醇(99.97%纯度)。
[0051] 使用700g的LAS,其分散在1400g的乙醇中。随后,使其与在1000g乙醇中的300g的n-SiC悬浮液混合。混合物通过机械搅拌60分钟而均化,之后在以300rpm操作的研磨机中研磨另外的60分钟。对由此制备的悬浮液进行喷雾-干燥,以获得纳米复合颗粒,同时回收来自该工艺(方法)中的乙醇。研磨步骤使得可以制备纳米尺寸的均匀粉末,其改善最终材料的致密化。在图2中,比较具有相同组成并用相同热循环烧结的两种材料的微结构;它们之间的差别仅为,在实例2中,材料经受研磨过程。LAS(黑灰色)和SiC团块(浅灰色)的粒径显著减小,同时消除了几乎所有的孔隙(黑色)。
[0052] 干燥产品通过在200MPa下的冷等静压压制而经受成形工艺。获得了成形材料,将其在常规的炉子中在氩气氛中在1390℃下进行烧结,其中停留时间为120分钟且加热斜率为5℃/min。
[0053] 所得的材料根据其真密度(氦测比重术)、表观密度(阿基米德法)、杨氏模量(在Grindosonic设备中的共振频率法)、断裂阻力(在INSTRON8562设备中的四点弯曲法)、以及热膨胀系数(膨胀计,NETSCH牌,型号DIL402C)来表征。相应的值在表1中示出。热膨胀系数随温度的变化示在图3中。
[0054] 实施例2
[0055] 起始原料为:
[0056] ●具有组成LiAlSiO4(图1中的组成A)的LAS粉末,具有1μm的中值粒径和3
2.39g/cm 的密度。
[0057] ●来自制造商Hubei的SiC粉末,具有小于100nm的中值粒径和3.20g/cm3的密度。
[0058] ●无水乙醇(99.97%纯度)。
[0059] 使用700g的LAS,其分散在1400g的乙醇中。随后,使其与在1000g乙醇中的300g的n-SiC悬浮液混合。混合物通过机械搅拌60分钟来均化,此后,在以300rpm操作的装有9kg的研磨球的研磨机中研磨另外的60分钟。
[0060] 对悬浮液进行喷雾-干燥,以获得纳米复合颗粒,同时回收来自该方法(工艺)中的乙醇。
[0061] 使由此获得的干燥产品通过热-压法而经受成形和烧结过程。为此,将50克的材料引入到直径为50mm的石墨模具中并以15MPa单轴压制。随后,通过施加50MPa的最大压力来进行烧结,其中加热斜率为5℃/min,可达1150℃,且停留时间为60分钟。
[0062] 所得的材料根据其真密度(氦测比重术)、表观密度(阿基米德法)、杨氏模量(在Grindosonic设备中的共振频率方法)、断裂阻力(在INSTRON8562设备中的四点弯曲法)、以及热膨胀系数(膨胀计,NETSCH牌,型号DIL402C)来表征。相应的值在表1中示出。热膨胀系数随温度的变化示在图3中。
[0063] 实施例3
[0064] 起始原料为:
[0065] ●具有组成LiAlSiO4(图1中的组成A)的LAS粉末,具有1μm的中值粒径和3
2.39g/cm 的密度。
[0066] ●来自制造商Hubei的SiC粉末,具有小于100nm的中值粒径和3.20g/cm3的密度。
[0067] ●无水乙醇(99.97%纯度)。
[0068] 使用700g的LAS,其分散在1400g的乙醇中。随后,使其与在1000g乙醇中的300g的n-SiC悬浮液混合。混合物通过机械搅拌60分钟而均化,之后,在以300rpm操作的装有9kg的研磨球的研磨机中研磨另外的60分钟。
[0069] 对悬浮液进行喷雾-干燥,以获得纳米复合颗粒,同时回收来自该方法(工艺)的乙醇。
[0070] 使由此获得的干燥产品通过火花等离子体烧结(SPS)而经受成形和烧结过程。为此,将30克的材料引入到直径为40mm的石墨模具中并以5MPa进行单轴压制。随后,通过施加40MPa的最大压力来进行烧结,其中加热斜率为5℃/min,可达1150℃,且停留时间为2分钟。
[0071] 所得的材料根据其真密度(氦测比重术)、表观密度(阿基米德法)、杨氏模量(在Grindosonic设备中的共振频率方法)、断裂阻力(在INSTRON8562设备中的四点弯曲法)、和热膨胀系数(膨胀计,NETSCH牌,型号DIL402C)来表征。相应的值在表1中示出。热膨胀系数随温度的变化示在图3中。
[0072] 实施例4
[0073] 起始原料为:
[0074] ●具有组成LiAlSiO4(图1中的组成A)的LAS粉末,具有1μm的中值粒径和3
2.39g/cm 的密度。
[0075] ●来自制造商Hubei的SiC粉末,具有小于100nm的中值粒径和3.20g/cm3的密度。
[0076] ●蒸馏水。
[0077] 使用700g的LAS,其分散在1400g的水中。随后,使其与在1000g水中的300g的n-SiC悬浮液混合。混合物通过机械搅拌60分钟而均化,之后,在以300rpm操作的研磨机中研磨另外的60分钟。随后,在搅拌下保持悬浮液的同时,对其进行加热,以便使溶剂蒸发,直到所获得的悬浮液具有按重量计大于55%的固体含量。加入按重量计0.25%的聚丙烯酸铵和按重量计0.5%的三甘醇。在保持搅拌1小时之后,将其铸件浇注在多孔氧化铝模具上。获得具有模具形状的成形材料,将其在常规的炉子中在氩气氛中在1390℃下进行烧结,其中停留时间为120分钟并且加热斜率为5℃/min。
[0078] 所得的材料根据其真密度(氦测比重术)、表观密度(阿基米德法)、杨氏模量(在Grindosonic设备中的共振频率法)、断裂阻力(在INSTRON8562设备中的四点弯曲法)、和热膨胀系数(膨胀计,NETSCH牌,型号DIL402C)来表征。相应的值在表1中示出。热膨胀系数随温度的变化示在图3中。
[0079] 表2示出了图1的SiO2-Li2O-Al2O3相图的复合材料的缩写。
[0080] 表1
[0081]性质 实施例1 实施例2 实施例3 实施例4
理论密度%100x(d表观/d真) 98.5 97 100 99.2
杨氏模量(GPa) 130 150 135 136
断裂阻力(MPa) 115 120 113 125
TEC(x 10-6K-1)(-150,150)℃ -0.28 -0.79 -0.18 0.12
[0082] 表2
[0083]缩写 复合材料
Cr 方石英
Tr 鳞石英
Mu 莫来石
B Sp ss 锂辉石固溶体
B Eu ss 锂霞石固溶体
P 透锂长石
R Li orthodase(锂长石)
S 锂辉石
E 锂霞石