具有由球杆杆头的一定形状构成的空气动力学特征的高尔夫球杆和高尔夫球杆组件转让专利

申请号 : CN201180009342.4

文献号 : CN102869412B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 罗伯特·波伊约翰·T·斯泰特斯加里·G·泰瓦瑞斯

申请人 : 耐克创新有限合伙公司

摘要 :

一种高尔夫球杆杆头(14)可包括主体部件,主体部件具有击球面(17)、顶部(18)、趾部(20)、跟部(24)、底部(28)、背部(22)和插鞘区域(16),插鞘区域位于击球面、跟部、顶部和底部的相交处。当从上面看时,顶部可具有相对圆形的后侧边缘轮廓。当从下面看时,底部可具有相对方形的后侧边缘轮廓。当从上面看时,底部的后侧边缘可沿着背部的至少一部分向后延伸超过顶部的后侧边缘。进一步,跟部可具有在跟部的向前部分中的翼面状表面。还提供包括该高尔夫球杆杆头的高尔夫球杆。

权利要求 :

1.一种用于金属木型球杆的高尔夫球杆杆头,所述球杆杆头包括:主体部件,所述主体部件具有击球面、顶部、趾部、跟部、底部、背部和插鞘区域,所述插鞘区域位于所述击球面、所述跟部、所述顶部和所述底部的交叉部分;

当从上面看时,所述顶部具有相对圆形的后侧边缘轮廓;并且

当从下面看时,所述底部具有相对方形的后侧边缘轮廓,其中当从上面看时,所述底部的所述后侧边缘沿着所述背部的至少一部分向后延伸超过所述顶部的所述后侧边缘;以及扩散器,所述扩散器至少横跨所述底部的跟部-趾部宽度的大部分以与撞击时刻轨迹方向成15°至75°的角延伸,其中所述扩散器延伸到所述顶部的趾侧边缘。

2.根据权利要求1所述的高尔夫球杆杆头,其中所述高尔夫球杆杆头具有400cc或更大的体积以及0.90或更大的球杆宽度-面长度比。

3.根据权利要求1所述的高尔夫球杆杆头,其中所述跟部具有在所述跟部的向前部分中的翼面状表面。

4.根据权利要求1所述的高尔夫球杆杆头,其中坎背特征设置在所述顶部的所述相对圆形的后侧边缘和所述底部的所述相对方形的后侧边缘之间。

5.根据权利要求1所述的高尔夫球杆杆头,其中当从上面看时,所述跟部侧底部边缘随着所述跟部侧底部边缘接近所述底部的后侧底部边缘而形成转角。

6.根据权利要求1所述的高尔夫球杆杆头,其中当从上面看时,所述底部的趾部侧底部边缘随着所述趾部侧底部边缘接近所述底部的后侧底部边缘而形成转角。

7.根据权利要求1所述的高尔夫球杆杆头,其中所述扩散器具有随着所述扩散器延伸远离所述插鞘区域而增加的横截面积。

8.根据权利要求1所述的高尔夫球杆杆头,其中所述扩散器具有随着所述扩散器延伸远离所述插鞘区域而增加的宽度。

9.一种高尔夫球杆,包括:

杆身;以及

根据权利要求1所述的高尔夫球杆杆头,其中所述高尔夫球杆杆头固定到所述杆身的第一端。

10.一种用于金属木型球杆的高尔夫球杆杆头,所述高尔夫球杆杆头具有400cc或更大的体积以及0.90或更大的球杆宽度-面长度比,所述高尔夫球杆杆头包括:主体部件,所述主体部件具有击球面、顶部、趾部、跟部、底部、背部和插鞘区域,所述插鞘区域位于所述击球面、所述跟部、所述顶部和所述底部的交叉部分;

扩散器,所述扩散器至少横跨所述底部的跟部-趾部宽度的大部分以与撞击时刻轨迹方向成15°至75°的角延伸,其中所述扩散器延伸到所述顶部的趾侧边缘;

所述跟部具有在所述跟部的向前部分中的翼面状表面;

所述顶部具有过渡到所述跟部和所述趾部之一的后侧顶部边缘,且当从上面看时具有在第一顶部过渡区域中的第一顶部过渡轮廓;

所述底部具有过渡到所述跟部和所述趾部之一的后侧底部边缘,且当从下面看时具有在第一底部过渡区域中的第一底部过渡轮廓,所述第一底部过渡轮廓比所述第一顶部过渡轮廓较不平滑地弯曲。

11.根据权利要求10所述的高尔夫球杆杆头,

其中当从上面看时,所述后侧顶部边缘具有大体圆形的轮廓,并且其中当从上面看时,所述后侧底部边缘和所述第一底部过渡形成大体方形化的轮廓。

12.根据权利要求10所述的高尔夫球杆杆头,其中当从上面看时,所述第一底部过渡区域向后延伸超过所述第一顶部过渡区域。

13.根据权利要求10所述的高尔夫球杆杆头,

其中所述后侧顶部边缘过渡到所述跟部和所述趾部中的另一个,且当从上面看时,具有在第二顶部过渡区域中的第二顶部过渡轮廓,并且其中所述后侧底部边缘过渡到所述跟部和所述趾部中的另一个,且当从下面看时,具有在第二底部过渡区域中的第二底部过渡轮廓,所述第二底部过渡轮廓比所述第二顶部过渡轮廓较不平滑地弯曲。

14.根据权利要求13所述的高尔夫球杆杆头,

其中当从上面看时,所述第一底部过渡区域向后延伸超过所述第一顶部过渡区域;并且其中当从上面看时,所述第二底部过渡区域向后延伸超过所述第二顶部过渡区域。

15.根据权利要求10所述的高尔夫球杆杆头,其中期望接触点限定在所述击球面上,并且其中,当从侧面看时,在向后与所述期望接触点对准的位置处,所述顶部到所述背部的过渡区域是突然过渡和急转过渡中的一种。

16.根据权利要求10所述的高尔夫球杆杆头,其中期望接触点限定在所述击球面上,并且其中,当从侧面看时,在向后与所述期望接触点对准的位置处,所述底部到所述背部的过渡区域形成向后的锥形突起。

17.根据权利要求16所述的高尔夫球杆杆头,其中当从侧面看时,所述背部的在所述底部到所述背部的过渡区域中的表面是凹形的。

18.根据权利要求10所述的高尔夫球杆杆头,其中期望接触点限定在所述击球面上,并且其中,当从侧面看时,在向后与所述期望接触点对准的位置处,所述顶部到所述背部的过渡区域是突然过渡和急转过渡中的一种,并且当从侧面看时,所述底部到所述背部的过渡区域形成向后的锥形突起。

19.根据权利要求18所述的高尔夫球杆杆头,其中所述背部包括坎背特征。

20.根据权利要求19所述的高尔夫球杆杆头,其中所述背部还包括从所述坎背特征向后延伸的锥形突起。

21.根据权利要求10所述的高尔夫球杆杆头,其中所述背部包括遍及整个所述背部延伸的坎背特征。

22.根据权利要求10所述的高尔夫球杆杆头,还包括长形的插鞘减阻装置,所述长形的插鞘减阻装置从所述插鞘区域以与撞击时刻轨迹方向成10°至80°的角延伸。

23.根据权利要求10所述的高尔夫球杆杆头,其中当从上面看时,所述跟部侧底部边缘随着所述跟部侧底部边缘接近所述后侧底部边缘而形成转角。

24.根据权利要求10所述的高尔夫球杆杆头,其中当从上面看时,所述后侧底部边缘在中心区域中略微凸形。

25.根据权利要求10所述的高尔夫球杆杆头,其中所述扩散器具有随着所述扩散器延伸远离所述插鞘区域而增加的横截面积。

26.根据权利要求10所述的高尔夫球杆杆头,其中所述扩散器具有随着所述扩散器延伸远离所述插鞘区域而增加的宽度。

27.一种高尔夫球杆,包括:

杆身;以及

根据权利要求10所述的高尔夫球杆杆头,其中所述高尔夫球杆杆头固定到所述杆身的第一端。

说明书 :

具有由球杆杆头的一定形状构成的空气动力学特征的高尔

夫球杆和高尔夫球杆组件

[0001] 相关申请
[0002] 本申请要求2010年11月12日提交的、题名为“Golf Club Assembly and Golf Club With Aerodynamic Features(具有空气动力学特征的高尔夫球杆组件和高尔夫球杆)”且发明人名字为Robert Boyd等人的美国专利申请第12/945,363号的优先权,该申请是2010年5月13日提交的美国专利申请第12/779,669号的部分继续申请,且该申请还要求2010年1月27日提交的临时申请第61/298,742号的优先权权益。每个这些在先提交的申请以其全文通过引用的方式并入本文。
[0003] 领域
[0004] 本发明的方面大体涉及高尔夫球杆和高尔夫球杆杆头,且特别地涉及具有空气动力学特征的高尔夫球杆和高尔夫球杆杆头。
[0005] 背景
[0006] 当通过高尔夫球杆撞击时,高尔夫球运行的距离大部分由与高尔夫球撞击时球杆杆头的速度决定。球杆杆头的速度接着可受整个挥杆期间风阻力或球杆杆头提供的阻力影响,特别是假定球棒的大的球杆杆头尺寸。特别地,球棒或球道用木杆的球杆杆头在其摆动路径期间产生很大的空气动力学阻力。由球杆杆头产生的阻力导致球杆杆头速度减小,并从而导致在高尔夫球被击打后其运行距离的减小。
[0007] 空气以相对于高尔夫球杆杆头轨迹的方向流过大体平行于气流方向的高尔夫球杆杆头的那些表面。影响阻力的重要因素是气流边界层的性能。“边界层”是在其运动期间非常接近于球杆杆头表面的空气薄层。当气流运动经过表面时,遭遇增加的压强。此压强的增加称为“反向压力梯度”,因为其导致气流放慢并损失动量。随着压强继续增加,气流继续放慢直到其达到零速度,此时其从表面分离。气流将紧靠球杆杆头的表面直到气流边界层中动量的损失导致其从表面分离。气流从表面的分离在球杆杆头的后面产生低压分离区域(即在相对于空气流过球杆杆头的方向定义的后缘处)。此低压分离区域产生了压差阻力(pressure drag)。分离区域越大,压差阻力越大。
[0008] 减小或最小化低压分离区域大小的一种途径是通过提供允许层流保持地尽可能长的流线型形式,从而延迟或消除层状气流从球杆表面的分离。
[0009] 不仅在撞击时而且在撞击之前整个向下挥杆的过程期间,减小球杆杆头的阻力将导致球杆杆头速度的提高和高尔夫球运行距离的增加。当分析高尔夫球手的挥杆时,已经注意到球杆杆头的跟部/插鞘区域在向下挥杆的重要部分期间引导挥杆,且击球面只在与高尔夫球撞击时(或者即刻之前)引导挥杆。短语“引导挥杆(leading the swing)”旨在描述球杆杆头的面对挥杆轨迹方向的部分。为讨论的目的,当击球面引导挥杆时,即在撞击时,高尔夫球杆和高尔夫球杆杆头认为是处于0°的定向。已经注意到在向下挥杆期间,在与高尔夫球撞击之前向下挥杆的90°期间,高尔夫球杆可围绕其杆身的纵向轴线旋转90°左右或者更多。
[0010] 在此向下挥杆的最后90°部分期间,球杆杆头可加速到大约65英里每小时(mph)至超过100mph,且在一些专业高尔夫球手的情形下,加速到高达140mph。另外,随着球杆杆头速度的增加,典型地作用在球杆杆头上的阻力也增加。从而,在此向下挥杆的最后90°部分期间,随着球杆杆头以100mph以上的速度运行,作用在球杆杆头上的阻力可显著地阻止球杆杆头的任何进一步的加速。
[0011] 已经设计为在撞击时或者从球杆面引导挥杆时来看减小杆头阻力的球杆杆头可能不会很好地作用以在挥杆周期的其他阶段期间,比如当球杆杆头的跟部/插鞘区域引导向下挥杆时来减小阻力。
[0012] 将预期提供减小或克服现有已知设备中固有的一些或全部困难的高尔夫球杆杆头。对于本领域技术人员,即在此技术领域有丰富知识或丰富经验的人来说,鉴于本发明的以下公开内容和一些实施方式的详细描述,特别的优势将是明显的。
[0013] 概述
[0014] 本申请公开具有改进的空气动力学性能的高尔夫球杆杆头。根据一些方面,高尔夫球杆杆头可包括主体部件,主体部件具有击球面、顶部、趾部(toe)、跟部、底部、背部(back)和插鞘区域,插鞘区域位于击球面、跟部、顶部和底部的相交处。可在主体部件上配置减阻结构,以在从向后挥杆结束直到与高尔夫球的撞击时刻,且可选择地,贯穿向下挥杆的至少最后90°直到并与高尔夫球撞击即刻之前的至少一部分高尔夫向下挥杆期间,减小对于球杆杆头的阻力。还提供了包括该高尔夫球杆杆头的高尔夫球杆。
[0015] 根据一些方面,高尔夫球杆杆头可包括主体部件,所述主体部件具有击球面、顶部、趾部、跟部、底部、背部和插鞘区域,所述插鞘区域位于所述击球面、所述跟部、所述顶部和所述底部的交叉部分。当从上面看时,所述顶部可具有相对圆形的后侧边缘轮廓。当从下面看时,所述底部可具有相对方形的后侧边缘轮廓。
[0016] 当从上面看时,所述底部的所述后侧边缘可沿着所述背部的至少一部分向后延伸超过所述顶部的所述后侧边缘。进一步,坎背特征(Kammback feature)可设置在所述顶部的所述相对圆形的后侧边缘和所述底部的所述相对方形的后侧边缘之间。
[0017] 根据其他方面,所述跟部可具有在所述跟部的向前部分中的翼面状表面。
[0018] 根据一些方面,扩散器可至少横跨所述底部的跟部-趾部宽度的大部分以与撞击时刻轨迹方向成近似15°至近似75°的角延伸。进一步,所述扩散器可延伸到所述顶部的趾侧边缘。
[0019] 根据其他方面,可提供一种球杆杆头,其中顶部可具有过渡到跟部和趾部之一的后侧顶部边缘,且当从上面看时具有在顶部过渡区域中的第一顶部过渡轮廓。底部可具有过渡到跟部和趾部之一的后侧底部边缘,且当从上面看时具有在第一底部过渡区域中的第一底部过渡轮廓,所述第一底部过渡轮廓比所述顶部过渡轮廓较不平滑地弯曲。
[0020] 根据一些方面,当从上面看时,所述后侧顶部边缘可具有大体圆形、椭圆形或抛物状轮廓之一。进一步,当从上面看时,所述后侧底部边缘和所述第一底部过渡区域可形成大体方形化的轮廓(squared-off profile)。
[0021] 根据进一步的方面,当从侧面看时,所述顶部到所述背部的过渡区域是突然过渡(abrupt transition)和急转过渡(sharp transition)中的一种。根据其他方面,所述球杆杆头的所述背部可设置有向后的锥形突起。所述锥形突起可通过所述背部到所述底部的过渡形成。进一步,锥形突起可从坎背特征延伸。
[0022] 根据甚至其他方面,长形的插鞘减阻装置(hosel fairing)可设置在顶部上。所述长形的插鞘减阻装置可从所述插鞘区域以与撞击时刻轨迹方向成近似15°至近似75°的角延伸。
[0023] 其中公开的这些和其他的特征和优点将从以下对一些实施方式的详细公开内容中得到进一步理解。
[0024] 附图简述
[0025] 图1A是根据阐示性方面的具有形成在其球杆杆头内的凹槽的高尔夫球杆的透视图。
[0026] 图1B是设有定向轴线的图1A球杆杆头的详图。
[0027] 图2是图1A高尔夫球杆的球杆杆头的侧透视图。
[0028] 图3是图1A高尔夫球杆的球杆杆头的后视图。
[0029] 图4是从球杆杆头的跟部侧看,图1A高尔夫球杆的球杆杆头的侧视图。
[0030] 图5是图1A高尔夫球杆的球杆杆头的底部的平面图。
[0031] 图6是图1A高尔夫球杆的球杆杆头的底透视图。
[0032] 图7是从球杆杆头的趾部侧看,图1A高尔夫球杆的球杆杆头的可选择实施方式的侧视图。
[0033] 图8是图7球杆杆头的后视图。
[0034] 图9是从球杆杆头的跟部侧看,图7球杆杆头的侧视图。
[0035] 图10是图7球杆杆头的底透视图。
[0036] 图11是典型的高尔夫球手向下挥杆的示意的、随时间推移的正视图。
[0037] 图12A是阐示偏航的球杆杆头的顶视图;图12B是阐示倾斜的球杆杆头的跟部侧正视图;且图12C是阐示滚动的球杆杆头的前视图。
[0038] 图13是典型的向下挥杆期间作为球杆杆头位置的函数的典型偏航角(yaw angle)、倾斜角(pitch angle)和滚动角的图表。
[0039] 图14A-14C分别示意地阐示球杆杆头14(顶视图和正视图两者)和在图11的A、B、C点流过球杆杆头的空气流的典型定向。
[0040] 图15是根据一些阐示性方面的球杆杆头的顶视图。
[0041] 图16是图15球杆杆头的前视图。
[0042] 图17是图15球杆杆头的趾部侧正视图。
[0043] 图18是图15球杆杆头的后部侧正视图。
[0044] 图19是图15球杆杆头的跟部侧正视图。
[0045] 图20A是图15球杆杆头的底透视图。
[0046] 图20B是类似于图15球杆杆头的球杆杆头可选择实施方式的底透视图,但没有扩散器。
[0047] 图21是根据其他阐示性方面的球杆杆头的顶视图。
[0048] 图22是图21球杆杆头的前视图。
[0049] 图23是图21球杆杆头的趾部侧正视图。
[0050] 图24是图21球杆杆头的后部侧正视图。
[0051] 图25是图21球杆杆头的跟部侧正视图。
[0052] 图26A是图21球杆杆头的底透视图。
[0053] 图26B是类似于图21球杆杆头的球杆杆头可选择实施方式的底透视图,但没有扩散器。
[0054] 图27是处于60度杆底角位置的没有扩散器的图1-6球杆杆头的顶视图,显示通过点112进行的横截面切断。
[0055] 图28是处于60度杆底角位置的图27球杆杆头的正视图。
[0056] 图29A和29B是通过图27的线XXIX-XXIX进行的横截面切断。
[0057] 图30A和30B是通过图27的线XXX-XXX进行的横截面切断。
[0058] 图31A和31B是通过图27的线XXXI-XXXI进行的横截面切断。
[0059] 图32A和32B是阐示一些其他物理参数的球杆杆头的示意图。(顶视图和正视图)。
[0060] 图33是根据另一示例性方面的具有被包括在球杆杆头的表面上的至少一个减阻结构的高尔夫球杆的透视图。
[0061] 图34是图33的球杆杆头的顶视图。
[0062] 图35是图33的球杆杆头的透视图。
[0063] 图36是图33的球杆杆头的底透视图。
[0064] 图37是根据甚至另一示例性方面的球杆杆头的正视图。
[0065] 图38是图37的球杆杆头的跟部侧透视图。
[0066] 图39是图37的球杆杆头的后视图。
[0067] 图40是图37的球杆杆头的趾部侧透视图。
[0068] 图41是图37的球杆杆头的大致朝向趾部、顶部和前部成角度的另一透视图。
[0069] 图42是图37的球杆杆头的顶视图。
[0070] 图43是图37的球杆杆头的大体朝向跟部和背部成角度的底透视图。
[0071] 图44是图37的球杆杆头的大体朝向趾部和前部成角度的另一底透视图。
[0072] 以上提到的附图无须按比例绘制,应该理解为提供本发明特定实施方式的说明,且本质上只是概念性的和所含原理的阐示。附图中所示的高尔夫球杆杆头的一些特征相对于其他的已经放大或者扭曲以有助于解释和理解。附图中使用的相同标记数字用于各种可选择实施方式中所示的类似或相同的构件和特征。其中公开的高尔夫球杆杆头将具有部分由预期的应用和其使用的环境所决定的构造和构件。
[0073] 详述
[0074] 图1A中显示高尔夫球杆10的阐示性实施方式,且包括杆身12和附接到杆身12的高尔夫球杆杆头14。如图1A所示,高尔夫球杆杆头14可以是球棒。高尔夫球杆10的杆身12可由各种材料制成,例如钢、铝、钛、石墨或复合材料,以及合金和/或其组合,包括本领域传统已知和使用的材料。另外,杆身12可以任何需要的方式附接到球杆杆头14,包括以本领域已知的和使用的常规方式(例如,通过在插鞘元件处的粘合剂或粘结剂、通过熔融技术(例如,焊接、钎焊、软焊等)、通过螺纹或其他机械连接件(包括可释放的和可调节的机构)、通过摩擦配合、通过保持元件结构等)。把手或其他手柄元件12a可定位在杆身12上,以向高尔夫球手提供抓紧高尔夫球杆杆身12所利用的防滑表面。把手元件12a可以任何想要的方式附接到杆身12,包括本领域已知的和使用的常规方式(例如,通过粘合剂或粘结剂、通过螺纹或其他机械连接件(包括可释放的连接件)、通过熔融技术、通过摩擦配合、通过保持元件结构等)。
[0075] 在图1A的示例结构中,球杆杆头14包括主体部件15,杆身12以已知的形式在用于容纳杆身12的插鞘或插口16处附接到主体部件15。主体部件15包括如其中定义的多个部分、区域或表面。此示例的主体部件15包括击球面17、顶部18、趾部20、背部22、跟部24、插鞘区域26和底部28。背部22相对击球面17定位,并在顶部18和底部28之间延伸,且还在趾部20和跟部24之间延伸。此具体示例的主体部件15还包括边缘(skirt)或坎背特征23和形成在底部28内的凹进部分或扩散器36。
[0076] 参照图1B,击球面区域17可以是实质上平坦或具有轻微弯曲或弓形(还已知为“凸起”)的区域或表面。虽然高尔夫球可在面上的任意点接触击球面17,但击球面17与高尔夫球的期望接触点17a典型地大约在击球面17内居中。为本公开的目的,在期望的接触点17a处与打击面17的表面相切而画的线LT定义了平行于击球面17的方向。在期望的接触点17a处与打击面17的表面相切而画的线族定义了打击面平面17b。线LP定义了垂直于打击面平面17b的方向。另外,击球面17可通常设有杆面倾角α,以便在撞击点处(且还可以在瞄球位置(address position),即在开始向后挥杆之前,当球杆杆头紧邻高尔夫球定位在地面上时)击球平面17b不垂直于地面。通常,杆面倾角α旨在撞击时影响高尔夫球的初始向上轨迹。旋转垂直于击球平面17b所画的线LP通过负的杆面倾角α定义了在撞击时沿着期望的球杆杆头轨迹定向的线T0。通常,此撞击时的球杆杆头轨迹方向T0垂直于球杆杆身12的纵向轴线。
[0077] 仍然参照图1B,现可对球杆杆头14使用一组参照轴(X0,Y0,Z0),参照轴(X0,Y0,Z0)与定位在60度的杆底角位置且杆面角度为零度的球杆杆头相关(参见,例如高尔夫的USGA规则,附录II且还可以参见图28)。Y0轴从期望的接触点17a沿着撞击时的球杆杆头轨迹线以与T0方向相对的方向延伸。X0轴从期望的接触点17a大体向趾部20延伸,并垂直于Y0轴且平行于具有处于60度杆底角位置的球杆的水平面。从而当平行于地面所画时,线LT与X0轴重合。Z0轴从期望的接触点17a大体竖直向上并垂直于X0轴和Y0轴两者延伸。为此公开的目的,球杆杆头14的“中心线”认为与Y0轴重合(也与T0线重合)。其中使用的术语“向后”通常指与撞击时的球杆杆头轨迹方向T0相对的方向,即在Y0轴的正方向。
[0078] 现参照图1-6,位于球杆杆头14上侧上的顶部18从击球面17向后朝着高尔夫球杆杆头14的背部22延伸。当从下方观察球杆杆头14时,即沿着Z0轴的正方向,不能看到顶部18。
[0079] 与顶部18相对位于球杆杆头14的下侧或底侧的底部28从击球面17向后延伸到背部22。与顶部18一样,底部28从跟部24到趾部20延伸穿过球杆杆头14的宽度。当从上方观察球杆杆头14时,即沿着Z0轴的负方向,不能看到底部28。
[0080] 参照图3和4,背部22相对于击球面17定位,背部22位于顶部18和底部28之间并从跟部24向趾部20延伸。当从前方观察球杆杆头14时,即沿着Y0轴的正方向,不能看到背部22。在一些高尔夫球杆杆头的构造中,背部22可设有边缘或坎背特征23。
[0081] 跟部24从击球面17延伸到背部22。当从趾部侧观察球杆杆头14时,即沿着X0轴的正方向,不能看到跟部24。在一些高尔夫球杆杆头的构造中,跟部24可设有边缘或坎背特征23或边缘的一部分或坎背特征23的一部分。
[0082] 所示趾部20为在与跟部24相对的球杆杆头14的侧面上从击球面17延伸到背部22。当从跟部侧观察球杆杆头14时,即沿着X0轴的负方向,不能看到趾部20。在一些高尔夫球杆杆头的构造中,趾部20可设有边缘或坎背特征23或边缘的一部分或坎背特征23的一部分。
[0083] 用于容纳杆身的插口16定位在插鞘区域26内。所示插鞘区域26定位在击球面17、跟部24、顶部18和底部28的相交处,其可以包括跟部24、顶部18和底部28的邻近插鞘16放置的那些部分。通常,插鞘区域26包括提供从插口16过渡到击球面17、跟部24、顶部18和/或底部28的表面。
[0084] 因此应理解术语:击球面17、顶部18、趾部20、背部22、跟部24、插鞘区域26和底部28指主体部件15的大体区域或部分。在一些情形下,区域或部分可彼此重叠。另外,要理解,本公开内容中这些术语的使用可区别于其他文件中这些或类似术语的使用。要理解,通常术语趾部、跟部、击球面和背部旨在指代高尔夫球杆的四侧,当高尔夫球杆位于瞄球位置而直接从上方观察时,高尔夫球杆的四侧组成主体部件的周围轮廓。
[0085] 在图1-6所示的实施方式中,主体部件15可通常描述为“方头”。虽然在几何术语上不是真正的方形,但与传统的圆形球杆杆头相比,方头主体部件15的顶部18和底部28为大体方形。
[0086] 球杆杆头14的另一实施方式显示为图7-10中的球杆杆头54。球杆杆头54具有更加传统的圆头形。要清楚术语“圆头”不是指完全圆形的头部,相反是指具有大体或基本圆形的轮廓的头部。
[0087] 图11是至少一部分的高尔夫球手向下挥杆的运动捕捉分析的示意性正视图。如图11所示,在与高尔夫球的撞击点处(I),击球面17可认为是大体垂直于球杆杆头14的运行方向。(实际上,击球面17通常提供有从大约2°到4°的倾斜,以便击球面17从垂直位置偏离那些量。)在高尔夫球手向后挥杆期间,由于高尔夫球手臀部、躯干、手臂、手腕和/或手的旋转,起始于瞄球位置的击球面17远离高尔夫球手向外旋转(即对于右手高尔夫球手从上方观察时的顺时针方向)。在向下挥杆期间,击球面17转回到撞击点位置。
[0088] 事实上,参照图11和12A-12C,在向下挥杆期间,球杆杆头14经历偏航角(ROT-Z)上的改变(见图12A)(此中定义为球杆杆头14围绕竖直Zo轴的旋转)、倾斜角(ROT-X)上的改变(见图12B)(此中定义为球杆杆头14围绕Xo轴的旋转)和滚动角(ROT-Y)上的改变(见图12C)(此中定义为球杆杆头14围绕Yo轴的旋转)。
[0089] 偏航角、倾斜角和滚动角可用于提供球杆杆头14关于气流方向(其被认为是与球杆杆头的瞬时轨迹相对的方向)的定向。撞击时,以及在瞄球位置处,偏航角、倾斜角和滚动角可认为是0°。例如,参照图12A,处于45°的测量偏航角,如沿着Zo轴观察,球杆杆头14的中心线Lo与气流方向成45°定向。作为另一示例,参照图12B,处于20°的倾斜角,如沿着Xo轴观察,球杆杆头14的中心线Lo与气流方向成20°定向。且参照图12C,具有20°的滚动角,如沿着Yo轴观察,球杆杆头14的Xo轴与气流方向成20°定向。
[0090] 图13是在典型的向下挥杆期间作为球杆杆头14位置的函数的代表性偏航角(ROT-Z)、倾斜角(ROT-X)和滚动角(ROT-Y)的图表。通过参照图11和图13可以看出,在大部分的向下挥杆期间,高尔夫球杆杆头14的击球面17不引导挥杆。在高尔夫球手向下挥杆的开始,由于大约90°的偏航旋转,跟部24可实质上引导挥杆。更进一步,在高尔夫球手向下挥杆的开始,由于大约10°的滚动旋转,跟部24的下部部分实质上引导挥杆。在向下挥杆期间,高尔夫球杆和球杆杆头14的定向从在向下挥杆开始时大约90°的偏航变化到撞击时大约0°的偏航。
[0091] 另外,参照图13,典型地,在向下挥杆过程中偏航角(ROT-Z)上的改变是不恒定的。在向下挥杆的第一部分期间,当球杆杆头14从高尔夫球手的后面移动到大约位于肩高位置时,偏航角上的改变典型地为大约20°。从而,当球杆杆头14为大约肩高时,偏航为大约70°。当球杆杆头14为大约腰部高度时,偏航角为大约60°。在向下挥杆的最后90°部分期间(从腰高度到撞击时),高尔夫球杆通常运行通过大约60°的偏航角到撞击时处
0°的偏航角。然而,此部分向下挥杆期间偏航角上的改变通常是不恒定的,且实际上,高尔夫球杆杆头14仅在向下挥杆最后10°的度数内,从大约20°的偏航结束于撞击时0°的偏航。在向下挥杆的此后面的90°部分的过程期间,45°到60°的偏航角可认为是典型的。
[0092] 类似地,仍然参照图13,典型地,在向下挥杆过程中滚动角(ROT-Y)上的改变也是不恒定的。在向下挥杆的第一部分期间,当球杆杆头14从高尔夫球手的后面移动到大约位于腰部高度的位置时,滚动角是完全不变的,例如,为大约7°到13°。然而,从大约腰高到撞击时的向下挥杆部分期间滚动角上的改变通常是不恒定的,且实际上,当球杆杆头14从大约腰高挥杆到大约膝盖高时,高尔夫球杆杆头14典型地在滚动角上具有从大约10°到大约20°的增加,且然后滚动角减小,至撞击时的0°。在向下挥杆的腰到膝盖部分的过程期间,15°的滚动角可认为是典型的。
[0093] 高尔夫球杆杆头的速度也在向下挥杆的期间变化,从向下挥杆开始时的0mph到撞击时的65到100mph(对于一流的高尔夫球手,或者更多)。在低速时,即向下挥杆的初始部分期间,由于空气抵抗而产生的阻力可能不是非常明显。然而,在当球杆杆头14与高尔夫球手的腰齐平并然后挥杆直到撞击点的部分向下挥杆期间,球杆杆头14以相当大的速率运行(例如对于专业的高尔夫球手,从60mph到130mph)。在向下挥杆的此部分期间,由于空气抵抗而产生的阻力导致高尔夫球杆杆头14以比没有空气抵抗时的可能速度低的速度撞击高尔夫球。
[0094] 返回参照图11,已经标记沿着高尔夫球手典型的向下挥杆的多个点(A、B和C)。在A点,球杆杆头14处于大约120°的向下挥杆角度,即距离与高尔夫球的撞击点大约120°。在此点,球杆杆头可能已经以其最大速度的大约70%运行。图14A示意性地阐示球杆杆头
14和气流在A点越过球杆杆头14的典型定向。球杆杆头14的偏航角可以是大约70°,意味着跟部24不再大体垂直于流过球杆杆头14的空气,而是跟部24与流过球杆杆头14的空气的垂直线成大约20°定向。还要注意,在向下挥杆的此点处,球杆杆头14可具有大约
7°到10°的滚动角,即球杆杆头14的跟部24相对于气流方向向上滚动7°到10°。从而,跟部24(轻微地倾斜以暴露跟部24的下部(底侧)部分)与插鞘区域26的跟部侧表面联合引导挥杆。
[0095] 在图11所示的B点,球杆杆头14处于大约100°的向下挥杆角,即距离与高尔夫球的撞击点大约100°。在此点,球杆杆头14现可能以其最大速度的大约80%运行。图14B示意性地阐示球杆杆头14和在B点流过球杆杆头14的空气流的典型定向。球杆杆头14的偏航角可以是大约60°,意味着跟部24与流过球杆杆头14的空气的垂直线成大约30°定向。另外,在向下挥杆的此点处,球杆杆头14可具有大约5°到10°的滚动角。从而,跟部24再次轻微地倾斜以暴露跟部24的下部(底侧)部分。跟部24的此部分与插鞘区域26的跟部侧表面联合,且现在还少许牵连着插鞘区域26的击打面侧的表面而引导挥杆。实际上,在此偏航角和滚动角的定向中,跟部侧表面与插鞘区域26的击打面侧的表面的相交处提供最向前的表面(在轨迹方向上)。如可见,跟部24和插鞘区域26与前缘关联,且趾部20、背部22邻近趾部20的一部分和/或其相交处与后缘(如通过气流方向所定义的)相关联。
[0096] 在图11所示的C点,球杆杆头14处于大约70°的向下挥杆位置,即距离与高尔夫球的撞击点大约70°。在此点,球杆杆头14现可能以其最大速度的大约90%或更多运行。图14C示意性地阐示球杆杆头14和在C点流过球杆杆头14的空气流的典型定向。球杆杆头14的偏航角是大约45°,意味着跟部24不再大体垂直于流过球杆杆头14的空气,而是与空气流的垂直线成大约45°定向。另外,在向下挥杆的此点处,球杆杆头14可具有大约20°的滚动角。从而,跟部24(跟部24倾斜大约20°以暴露跟部24的下部(底侧)部分)与插鞘区域26的跟部侧表面联合,且甚至更多地牵连着插鞘区域26的击打面侧的表面而引导挥杆。在此偏航角和滚动角的定向中,跟部侧表面与插鞘区域26的击打面侧的表面的相交处提供最向前的表面(在轨迹方向上)。如可见,跟部24和插鞘区域26再次与前缘关联,且临近背部22的趾部20部分、邻近趾部20的背部22部分和/或其相交处与后缘(如通过气流方向所定义的)相关联。
[0097] 返回参照图11和13,应理解整个向下挥杆期间阻力的集合或总和提供由球杆杆头14经受的全部阻力功。计算贯穿挥杆期间阻力功上百分比的减小比只计算撞击时阻力上百分比的减小可产生非常不同的结果。以下所述减阻结构提供各种方式以减小总阻力,而不只减小冲击点(I)处的阻力。
[0098] 球杆杆头14的又一实施方式在图15-20A中显示为球杆杆头64。球杆杆头64通常是“方头”形球杆。球杆杆头64包括击球表面17、顶部18、底部28、跟部24、趾部20、背部22和插鞘区域26。
[0099] 位于顶部18和底部28之间的坎背特征23从趾部20的向前部分(即比背部22,更接近于击球面17的区域)连续延伸到背部22,穿过背部22到跟部24并进入跟部24的向后部分。从而,最好如图17中所示,坎背特征23沿着趾部20的多数长度延伸。最好如图19中所示,坎背特征23沿着跟部24的少数长度延伸。在此特定实施方式中,坎背特征23是具有可包含在从大约10mm到大约20mm范围内的最大高度(H)和可包含在从大约5mm到大约15mm范围内的最大深度(D)的凹进凹槽。
[0100] 如图20A中所示,一个或多个扩散器36可形成在底部28内。在图20B中显示为球杆杆头74的球杆杆头14的可替换实施方式中,底部28可形成为没有扩散器。
[0101] 返回参照图16、18和19,在跟部24中,从坎背特征23的锥形端到插鞘区域26,可提供流线型区域100,流线型区域100具有大体成形为翼面引导表面的表面25。如以下更详细地公开,可配置此流线型区域100和翼面状表面25,以在高尔夫球杆10向下挥杆的行程期间随着空气流过球杆杆头14,而实现空气动力学的优势。特别地,跟部24的翼面状表面25可平滑且逐渐地过渡到顶部18。另外,跟部24的翼面状表面25可平滑且逐渐地过渡到底部28。甚至进一步,跟部24的翼面状表面25可平滑且逐渐地过渡到插鞘区域26。
[0102] 球杆杆头14的又一实施方式在图21-26A中显示为球杆杆头84。球杆杆头84通常是“圆头”形球杆。球杆杆头84包括击球表面17、顶部18、底部28、跟部24、趾部20、背部22和插鞘区域26。
[0103] 参照图23-26,位于顶部18最外缘下方的凹槽29从趾部20的向前部分连续延伸到背部22,穿过背部22到跟部24并进入跟部24的向后部分。从而,最好如图23中所示,凹槽29沿着趾部20的多数长度延伸。最好如图25中所示,凹槽29还沿着跟部24的多数长度延伸。在此特定实施方式中,凹槽29是具有可包含在从大约10mm到大约20mm范围内的最大高度(H)和可包含在从大约5mm到大约10mm范围内的最大深度(D)的凹进凹槽。另外,最好如图26A中所示,底部28包括大体平行于凹槽29的浅台阶21。台阶21平滑地并入插鞘区域26的表面内。
[0104] 如图20A和26A中所示,扩散器36可形成在底部28内。在这些特定实施方式中,扩散器36从紧邻插鞘区域26的底部28区域延伸,朝向趾部20、背部22和趾部20与背部22的相交处。如图26B中显示为球杆杆头94的球杆杆头14的可替换实施方式中,底部28可形成为没有扩散器。
[0105] 以下更详细描述的减阻结构的一些示例可提供各种方法,以当击球面17大体引导挥杆时,即当空气从击球面17向背部22流过球杆杆头14时,保持越过球杆杆头14的一个或多个表面的层状气流。另外,以下更详细描述的一些示例的减阻结构可提供各种方法,以当跟部24大体引导挥杆时,即当空气从跟部24向趾部20流过球杆杆头14时,保持越过球杆杆头14的一个或多个表面的层状气流。此外,以下更详细描述的一些示例的减阻结构可提供各种方法,以当插鞘区域26大体引导挥杆时,即当空气从插鞘区域26向趾部20和/或背部22流过球杆杆头14时,保持越过球杆杆头14的一个或多个表面的层状气流。其中公开的示例的减阻结构可单独或组合并入在球杆杆头14内,并可用于球杆杆头14的任何和所有实施方式。
[0106] 根据一些方面,并参照例如图3-6、8-10、15-31,减阻结构可提供为在插鞘区域26附近(或邻近且可能包括插鞘区域26的一部分)定位在跟部24上的流线型区域100。此流线型区域100可被配置,以在向下挥杆的行程期间当空气流过球杆杆头14时,实现空气动力学的优势。如以上关于图11-14所述,在向下挥杆的后半部分,其中球杆杆头14的速度是显著的,球杆杆头14可旋转通过从大约70°到0°的偏航角。另外,由于偏航角旋转的非线性性质,当球杆杆头14在大约70°到大约45°的偏航角之间定向时,设计为减小因气流产生的阻力的跟部24的构造可实现最大的优势。
[0107] 因此,由于向下挥杆期间偏航角的旋转,在跟部24内提供流线型区域100可能是有利的。例如,提供具有平滑的、空气动力学形状引导表面的流线型区域100可允许空气具有最小的混乱流过球杆杆头。此流线型区域100可成形以当空气从跟部24流向趾部20、流向背部22、和/或流向背部22与趾部20相交处时,最小化对气流的阻力。流线型区域100可有利地邻近插鞘区域26,且甚至可能与插鞘区域26重叠地定位在跟部24上。此跟部24的流线型区域100可在向下挥杆的重要部分期间形成球杆杆头14引导表面的一部分。流线型区域100可沿着整个跟部24延伸。可选择地,流线型区域100可具有更受限制的长度。
[0108] 参照图27和28,根据一些方面,当球杆处于具有零度杆面角度的60度杆底角位置时,如从杆身12的纵向轴线测量或者从杆身12的纵向轴线与地面相交的位置即“地面零”点处开始测量,在Y方向上从大约15mm到大约70mm至少沿着跟部24的长度可提供例如如图3-6、8-10和15-31中所提到的流线型区域100。在这些实施方式中,流线型区域100还可超过列举的范围任意地延伸。对于一些其他的实施方式,如从地面零点处开始测量,流线型区域100还可设置成沿着跟部24的长度在Y方向上至少从大约15mm到大约50mm。对于其他的实施方式,如从地面零点处开始测量,流线型区域100还可设置成沿着跟部24的长度在Y方向上至少从大约15mm到大约30mm,或者甚至至少从大约20mm到大约25mm。
[0109] 图27显示有横断面切断。线XXIX-XXIX处的横断面显示在图29A和29B中。线XXX-XXX处的横断面显示在图30A和30B中。线XXXI-XXXI处的横断面显示在图31A和31B中。图29-31中显示的横断面用于阐示图1-6的球杆杆头14的特定特征,且还用于示意性地阐示图7-10、图15-20和图21-26中所示球杆杆头实施方式的特征。
[0110] 根据一些方面并参照图29A和29B,流线型区域100可由横断面110定义在跟部24中。图29A和29B阐示取自通过图27的线XXIX-XXIX的球杆杆头14的横断面110。部分横断面110穿过底部28、顶部18和跟部24。另外,至少一部分横断面110位于流线型区域100内,并从而如上所讨论,横断面110的引导部分可类似翼面。横断面110是在竖直平面内平行于Xo轴(即距离Yo轴大约90°(即在±5°的范围内))取得的,从地面零点测量此竖直平面位于Y方向上的大约20mm处。换句话说,横断面110垂直于Yo轴定向。此横断面110因而定向用于空气在从跟部24到趾部20的方向上流过球杆杆头14。
[0111] 参照图27、29A和29B,前缘111位于跟部24上。前缘111大体从插鞘区域26向背部22延伸,并位于顶部18和底部28之间。如果空气要平行于Xo轴从跟部24向趾部20流过球杆杆头14,前缘111将是要经受气流的跟部24的第一部分。通常,在前缘111处,横断面110表面的边坡垂直于Xo轴,即当球杆杆头14处于60度杆底角位置时,边坡是竖直的。
[0112] 位于跟部24的前缘111上的顶点112可定义在Y=20mm处(见图27)。另外,与横断面110和顶点112相关的局部坐标系可定义为:从顶点112延伸的x轴和z轴以分别和与球杆杆头14相关联的Xo轴和Zo轴成15°角定向在横断面110的平面内。此成15°的轴线定向相应于15°的滚动角,其在向下挥杆的腰到膝盖部分的期间内(即当球杆杆头14接近其最大速度时)认为是典型的。
[0113] 因而,根据一些方面,流线型区域100的翼面状表面25可描述为“准抛物线”。如其中使用的,术语“准抛物线”指具有顶点112和两个臂的任何凹进曲线,其中两个臂远离顶点112并在顶点的相同侧上彼此远离地平滑且逐渐地弯曲。翼面状表面25的第一臂可指作顶部侧曲线或上部曲线113。翼面状表面25的另一臂可指作底部侧曲线或下部曲线114。例如,双曲线的分支可认为是准抛物线。另外,如其中使用的,准抛物线横断面无需对称。例如,准抛物线横断面的一个臂可由抛物曲线最接近地表示,而另一臂可由双曲曲线最接近地表示。作为另一示例,顶点112无需在两个臂之间居中。在此情形下,术语“顶点”指准抛物曲线的前点,即两条曲线113、114从其开始彼此远离地弯曲的点。换句话说,以臂在相同方向上水平延伸来定向的“准抛物线”曲线在顶点112具有最大的斜率,并且随着距离顶点112水平距离的增加,曲线113、114斜率的绝对值逐渐并连续地减小。
[0114] 图30A和30B阐示取自通过图27的线XXX-XXX的球杆杆头14的横断面120。根据一些方面并参照图30A和30B,流线型区域100可通过其横断面120定义在跟部24内。如图27所示,横断面120取自围绕顶点112旋转,相对Yo轴成大约70度角(即在±5°的范围内)的位置。此横断面120还因而定向用于空气在从跟部24到趾部20的方向上流过球杆杆头14,但此时与横断面110(参照图14A)相比,气流方向朝趾部20与背部22的相交处成更大角度。类似于横断面110,横断面120包括从顶点112延伸的顶部侧曲线或上部曲线123和也从顶点延伸的底部侧曲线或下部曲线124。所示顶点112与跟部24的前缘112在Y=20mm处相关联。
[0115] 与横断面120相关联的x轴和z轴分别以与球杆杆头14相关联的Xo轴和Zo轴成15°的角度定向在横断面120的平面内。再次,此横断面轴以15°的定向相应于15°的滚动角,其在向下挥杆的腰到膝盖部分的过程期间(即当球杆杆头14接近其最大速度时)认为是典型的。
[0116] 图31A和31B阐示取自通过图27的线XXXI-XXXI的球杆杆头14的横断面130。根据一些方面并参照图31A和31B,流线型区域100可通过其横断面130定义在跟部24内。
如以上讨论,流线型区域100的横断面130可类似于翼面的前缘。如图27所示,横断面130取自围绕顶点112旋转,相对Y轴成大约45度角(即在±5°的范围内)的位置。此横断面130还因而定向用于以大体从跟部24到背部22的方向流过球杆杆头14的空气(参照图14C)。类似于横断面110和120,横断面130还包括从顶点112延伸的顶部侧曲线或上部曲线133和也从顶点延伸的底部侧曲线或下部曲线134。如从地面零点开始测量,所示顶点112与跟部24的前缘111在Y=20mm处相关联。
[0117] 与横断面130相关联的x轴和z轴分别以与球杆杆头14相关联的Xo轴和Zo轴成15°的角度定向在横断面130的平面内。再次,此横断面轴以15°的定向相应于15°的滚动角,其在向下挥杆的腰到膝盖部分的过程期间(即当球杆杆头14接近其最大速度时)认为是典型的。
[0118] 参照图29A、30A和31A,本领域技术人员将意识到特性化曲线形状的一种方法是通过提供样点表。为了这些样点表的目的,顶点112定义在(0,0),且样点的所有坐标都相对于顶点112定义。图29A、30A和31A包括x轴坐标线,可在x轴坐标线的12mm、24mm、36mm、48mm处定义样点。虽然样点可定义在例如3mm、6mm和18mm的其他x轴坐标处,但为清楚的目的,这些坐标线不包括在图29A、30A和31A内。
[0119] 如图29A、30A和31A所示,zU 坐标与上部曲线113、123、133相关联;zL坐标与下部曲线114、124、134相关联。上部曲线通常不同于下部曲线。换句话说,横断面110、120、130可能是不对称的。如从观察图29A、30A和31A可见,当横断面朝球杆杆头的背部摆动时,此不对称,即上部曲线和下部曲线之间的不同可变得更明显。特别地,以相对中心线成大约90度角选取的横断面上部曲线和下部曲线(例如见图29A)可能比以相对中心线成大约45度角选取的横断面上部曲线和下部曲线(例如见图31A)更加对称。另外,再参照图
29A、30A和31A,对于一些示例实施方式,当横断面朝球杆杆头的背部摆动时,下部曲线可保持相对恒定,但是上部曲线可能变平。
[0120] 参照图29B、30B和31B,本领域技术人员将意识到特性化曲线的另一种方法是通过使曲线匹配于一个或多个函数。例如,因为如上所讨论的上部曲线和下部曲线的不对称,横断面110、120、130的上部曲线和下部曲线可以是使用多项式函数独立拟合的曲线。从而,根据一些方面,二阶或三阶多项式,即二次或三次函数可足够特性化曲线。
[0121] 例如,二次函数可确定有二次函数的顶点,该二次函数的顶点限制到顶点112,即(0,0)点。换句话说,曲线拟合可能需要二次函数延伸通过顶点112。另外,曲线拟合可能需要二次函数在顶点112垂直于x轴。
[0122] 可用于曲线拟合的另一数学技术包括使用Bézier曲线,其是可用于平滑曲线建模的参数曲线。例如,Bézier曲线通常在计算机数字控制(CNC)机器中用于控制复杂平滑曲线的加工。
[0123] 使用Bézier曲线,以下归纳的参数曲线可用于分别得到横断面上部曲线的x坐标和z坐标:
[0124] xU=(1-t)3Pxu0+3(1-t)2tPxu1+3(1-t)t2Pxu2+t3Pxu3 式(1a)[0125] zU=(1-t)3Pzu0+3(1-t)2tPzu1+3(1-t)t2Pzu2+t3Pzu3 式(1b)[0126] 在0≤t≤1的范围内。
[0127] Pxu0,Pxu1,Pxu2和Pxu3是用于与上部曲线相关联的x坐标的Bézier曲线控制点,且Pzu0,Pzu1,Pzu2和Pzu3是用于与上部曲线相关联的z坐标的Bézier曲线控制点。
[0128] 类似地,以下归纳的参数Bézier曲线可用于分别得到横断面下部曲线的x坐标和z坐标:
[0129] 式(2a)
[0130] 式(2b)
[0131] 在0≤t≤1的范围内。
[0132] 和 是用于与下部曲线相关联的x坐标的Bézier曲线控制点,且 和 是用于与下部曲线相关联的z坐标的Bézier曲线控制点。
[0133] 由于曲线拟合通常用于拟合数据,获得数据的一种方法可以是提供约束数据的曲线。因而,例如,参照图29B、30B和31B,横断面110、120、130的上部曲线和下部曲线中的每一个可特性化为位于由曲线对(115a,115b)、(116a,116b)、(125a,125b)、(126a,126b)、(135a,135b)、(136a,136b)定义的区域内,其中的曲线对可以例如表示分别在曲线113、114、123、124、133和134的z坐标上多达±10%的变化,或者甚至多达20%的变化。
[0134] 另外,应注意图29-31中显示的横断面110、120和130是用于在底部28上没有设置扩散器36的球杆杆头14。根据一些方面,扩散器36可设置在底部28上,且从而横断面110、120和/或130的下部曲线将不同于图29-31中显示的形状。更进一步,根据一些方面,每个横断面110、120和130可在其后缘包括坎背特征23。
[0135] 返回参照图27和28,应注意在Y=20mm处与跟部24的前缘111相关联的(见图27)顶点112用于协助横断面110、120和130的描述(见图29-31)。然而,顶点112无需精确定位在Y=20mm处。在更一般的情形下,根据一些方面,如从“地面零”点测量,顶点
112可在Y方向上定位在从大约10mm到大约30mm。对于一些实施方式,如从“地面零”点测量,顶点112可在Y方向上定位在从大约15mm到大约25mm。在定点位置增加或减少毫米的变化可认为是可接受的。根据一些实施方式,顶点112可在球杆杆头14的前半部内定位在跟部24的前缘111上。
[0136] 根据一些方面且最好如图20B中所示,底部28可延伸穿过球杆杆头14的从跟部24到趾部20的宽度,具有大体凸状、渐变的、宽度方向的弯曲部(curvature)。另外,跟部
24的平滑且不中断的翼面状表面25可延续进入,且甚至超过底部28的中心区域。底部的大体凸状、宽度方向的弯曲部可一直延伸穿过底部28到趾部20。换句话说,底部28可设有穿过其从跟部24到趾部20的整个宽度的凸状弯曲部。
[0137] 另外,底部28可延伸穿过球杆杆头14的从击球面17到背部22的长度,具有大体凸状、平滑的弯曲部。此大体凸状弯曲部可从紧邻击球表面17延伸到背部22,而不是从正曲率过渡到负曲率。换句话说,底部28可设有沿其从击球面17到背部22的整个长度的凸状弯曲部。
[0138] 可选择地,根据一些方面,例如如图5、20A和26A中所示,凹进部分或扩散器36可形成在底部28内。在图5的所示实施方式中,凹进部分或扩散器36为具有其形状的顶点38的大体V型,顶点38接近于击球面17和跟部24定位。即,顶点38接近于击球面17和跟部24且远离边缘或坎背特征23以及趾部20定位。凹进部分或扩散器36包括一对腿
40,一对腿40延伸到接近趾部20并远离击球面17的点,并朝边缘或坎背特征23且远离击球面17弯曲。
[0139] 仍参照图5,多个第二凹进部分42可形成于凹进部分或扩散器36的底部表面43内。在所示实施方式中,每个第二凹进部分42为规则的梯形,具有其更接近跟部24的较小基部44和其更接近趾部20的较大基部46以及使较小基部44连接到较大基部46的斜侧45。在所示实施方式中,每个第二凹进部分42的深度从其在较小基部44的最大值变化到与凹进部分或扩散器36底部表面43齐平的较大基部46。
[0140] 从而,根据一些方面且最好如图5、20A和26A中所示,扩散器36可从紧邻插鞘区域26朝趾部20、朝趾部20与背部22的相交处和/或朝背部22延伸。当扩散器36远离插鞘区域26延伸时,扩散器36的横断面面积可逐渐增加。期望在从插鞘区域26朝趾部20和/或朝背部22流动的气流中建立的任何反向压力梯度将通过扩散器36横断面面积上的增加而减小。从而,期望流过底部28的空气从层流态到紊流态的任何过渡将被迟滞或者甚至完全消除。在一些构造中,底部28可包括多个扩散器。
[0141] 一个或多个扩散器36可定向为在至少一部分向下挥杆行程期间减小阻力,尤其是当球杆杆头14绕着偏航轴旋转时。扩散器36的侧面可以是直的或弯曲的。在一些构造中,扩散器36可以以距离Yo轴的某一角度定向,以当插鞘区域26和/或跟部24引导挥杆时扩散气流(即减小反向压力梯度)。扩散器36可以以在距离Yo轴的大约10°到大约80°范围的角度定向。任意地,扩散器36可以以在距离Yo轴的大约20°到大约70°,或者从大约30°到大约70°,或者从大约40°到大约70°,或者甚至从大约45°到大约65°范围的角度定向。从而,在一些构造中,扩散器36可从插鞘区域26朝趾部20和/或朝背部22延伸。在其他构造中,扩散器36可从跟部24朝趾部20和/或背部22延伸。
[0142] 任意地,如图5、20A和26所示,扩散器36可包括一个或多个翼板32。翼板32可在扩散器36的侧面之间大约居中定位。在一些构造中(未示出),扩散器36可包括多个翼板。在其他构造中,扩散器36无需包括任何翼板。更进一步,翼板32可大体沿着扩散器36的整个长度或只部分沿着扩散器36的长度延伸。
[0143] 如图1-4和6所示,根据一种实施方式,球杆杆头14可包括“坎背”特征23。坎背特征23可从顶部18延伸到底部28。如图3和6所示,坎背特征23从跟部24向趾部20延伸穿过背部22。另外,如图2和4所示,坎背特征23可延伸进入趾部22和/或跟部24。
[0144] 通常,坎背特征设计为考虑到,可以用空气动力学形状主体的非常长的、逐渐锥形的、下游(或者后)端来维持的层流不能用较短的、锥形的、下游端维持。当下游的锥形端太短而不能维持层流时,在球杆杆头下游端的横断面面积减小到球杆杆头最大横断面的大约50%之后,由于紊流产生的阻力可能开始变得重要。此阻力可通过切断或者去除球杆杆头的太短的锥形下游端而不是维持太短的锥形端而被减小。正是这个锥形端相当突然的切断被称为坎背特征23。
[0145] 如上所讨论,在高尔夫球手向下挥杆的相当大部分期间,跟部24和/或插鞘区域26引导挥杆。在向下挥杆的这些部分期间,趾部20、部分趾部20、趾部20与背部22的相交处、和/或背部22的部分形成球杆杆头14的下游端或后端(例如,参见图27和29-31)。
从而,在向下挥杆的这些部分期间,当沿着趾部、在趾部20与背部22的相交处、和/或沿着球杆杆头14的背部22定位时,可预期坎背特征23减小紊流,并因而减小由于紊流的阻力。
[0146] 另外,与高尔夫球撞击之前,在高尔夫球手向下挥杆的最后大约20°的期间,随着击球面17开始引导挥杆,球杆杆头14的背部22开始与气流的下游方向对齐。从而,当沿着球杆杆头14的背部22定位时,期望坎背特征23减小紊流,并从而减小由于紊流的阻力,这在高尔夫球手向下挥杆的最后大约20°的期间最明显。
[0147] 根据一些方面,坎背特征23可包括围绕球杆杆头14周围的一部分形成的连续凹槽29。如图2-4中所示,凹槽29从趾部20的前部30a完全延伸到趾部20的后缘30b,并继续延伸到背部22。于是凹槽29延伸穿过背部22的整个长度。如图4中可见,凹槽29逐渐变细到跟部24后部34内的端部。在一些实施方式中(见图2),在趾部20前部30a的凹槽29可转向并沿着底部28的一部分延续。
[0148] 在图2-4所示的实施方式中,凹槽29为大体U型。在一些实施方式中,凹槽29具有大约15mm的最大深度(D)。然而,应明白凹槽29沿其长度可具有任意深度,且进一步凹槽29的深度可沿其长度变化。更进一步,要清楚虽然凹槽29可具有任意的高度(H),但是从球杆杆头14的最大底部到顶部高度的1/4到1/2的高度可能是最有利的。如图2-4所示,凹槽29的高度可在其长度上变化,或者可选择地,凹槽29的高度在其长度的一部分或者全部上是相同的。
[0149] 当空气流过球杆杆头14主体部件15的顶部18和底部28时,其易于分离,这导致阻力的增加。凹槽29可用于减小空气分离的趋势,从而减小阻力并增加球杆杆头14的空气动力学性质,这转而增加球杆杆头的速度和击打后球将运行的距离。使凹槽29沿着趾部20延伸可能是特别有利的,因为如上所述,对于高尔夫球杆杆头14的大部分挥杆路径,球杆杆头14的引导部分是具有球杆杆头14的后缘即趾部20的跟部24。从而,在大部分挥杆路径期间,实现由凹槽29沿着趾部20提供的空气动力学优势。凹槽29沿着背部22延伸的部分可在球杆杆头14与球的撞击时提供空气动力学的优势。
[0150] 下表提供由凹槽29提供的挥杆期间阻力减小的示例性示例。此表基于对如图1-6所示球杆杆头14实施方式的计算机流体动力学(CFD)模型。表中,对于方头设计和结合有凹槽29减阻结构的方头设计两者,显示了对于贯穿高尔夫挥杆期间不同偏航度数的阻力值。
[0151] 阻力
[0152]偏航→ 90° 70° 60° 45° 20° 0°
标准 0 3.04 3.68 8.81 8.60 8.32
W/凹槽 0 1.27 1.30 3.25 3.39 4.01
[0153] 从计算机模型的结果中,可以看到在偏航角为0°的撞击时,对于具有凹槽29的方形球杆杆头,阻力为方形球杆杆头阻力的大约48.2%(4.01/8.32)。然而,对于方形球杆杆头,整个挥杆期间总阻力的合力提供544.39的总阻力功(total drag work),而对于具有凹槽29的方形球杆杆头的总阻力功为216.75。因此,对于具有凹槽29的方形球杆杆头的总阻力功为方形球杆杆头的总阻力功的大约39.8%(216.75/544.39)。因此,合并整个挥杆期间的阻力比只计算撞击时的阻力可产生很不相同的结果。
[0154] 参照图7-10,围绕球杆杆头54周围的一部分形成连续凹槽29。如图7-10所示,凹槽29从趾部20的前部30a完全延伸到趾部20的后缘30b,并继续延伸到背部22。于是凹槽29延伸穿过背部22的整个长度。如图9中可见,凹槽29逐渐变细到跟部24后部34内的端部。
[0155] 一个或多个减阻结构,比如跟部24的流线型部分100、底部28的扩散器36、和/或坎背特征23可设置在球杆杆头14上,以在从使用者向后挥杆的末端通过向下挥杆到球撞击位置的使用者高尔夫挥杆期间,减小球杆杆头上的阻力。特别地,可提供跟部24的流线型部分100、扩散器36、和坎背特征23以主要当球杆杆头14的跟部24和/或插鞘区域26大体引导挥杆时,减小球杆杆头14上的阻力。坎背特征23,尤其当位于球杆杆头14的背部22内时,还可提供为当击球面17大体引导挥杆时减小球杆杆头14上的阻力。
[0156] 不同的高尔夫球杆设计用于选手引入比赛中的不同技能。例如,专业选手可能选择在将挥杆期间产生的能量转换成在很小的最佳点或期望的接触部位上驱动高尔夫球的能量的方面非常有效的球杆。相反,业余选手可能选择设计为能容忍球杆最佳点相对于被击打高尔夫球的不太完美的放置的球杆。为了提供这些不同的球杆特性,球杆可设有具有任意各种重量、体积、惯性矩、重心位置、刚度、面(即击球表面)高度、宽度和/或面积等等的球杆杆头。
[0157] 典型的现代球棒的球杆杆头可设有从大约420cc到大约470cc范围的体积。如其中所示,球杆杆头体积为如使用USGA“用于测量木球杆的球杆杆头尺寸的程序”(2003年11月21日)测量的。对于典型的球棒,球杆杆头重量可在从大约190克到大约220克的范围。参照图32A和32B,可定义并特征化典型球棒的其他物理特性。例如,面面积可在从大约
3000mm2到大约4800mm2的范围,面长度(face length)可以在从大约110mm到大约130mm的范围,面高度可以在从大约48mm到大约62mm的范围。面面积定义为由半径的内切线界定的面积,半径的内切线使击球面混合到高尔夫球杆杆头的主体部件的其他部分。如图32B所示,面长度从球杆杆头上的相对点测量。面高度定义为在面中心处测量的从地平面到半径(其与击球面和球杆顶部重叠)的中点的距离(对于确定面中心的位置,见USGA,“用于测量高尔夫球杆杆头柔性的程序”第6.1节,撞击位置的确定),如当球杆位于具有零度杆面角度的60度杆底角时所测量的。球杆杆头的宽度可在从大约105mm到大约125mm的范围。在重心处围绕平行于Xo轴的轴线的惯性矩可在从大约2800g-cm2到大约3200g-cm2的
2 2
范围。在重心处围绕平行于Zo轴的轴线的惯性矩可在从大约4500g-cm 到大约5500g-cm的范围。对于典型的现代球棒,在球杆杆头Xo方向上重心的位置(如从地面零点测量)可位于从大约25mm到大约33mm的范围;在Yo方向上重心的位置也可位于从大约16mm到大约22mm的范围(也如从地面零点测量);且在Zo方向上重心的位置也可位于从大约25mm到大约38mm的范围(也如从地面零点测量)。
[0158] 对于典型的现代球棒的球杆杆头的一些特征化参数,上述值不意味着限制。从而例如,对于一些实施方式,球杆杆头体积可超过470cc或者球杆杆头重量可超过220g。对于2
一些实施方式,在重心处围绕平行于Xo轴的轴线的惯性矩可超过3200g-cm 。例如,在重心
2 2
处围绕平行于Xo轴的轴线的惯性矩可在多达3400g-cm ,多达3600g-cm,或者甚至多达或
2
超过4000g-cm。类似地,对于一些实施方式,在重心处围绕平行于Zo轴的轴线的惯性矩可
2 2
超过5500g-cm。例如,在重心处围绕平行于Zo轴的轴线的惯性矩可在多达5700g-cm ,多
2 2
达5800g-cm,或者甚至多达6000g-cm。
[0159] 任何给定高尔夫球杆的设计通常包括一系列折衷或妥协。以下公开的实施方式阐示了一些这种折衷。
[0160] 示例实施方式(1)
[0161] 在第一示例中,描述了如图1-6所示球杆杆头的代表性实施方式。此第一示例球杆杆头设有大于大约400cc的体积。参照图32A和32B,可特征化其他的物理特性。面高度在从大约53mm到大约57mm的范围。在重心处围绕平行于Xo轴的轴线的惯性矩在从大约2 2
2800g-cm到大约3300g-cm 的范围。在重心处围绕平行于Zo轴的轴线的惯性矩可大于大
2
约4800g-cm。作为球杆形状比的指示,球杆宽度-面长度的比率为0.94或更大。
[0162] 另外,此第一示例实施方式的球杆杆头可具有在从大约200g到大约210g范围内的重量。再次参照图32A和32B,面长度可位于从大约114mm到大约118mm的范围,且面面2 2
积可位于从大约3200mm到大约3800mm 的范围。球杆杆头宽度可位于从大约112mm到大约114mm的范围。Xo上重心的位置可位于从大约28mm到大约32mm的范围;Yo方向上重心的位置可位于从大约17mm到大约21mm的范围;且Zo方向上重心的位置可位于从大约27mm到大约31mm的范围(全部从地面零点测量)。
[0163] 对于此示例的球杆杆头,表I提供了用于横断面110的上部曲线113和下部曲线114的一组标称的样点坐标。如所讨论的,在一些情形下,这些标称的样点坐标可在±10%的范围内变化。
[0164] 表I 用于示例(1)横断面110的样点
[0165]
[0166] 可选择地,对于此示例的球杆杆头,以上提到的Bézier等式(1a)和(1b)可用于分别得到横断面110的上部曲线113的x坐标和z坐标,如下:
[0167] xU=3(17)(1-t)t2+(48)t3 式(113a)
[0168] zU=3(10)(1-t)2t+3(26)(1-t)t2+(26)t3 式(113b)
[0169] 在0≤t≤1的范围内。
[0170] 从而,对于此特定的曲线113,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=17和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=10,Pzu2=26和Pzu3=26。如所讨论的,在一些情形下,这些z坐标可在±10%的范围内变化。
[0171] 类似地,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面110的下部曲线114的x坐标和z坐标,如下:
[0172] xL=3(11)(1-t)t2+(48)t3 式(114a)
[0173] zL=3(-10)(1-t)2t+3(-26)(1-t)t2+(-32)t3 式(114b)
[0174] 在0≤t≤1的范围内。
[0175] 从而,对于此特定的曲线114,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:
和 在一些情形下,这些z坐标也可在±10%
的范围内变化。
[0176] 从数据和附图的验证中可以看到,上部、顶部侧曲线113不同于下部、底部侧曲线114。例如,在从顶点112沿着x轴3mm处,下部曲线114的z坐标值大于上部曲线113的z坐标值大约40%。这在曲线中引入初始的不对称,即下部曲线114开始深于上部曲线113。然而,沿着x轴从3mm到24mm,上部曲线113和下部曲线114两者都从x轴伸出另外的15mm(即ΔzU=22-7=15mm且ΔzL=25-10=15mm)。且,沿着x轴从3mm到36mm,上部曲线113和下部曲线114两者都从x轴分别伸出另外的18mm和19mm,差别小于10%。
换句话说,沿着x轴从3mm到36mm,上部曲线113和下部曲线114的曲率大约相同。
[0177] 和如上关于图29A讨论的曲线113和114一样,现参照图30A,用于此第一示例球杆杆头的上部曲线和下部曲线123和124的每一个可以由样点表呈现的曲线特征化。表II提供了用于示例(1)横断面120的一组样点坐标。zU坐标与上部曲线123相关联;zL坐标与下部曲线124相关联。
[0178] 表II 用于示例(1)横断面120的样点
[0179]
[0180]
[0181] 可选择地,对于此示例的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面120上部曲线123的x坐标和z坐标,如下:2 3
[0182] xU=3(19)(1-t)t +(48)t 式(123a)2 2 3
[0183] zU=3(10)(1-t) t+3(25)(1-t)t+(25)t 式(123b)
[0184] 在0≤t≤1的范围内。
[0185] 从而可以看到,对于此特定的曲线123,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=19和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:
Pzu0=0,Pzu1=10,Pzu2=25和Pzu3=25。
[0186] 如上述,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面120下部曲线124的x坐标和z坐标,如下:2 3
[0187] xL=3(13)(1-t)t +(48)t 式(124a)2 2 3
[0188] zL=3(-10)(1-t) t+3(-26)(1-t)t+(-30)t 式(124b)
[0189] 在0≤t≤1的范围内。
[0190] 从而,对于此特定的曲线124,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0191] 从数据和附图的验证中可以看到,上部、顶部侧曲线123不同于下部、底部侧曲线124。例如,在从顶点112沿着x轴3mm处,下部曲线124的z坐标值大于上部曲线123的z坐标值大约30%。这在曲线中引入初始的不对称。然而,沿着x轴从3mm到18mm,上部曲线123和下部曲线124两者都从x轴伸出另外的12mm(即ΔzL=19-7=12mm且ΔzL=
21-9=12mm)。且,沿着x轴从3mm到24mm,上部曲线123和下部曲线124两者都从x轴分别伸出另外的14mm和15mm,差别小于10%。换句话说,沿着x轴从3mm到24mm,上部曲线
123和下部曲线124的曲率大约相同。
[0192] 另外,和如上讨论的表面113和114一样,上部曲线和下部曲线133和134可以由样点表呈现的曲线特征化。表III提供了用于示例(1)横断面130的一组样点坐标。为此表的目的,样点的所有坐标均相对于顶点112定义。zU坐标与上部曲线133相关联;zL坐标与下部曲线134相关联。
[0193] 表III 用于示例(1)横断面130的样点
[0194]
[0195] 可选择地,对于此示例的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面130上部曲线133的x坐标和z坐标,如下:
[0196] xU=3(25)(1-t)t2+(48)t3 式(133a)
[0197] zU=3(10)(1-t)2t+3(21)(1-t)t2+(18)t3 式(133b)
[0198] 在0≤t≤1的范围内。
[0199] 从而,对于此特定的曲线133,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=25和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=10,Pzu2=21和Pzu3=18。
[0200] 如上述,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面130下部曲线134的x坐标和z坐标,如下:
[0201] xL=3(12)(1-t)t2+(48)t3 式(134a)
[0202] zL=3(-10)(1-t)2t+3(-22)(1-t)t2+(-29)t3 式(134b)
[0203] 在0≤t≤1的范围内。
[0204] 从而,对于此特定的曲线134,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0205] 对此示例(1)实施方式在横断面130的数据分析显示了,在从顶点112沿着x轴3mm处,下部、底部侧曲线134的z坐标值大于上部、顶部侧曲线133的z坐标值大约30%。
这在曲线中引入初始的不对称。沿着x轴从3mm到18mm,上部曲线133和下部曲线134都从x轴分别伸出另外的9mm和12mm。实际上,沿着x轴从3mm到12mm,上部曲线133和下部曲线134都从x轴分别伸出另外的6mm和8mm,差别大于10%。换句话说,对此示例(1)实施方式的上部曲线133和下部曲线134的曲率在关注的范围内明显地不同。且通过观察图31A可以看到,上部曲线133比下部曲线134更平坦(弯曲地更小)。
[0206] 另外,当将横断面110(即与中心线成90度定向的横断面)的曲线与横断面120(即与中心线成70度定向的横断面)的曲线相比时,可以看到它们非常类似。特别地,在x坐标的3mm、6mm、12mm和18mm处,上部曲线113的z坐标值与上部曲线123的z坐标值相同,且其后,上部曲线113和123的z坐标值彼此偏离小于10%。在x坐标从0mm到48mm的范围内,分别地关于横断面110和120的下部曲线114和124,z坐标值彼此偏离10%或者更小,其中下部曲线124稍微小于下部曲线114。当将横断面110(即与中心线成90度定向的横断面)的曲线与横断面130(即与中心线成45度定向的横断面)的曲线相比时,可以看到在x坐标的0mm到48mm范围内,横断面130的下部曲线134的z坐标值不同于横断面110的下部曲线114的z坐标值一相当恒定的量-2mm或者3mm。另一方面,可以看到在x坐标的0mm到48mm范围内,横断面130的上部曲线133的z坐标值与横断面110的上部曲线113的z坐标值之间的差增加。换句话说,上部曲线133的曲率明显偏离于上部曲线
113的曲率,其中上部曲线133明显地比上部曲线113更平坦。这还可以通过比较图29A中的曲线113和图31A中的曲线133而清楚。
[0207] 示例实施方式(2)
[0208] 在第二示例中,描述了如图7-10所示球杆杆头的代表性实施方式。此第二示例球杆杆头设有大于大约400cc的体积。面高度位于从大约56mm到大约60mm的范围。在重心2 2
处围绕平行于Xo轴的轴线的惯性矩位于从大约2600g-cm 到大约3000g-cm 的范围。在重
2 2
心处围绕平行于Zo轴的轴线的惯性矩位于从大约4500g-cm 到大约5200g-cm 的范围。球杆宽度-面长度的比率为.90或更大。
[0209] 另外,此第二示例实施方式的球杆杆头可具有位于从大约197g到大约207g范围内的重量。再次参照图32A和32B,面长度可位于从大约122mm到大约126mm的范围,且面2 2
面积可位于从大约3200mm到大约3800mm 的范围。球杆杆头宽度可位于从大约112mm到大约116mm的范围。Xo方向上重心的位置可位于从大约28mm到大约32mm的范围;Yo方向上重心的位置可位于从大约17mm到大约21mm的范围;且Zo方向上重心的位置可位于从大约33mm到大约37mm的范围(全部从地面零点测量)。
[0210] 对于此示例(2)的球杆杆头,表IV提供了用于横断面110上部曲线和下部曲线的一组标称的样点坐标。如之前讨论,在一些情形下,这些标称的样点坐标可在±10%的范围内变化。
[0211] 表IV 用于示例(2)横断面110的样点
[0212]
[0213] 可选择地,对于此示例的球杆杆头,以上提到的Bézier等式(1a)和(1b)可用于分别得到横断面110上部曲线113的x坐标和z坐标,如下:2 3
[0214] xU=3(22)(1-t)t +(48)t 式(213a)2 2 3
[0215] zU=3(8)(1-t) t+3(23)(1-t)t+(23)t 式(213b)
[0216] 在0≤t≤1的范围内。
[0217] 从而,对于此特定的曲线113,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=22和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=8,Pzu2=23和Pzu3=23。如所讨论的,在一些情形下,这些z坐标可在±10%的范围内变化。
[0218] 类似地,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面110下部曲线114的x坐标和z坐标,如下:
[0219] xL=3(18)(1-t)t2+(48)t3 式(214a)
[0220] zL=3(-12)(1-t)2t+3(-25)(1-t)t2+(-33)t3 式(214b)
[0221] 在0≤t≤1的范围内。
[0222] 从而,对于此特定的曲线114,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:
和 在一些情形下,这些z坐标也可在±10%的
范围内变化。
[0223] 从该示例(2)实施方式在横断面110上的数据验证中可以看到,在从顶点112沿着x轴3mm处,下部曲线114的z坐标值大于上部曲线113的z坐标值50%。这在曲线中引入初始的不对称。然而,沿着x轴从3mm到24mm,上部曲线113从x轴伸出另外的13mm(即ΔzU=19-6=13mm)且下部曲线114从x轴伸出另外的15mm(即ΔzL=24-9=15mm)。且,沿着x轴从3mm到36mm,上部曲线113和下部曲线114从x轴分别伸出另外的16mm和
21mm。换句话说,沿着x轴从3mm到36mm,上部曲线113比下部曲线114更平坦。
[0224] 和如上关于图29A讨论的曲线113和114一样,现参照图30A,用于此第二示例球杆杆头的上部曲线和下部曲线123和124可以由样点表呈现的曲线特征化。表V提供了用于示例(2)横断面120的一组样点坐标。为此表的目的,样点坐标定义为相对于顶点112的值。zU坐标与上部曲线123相关联;zL坐标与下部曲线124相关联。
[0225] 表V:用于示例(2)横断面120的样点
[0226]
[0227] 可选择地,对于此示例的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面120上部曲线123的x坐标和z坐标,如下:
[0228] xU=3(28)(1-t)t2+(48)t3 式(223a)
[0229] zU=3(9)(1-t)2t+3(22)(1-t)t2+(21)t3 式(223b)
[0230] 在0≤t≤1的范围内。
[0231] 从而可以看到,对于此特定的曲线123,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=28和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:
Pzu0=0,Pzu1=9,Pzu2=22和Pzu3=21。
[0232] 如上述,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面120下部曲线124的x坐标和z坐标,如下:
[0233] xL=3(13)(1-t)t2+(48)t3 式(224a)
[0234] zL=3(-11)(1-t)2t+3(-22)(1-t)t2+(-33)t3 式(224b)
[0235] 在0≤t≤1的范围内。
[0236] 从而,对于此特定的曲线124,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0237] 横断面120中,从顶点112沿着x轴在3mm处,下部曲线124的z坐标值大于上部曲线123的z坐标值50%。这在曲线中引入初始的不对称。然而,沿着x轴从3mm到24mm,上部曲线123从x轴伸出另外的11mm(即ΔzU=17-6=11mm),且下部曲线124从x轴伸出另外的15mm(即ΔzL=24-9=15mm)。且,沿着x轴从3mm到36mm,上部曲线123和下部曲线124从x轴分别伸出另外的14mm和20mm。换句话说,类似于横断面110的曲线,沿着x轴从3mm到36mm,上部曲线123比下部曲线124更平坦。
[0238] 和如上讨论的表面113和114一样,上部曲线和下部曲线133和134可以由样点表呈现的曲线特征化。表VI提供了用于示例(2)横断面130的一组样点坐标。为此表的目的,样点的所有坐标均相对于顶点112定义。zU坐标与上部曲线133相关联;zL坐标与下部曲线134相关联。
[0239] 表VI 用于示例(2)横断面130的样点
[0240]
[0241] 可选择地,对于此示例的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面130上部曲线133的x坐标和z坐标,如下:
[0242] xU=3(26)(1-t)t2+(48)t3 式(233a)
[0243] zU=3(9)(1-t)2t+3(14)(1-t)t2+(13)t3 式(233b)
[0244] 在0≤t≤1的范围内。
[0245] 从而,对于此特定的曲线133,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=26和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=9,Pzu2=14和Pzu3=13。
[0246] 如上述,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面130下部曲线134的x坐标和z坐标,如下:
[0247] xL=3(18)(1-t)t2+(48)t3 式(234a)
[0248] zL=3(-7)(1-t)2t+3(-23)(1-t)t2+(-30)t3 式(234b)
[0249] 在0≤t≤1的范围内。
[0250] 从而,对于此特定的曲线134,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0251] 在横断面130,从顶点112沿着x轴在3mm处,下部曲线134的z坐标值只大于上部曲线133的z坐标值20%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线133从x轴伸出另外的7mm(即ΔzU=12-5=7mm),且下部曲线134从x轴伸出另外的15mm(即ΔzL=21-6=15mm)。且,沿着x轴从3mm到36mm,上部曲线133和下部曲线134从x轴分别伸出另外的8mm和20mm。换句话说,沿着x轴从3mm到36mm,上部曲线133明显地比下部曲线134更平坦。
[0252] 另外,对此示例(2)的实施方式,当将横断面110(即与中心线成90度定向的横断面)的曲线与横断面120(即与中心线成70度定向的横断面)的曲线相比时,可以看到它们是类似的。特别地,上部曲线113的z坐标值与上部曲线123的z坐标值相差大约10%或更少。分别地关于横断面110和120的下部曲线114和124,在x坐标从0mm到48mm的范围内,z坐标值彼此偏离小于10%,其中下部曲线124稍微小于下部曲线114。当将此示例(2)实施方式的横断面110(即与中心线成90度定向的横断面)的曲线与横断面130(即与中心线成45度定向的横断面)的曲线相比时,可以看到在x坐标的0mm到48mm范围内,横断面130的下部曲线134的z坐标值不同于横断面110的下部曲线114的z坐标值一相当恒定的量-3mm或者4mm。另一方面,可以看到在x坐标的0mm到48mm范围内,横断面130的上部曲线133的z坐标值与横断面110的上部曲线113的z坐标值之间的差别稳定地增加。换句话说,上部曲线133的曲率明显偏离于上部曲线113的曲率,其中上部曲线133明显地比上部曲线113更平坦。
[0253] 示例实施方式(3)
[0254] 在第三示例中,描述了如图15-20所示球杆杆头的代表性实施方式。此第三示例球杆杆头设有大于大约400cc的体积。面高度位于从大约52mm到大约56mm的范围。在重心处围绕平行于Xo轴的轴线的惯性矩位于从大约2900g-cm2到大约3600g-cm2的范围。在重心处围绕平行于Zo轴的轴线的惯性矩大于大约5000g-cm2。球杆宽度-面长度的比率为.94或更大。
[0255] 此第三示例的球杆杆头还可设有位于从大约200g到大约210g范围内的重量。参照图32A和32B,面长度可位于从大约122mm到大约126mm的范围,且面面积可位于从大约3300mm2到大约3900mm2的范围。球杆杆头宽度可位于从大约115mm到大约118mm的范围。
Xo方向上重心的位置可位于从大约28mm到大约32mm的范围;Yo方向上重心的位置可位于从大约16mm到大约20mm的范围;且Zo方向上重心的位置可位于从大约29mm到大约33mm的范围(全部从地面零点测量)。
[0256] 对于此示例(3)的球杆杆头,表VII提供了用于横断面110上部曲线和下部曲线的一组标称的样点坐标。如之前讨论,在一些情形下,这些标称的样点坐标可在±10%的范围内变化。
[0257] 表VII 用于示例(3)横断面110的样点
[0258]
[0259] 可选择地,对于此示例的球杆杆头,以上提到的Bézier等式(1a)和(1b)可用于分别得到横断面110上部曲线113的x坐标和z坐标,如下:
[0260] xU=3(17)(1-t)t2+(48)t3 式(313a)
[0261] zU=3(5)(1-t)2t+3(12)(1-t)t2+(11)t3 式(313b)
[0262] 在0≤t≤1的范围内。
[0263] 从而,对于此特定的曲线113,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=17和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=5,Pzu2=12和Pzu3=11。如所讨论的,在一些情形下,这些z坐标可在±10%的范围内变化。
[0264] 类似地,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面110下部曲线114的x坐标和z坐标,如下:
[0265] xL=3(7)(1-t)t2+(48)t3 式(314a)
[0266] zL=3(-15)(1-t)2t+3(-32)(1-t)t2+(-44)t3 式(314b)
[0267] 在0≤t≤1的范围内。
[0268] 从而,对于此特定的曲线114,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:
和 在一些情形下,这些z坐标也可在±10%
的范围内变化。
[0269] 从该示例(3)实施方式在横断面110上的数据验证中可以看到,从顶点112沿着x轴在3mm处,下部曲线114的z坐标值大于上部曲线113的z坐标值275%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线113从x轴伸出另外的6mm(即ΔzU=10-4=6mm)且下部曲线114从x轴伸出另外的19mm(即ΔzL=34-15=19mm)。且,沿着x轴从3mm到36mm,上部曲线113和下部曲线114分别从x轴伸出另外的7mm和25mm。换句话说,沿着x轴从3mm到36mm,上部曲线113明显地比下部曲线114更平坦。
[0270] 和如上关于图29A讨论的曲线113和114一样,现参照图30A,用于此第三示例球杆杆头的上部曲线和下部曲线123和124可以由样点表呈现的曲线特征化。表VIII提供了用于示例(3)横断面120的一组样点坐标。为此表的目的,样点坐标定义为相对于顶点112的值。zU坐标与上部曲线123相关联;zL坐标与下部曲线124相关联。
[0271] 表VIII 用于示例(3)横断面120的样点
[0272]
[0273] 可选择地,对于此示例(3)的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面120上部曲线123的x坐标和z坐标,如下:2 3
[0274] xU=3(21)(1-t)t +(48)t 式(323a)2 2 3
[0275] zU=3(5)(1-t) t+3(7)(1-t)t+(7)t 式(323b)
[0276] 在0≤t≤1的范围内。
[0277] 从而可以看到,对于此特定的曲线123,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=21和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:
Pzu0=0,Pzu1=5,Pzu2=7和Pzu3=7。
[0278] 如上述,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面120下部曲线124的x坐标和z坐标,如下:2 3
[0279] xL=3(13)(1-t)t +(48)t 式(324a)2 2 3
[0280] zL=3(-18)(1-t) t+3(-34)(1-t)t+(-43)t 式(324b)
[0281] 在0≤t≤1的范围内。
[0282] 从而,对于此特定的曲线124,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0283] 在示例(3)的横断面120中,从顶点112沿着x轴在3mm处,下部曲线124的z坐标值大于上部曲线123的z坐标值250%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线123从x轴伸出另外的3mm(即ΔzU=7-4=3mm),且下部曲线124从x轴伸出另外的20mm(即ΔzL=34-14=20mm)。且,沿着x轴从3mm到36mm,上部曲线113和下部曲线114从x轴分别伸出另外的3mm和25mm。换句话说,类似于横断面110的曲线,沿着x轴从3mm到36mm,上部曲线123明显地比下部曲线124更平坦。实际上,从
24mm到48mm,上部曲线123保持离x轴恒定的距离,而在此相同范围内下部曲线124离开另外的9mm。
[0284] 和如上讨论的表面113和114一样,上部曲线和下部曲线133和134可以由样点表呈现的曲线特征化。表IX提供了用于示例(3)横断面130的一组样点坐标。为此表的目的,样点的所有坐标均相对于顶点112定义。zU 坐标与上部曲线133相关联;zL坐标与下部曲线134相关联。
[0285] 表IX 用于示例(3)横断面130的样点
[0286]
[0287] 可选择地,对于此示例的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面130上部曲线133的x坐标和z坐标,如下:2 3
[0288] xU=3(5)(1-t)t +(48)t 式(333a)2 2 3
[0289] zU=3(6)(1-t) t+3(5)(1-t)t+(-2)t 式(333b)
[0290] 在0≤t≤1的范围内。
[0291] 从而,对于此特定的曲线133,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=5和Pxu=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=6,Pzu2=5和Pzu3=-2。
[0292] 如上述,对于此示例(3)的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面130下部曲线134的x坐标和z坐标,如下:2 3
[0293] xL=3(18)(1-t)t +(48)t 式(334a)2 2 3
[0294] zL=3(-15)(1-t) t+3(-32)(1-t)t+(-41)t 式(334b)
[0295] 在0≤t≤1的范围内。
[0296] 从而,对于此特定的曲线134,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0297] 在示例(3)的横断面130,从顶点112沿着x轴在3mm处,下部曲线134的z坐标值大于上部曲线133的z坐标值175%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线133从x轴伸出-2mm(即ΔzU=2-4=-2mm)。换句话说,在此范围内,上部曲线133已经实际上接近x轴。另一方面,下部曲线134从x轴伸出另外的19mm(即ΔzL=30-11=19mm)。且,沿着x轴从3mm到36mm,上部曲线133和下部曲线134从x轴分别伸出另外的-4mm和26mm。换句话说,沿着x轴从3mm到36mm,上部曲线133明显地比下部曲线134更平坦。
[0298] 另外,对此示例(3)的实施方式,当将横断面110(即与中心线成90度定向的横断面)的曲线与横断面120(即与中心线成70度定向的横断面)的曲线相比时,可以看到上部曲线变化明显,而下部曲线则非常类似。特别地,上部曲线113的z坐标值与上部曲线123的z坐标值相差多达57%(相对于上部曲线123)。上部曲线123明显地比上部曲线113平坦。分别地关于横断面110和120的下部曲线114和124,在x坐标从0mm到48mm的范围内,z坐标值彼此偏离小于10%,其中下部曲线124稍微小于下部曲线114。当将此示例(3)实施方式的横断面110(即与中心线成90度定向的横断面)的曲线与横断面130(即与中心线成45度定向的横断面)的曲线相比时,可以看到在x坐标的0mm到48mm范围内,横断面130的下部曲线134的z坐标值不同于横断面110的下部曲线114的z坐标值一相当恒定的量-3mm或者4mm。从而,在x坐标的0mm到48mm范围内,下部曲线134关于x轴的曲率近似与下部曲线114的曲率相同。另一方面,可以看到在x坐标的0mm到48mm范围内,横断面130的上部曲线133的z坐标值与横断面110的上部曲线113的z坐标值之间的差别稳定地增加。换句话说,上部曲线133的曲率明显偏离于上部曲线113的曲率,其中上部曲线133明显地比上部曲线113更平坦。
[0299] 示例实施方式(4)
[0300] 在第四示例中,描述了如图21-26所示球杆杆头的代表性实施方式。此第四示例球杆杆头设有大于大约400cc的体积。面高度位于从大约58mm到大约63mm的范围。在重2 2
心处围绕平行于Xo轴的轴线的惯性矩位于从大约2800g-cm 到大约3300g-cm 的范围。在
2 2
重心处围绕平行于Zo轴的轴线的惯性矩从大约4500g-cm 到大约5200g-cm 的范围。球杆宽度-面长度的比率为.94或更大。
[0301] 另外,此第四示例的球杆杆头设有可位于从大约200g到大约210g范围内的重量。参照图32A和32B,面长度可位于从大约118mm到大约122mm的范围,且面面积可位于从大
2 2
约3900mm到大约4500mm 的范围。球杆杆头宽度可位于从大约116mm到大约118mm的范围。Xo方向上重心的位置可位于从大约28mm到大约32mm的范围;Yo方向上重心的位置可位于从大约15mm到大约19mm的范围;且Zo方向上重心的位置可位于从大约29mm到大约
33mm的范围(全部从地面零点测量)。
[0302] 对于此示例(4)的球杆杆头,表X提供了用于横断面110的跟部侧的一组标称的样点坐标。这些样点坐标设为绝对值。如所讨论的,在一些情形下,这些标称的样点坐标可在±10%的范围内变化。
[0303] 表X 用于示例(4)横断面110的样点
[0304]
[0305]
[0306] 可选择地,对于此示例(4)的球杆杆头,以上提到的Bézier等式(1a)和(1b)可用于分别得到横断面110上部曲线113的x坐标和z坐标,如下:
[0307] xU=3(31)(1-t)t2+(48)t3 式(413a)
[0308] zU=3(9)(1-t)2t+3(21)(1-t)t2+(20)t3 式(413b)
[0309] 在0≤t≤1的范围内。
[0310] 从而,对于此特定的曲线113,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=31和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=9,Pzu2=21和Pzu3=20。如所讨论的,在一些情形下,这些z坐标可在±10%的范围内变化。
[0311] 类似地,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面110下部曲线114的x坐标和z坐标,如下:
[0312] xL=3(30)(1-t)t2+(48)t3 式(414a)
[0313] zL=3(-17)(1-t)2t+3(-37)(1-t)t2+(-40)t3 式(414b)
[0314] 在0≤t≤1的范围内。
[0315] 从而,对于此特定的曲线114,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:
和 在一些情形下,这些z坐标也可在±10%的
范围内变化。
[0316] 从该示例(4)实施方式在横断面110上的数据验证中可以看到,从顶点112沿着x轴在3mm处,下部曲线114的z坐标值大于上部曲线113的z坐标值100%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线113从x轴伸出另外的11mm(即ΔzU=16-5=11mm)且下部曲线114从x轴伸出另外的20mm(即ΔzL=30-10=20mm)。且,沿着x轴从3mm到36mm,上部曲线113和下部曲线114分别从x轴伸出另外的14mm和
26mm。换句话说,沿着x轴从3mm到36mm,上部曲线113明显地比下部曲线114更平坦。
[0317] 和如上关于图29A讨论的曲线113和114一样,现参照图30A,用于此第一示例球杆杆头的上部曲线和下部曲线123和124可以由样点表呈现的曲线特征化。表XI提供了用于示例(4)横断面120的一组样点坐标。为此表的目的,样点坐标相对于顶点112定义。zU坐标与上部曲线123相关联;zL坐标与下部曲线124相关联。
[0318] 表XI 用于示例(4)横断面120的样点
[0319]
[0320] 可选择地,对于此示例(4)的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面120上部曲线123的x坐标和z坐标,如下:2 3
[0321] xU=3(25)(1-t)t +(48)t 式(423a)2 2 3
[0322] zU=3(4)(1-t) t+3(16)(1-t)t+(14)t 式(423b)
[0323] 在0≤t≤1的范围内。
[0324] 从而可以看到,对于此特定的曲线123,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=25和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:
Pzu0=0,Pzu1=4,Pzu2=16和Pzu3=14。
[0325] 如上述,对于此示例的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面120下部曲线124的x坐标和z坐标,如下:
[0326] xL=3(26)(1-t)t2+(48)t3 式(424a)
[0327] zL=3(-18)(1-t)2t+3(-36)(1-t)t2+(41)t3 式(424b)
[0328] 在0≤t≤1的范围内。
[0329] 从而,对于此特定的曲线124,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0330] 在示例(4)的横断面120中,从顶点112沿着x轴在3mm处,下部曲线124的z坐标值大于上部曲线123的z坐标值175%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线123从x轴伸出另外的8mm(即ΔzU=12-4=8mm),且下部曲线124从x轴伸出另外的20mm(即ΔzL=31-11=20mm)。且,沿着x轴从3mm到36mm,上部曲线123和下部曲线124从x轴分别伸出另外的10mm和26mm。换句话说,类似于横断面110的曲线,沿着x轴从3mm到36mm,上部曲线123明显地比下部曲线124更平坦。
[0331] 和如上讨论的表面113和114一样,上部曲线和下部曲线133和134可以由样点表呈现的曲线特征化。表XII提供了用于示例(4)横断面130的一组样点坐标。为此表的目的,样点的所有坐标均相对于顶点112定义。zU坐标与上部曲线133相关联;zL坐标与下部曲线134相关联。
[0332] 表XII 用于示例(4)横断面130的样点
[0333]
[0334] 可选择地,对于此示例的球杆杆头,以上所示的Bézier等式(1a)和(1b)可用于分别得到横断面130上部曲线133的x坐标和z坐标,如下:
[0335] xU=3(35)(1-t)t2+(48)t3 式(433a)
[0336] zU=3(6)(1-t)2t+3(9)(1-t)t2+(5)t3 式(433b)
[0337] 在0≤t≤1的范围内。
[0338] 从而,对于此特定的曲线133,用于x坐标的Bézier控制点已经定义为:Pxu0=0,Pxu1=0,Pxu2=35和Pxu3=48,且用于z坐标的Bézier控制点已经定义为:Pzu0=0,Pzu1=6,Pzu2=9和Pzu3=5。
[0339] 如上述,对于此示例(4)的球杆杆头,Bézier等式(2a)和(2b)可用于分别得到横断面130下部曲线134的x坐标和z坐标,如下:
[0340] xL=3(40)(1-t)t2+(48)t3 式(434a)
[0341] zL=3(-17)(1-t)2t+3(-35)(1-t)t2+(-37)t3 式(434b)
[0342] 在0≤t≤1的范围内。
[0343] 从而,对于此特定的曲线134,用于x坐标的Bézier控制点已经定义为:和 且用于z坐标的Bézier控制点已经定义为:

[0344] 在示例(4)的横断面130,从顶点112沿着x轴在3mm处,下部曲线134的z坐标值大于上部曲线133的z坐标值100%。这在曲线中引入初始的不对称。沿着x轴从3mm到24mm,上部曲线133从x轴伸出3mm(即ΔzU=7-4=3mm)。下部曲线134从x轴伸出另外的18mm(即ΔzL=26-8=18mm)。且,沿着x轴从3mm到36mm,上部曲线133和下部曲线134从x轴分别伸出另外的3mm和24mm。换句话说,沿着x轴从3mm到36mm,上部曲线133明显地比下部曲线134更平坦。
[0345] 另外,对此示例(4)的实施方式,当将横断面110(即与中心线成90度定向的横断面)的曲线与横断面120(即与中心线成70度定向的横断面)的曲线相比时,可以看到上部曲线变化明显,而下部曲线则非常类似。特别地,上部曲线113的z坐标值与上部曲线123的z坐标值相差多达43%(相对于上部曲线123)。上部曲线123明显地比上部曲线113平坦。分别地关于横断面110和120的下部曲线114和124,在x坐标从0mm到48mm的范围内,z坐标值彼此偏离小于10%,其中下部曲线124稍微小于下部曲线114。当将此示例(4)实施方式的横断面110(即与中心线成90度定向的横断面)的曲线与横断面130(即与中心线成45度定向的横断面)的曲线相比时,可以看到在x坐标的0mm到48mm范围内,横断面130的下部曲线134的z坐标值与横断面110的下部曲线114的z坐标值的不同在2mm到4mm的范围内。从而,对于示例(4)的实施方式,下部曲线134的曲率多少不同于下部曲线114的曲率。另一方面,可以看到在x坐标的0mm到48mm范围内,横断面130的上部曲线133的z坐标值与横断面110的上部曲线113的z坐标值之间的差别从1mm的差别到15mm的差别稳定地增加。换句话说,上部曲线133的曲率明显偏离于上部曲线113的曲率,其中上部曲线133明显地比上部曲线113更平坦。
[0346] 对于已知本公开内容优势的本领域技术人员来说,明显的是与横断面110、120、130类似成比例的流线型区域100将实现与表I-XII定义的特定横断面110、120、130相同的减阻优势。从而,表I-XII中呈现的横断面110、120、130可放大或减小以满足各种尺寸的球杆杆头。另外,对于已知本公开内容优势的本领域技术人员来说,明显的是具有大体与表I-XII中定义的曲线一致的上部曲线和下部曲线的流线型区域100也将通常实现与表I-XII中呈现的特定上部曲线和下部曲线相同的减阻优势。从而,例如,z坐标值可与表I-XII中呈现的那些差异多达±5%,多达±10%,或甚至在一些情形下多达±15%。
[0347] 图33-36示出了高尔夫球杆10的示例性实施方式。这些图中的高尔夫球杆是球棒。在一些实施方式中,高尔夫球杆杆头可具有400cc或更大的体积、420cc或更大的体积或者甚至440cc或更大的体积。此外,球杆杆头可具有0.90或更大的球杆宽度-面长度比、0.92或更大的球杆宽度-面长度比,或者甚至0.94或更大的球杆宽度-面长度比。在另一实施方式中,高尔夫球杆杆头可具有仅仅380cc或更大的体积。此外,球杆杆头可具有0.88或更大的球杆宽度-面长度比。
[0348] 在这些图的示例结构中,球杆杆头14包括主体部件15,杆身12以已知的形式在插鞘16处附接到主体部件15。主体部件15还包括多个部分、区域或表面。此示例的主体部件15包括击球面17、顶部18、趾部20、背部22、跟部24、插鞘区域26和底部28。插鞘区域26大体定位在击球面17、跟部24、顶部18和底部28的相交处。如之前详细详细论述的,球杆杆头14的跟部24可具有大体成形为翼面的引导表面的表面25,即翼面状表面25。如以下更详细解释的,顶部可具有相对圆形的后侧缘轮廓,如从上面所看到的;并且底部可具有相对方形的后侧缘轮廓,如从下面所看到的。
[0349] 如图33最佳所示,击球表面17的周边可包括倒角区域17c。倒角区域17c提供从面17的大体平面或略微弯曲的击打表面到顶部18、底部28、跟部24和/或趾部20的光滑过渡。倒角区域17c对于在平行于撞击时刻的球杆杆头轨迹方向T0的方向上流过球杆杆头14的空气呈现空气动力学形状表面。
[0350] 如图34和35所示,顶部18可具有边缘19。边缘19可包括趾侧边缘19a、后侧边缘19b和跟侧边缘19c。参照图34,趾侧边缘19a示出为以相对于T0方向成轻微角度的大体线性方式从球杆杆头14的向前部分延伸到球杆杆头14的向后部分。后侧边缘19b示出为从趾侧边缘到跟侧边缘19c以大体光滑的凸曲率延伸。通过非限制性示例的方式,当从上面或从垂直视角看时,后侧边缘19b的至少大部分可具有大体圆形、椭圆形或抛物状轮廓。后侧边缘19的轮廓还可由较高阶的等式表示。后侧边缘19b可具有在T0方向与期望接触点17a对准的距离击球面17的最大距离。后侧边缘19c示出为从球杆杆头14的向后部分延伸到插鞘区域26的向后部分。根据一些方面,跟侧边缘19c可能变得与远离插鞘区域26的周围表面在视觉上不可区分。这例如在跟部24包括光滑且逐渐地过渡到顶部18的翼面状表面25时发生。
[0351] 当从上面看时,从后侧边缘19b到趾侧边缘19a或从后侧边缘19b到跟侧边缘19c的过渡可能是光滑且逐渐的,或者该过渡可能更加突然。例如,如图34所示,当从上面看时,从后侧边缘19b到趾侧边缘19a的过渡形成具有转角的过渡轮廓。当从上面看时,从后侧边缘19b到跟侧边缘19c的过渡形成过渡轮廓,其大体是限定了后侧边缘19b的凸曲率延伸部。可选择地,这两个过渡可形成为更突然的转角过渡或更渐变的合并曲率(merged curvature)的过渡。
[0352] 另外,当从水平视角看时,顶部18的边缘19可提供从大体水平顶部表面到大体垂直的趾部表面、后部表面或跟部表面的显著过渡。“急转过渡”可限定为表面定向具有大于90°的改变的过渡,即趾部表面、后部表面或跟部表面是底切表面且顶部18的边缘19突出超过底切表面。“突然过渡”可限定为表面定向在相对短的距离上具有近似70°到90°的改变。换句话说,对于突然过渡,从顶部表面到趾部、背部或跟部表面的过渡大体形成转角。
“逐渐过渡”可限定为在相对长的距离上具有平滑改变的表面定向。因此,参照图33,顶部
18的趾侧边缘19a提供从顶部18的大体水平表面到迅速返回到顶部18之下的趾部表面的急转过渡的例子。参照图35,顶部18的后侧边缘19b提供从顶部18的基本水平表面到背部22的基本垂直表面的相对突然过渡的例子。通过插鞘区域26中的跟侧边缘19c说明了顶部18的边缘19处的逐渐过渡的例子,其中顶部18光滑且逐渐地过渡到跟部24。
[0353] 如图35和36最佳所示,底部28可具有边缘129。底部28的边缘129可包括趾侧边缘129a、后侧边缘129b和跟侧边缘129c。在图34示出的示例结构中,趾侧边缘129a和跟侧边缘129c各自示出为以大体线性方式以相对于T0方向的轻微角度从球杆杆头14的向前部分延伸到球杆杆头14的向后部分。后侧边缘129b示出为在大体垂直于撞击时刻的球杆杆头轨迹方向T0的方向上从趾侧边缘129a延伸到跟侧边缘129c。
[0354] 根据一些方面,当从上面看时,底部28的后侧边缘129b和从后侧边缘129b到跟侧边缘129c以及从后侧边缘129b到趾侧边缘129a的过渡区域可形成大体方形化的轮廓。在该具体的实施方式中,后侧边缘129b设置有略微复杂的曲率,即后侧边缘129b在中间区域是轻微凸形的,而在中间区域的任一侧是轻微凹形的。如图34最佳所示的,在后侧边缘
129b接合趾侧边缘129a的地方,形成转角。类似地,在后侧边缘129b接合跟侧边缘129c的地方,形成另一转角。如本领域普通技术人员所认识到的,在给定本公开的益处的情况下,后侧边缘129b可或多或少弯曲(包括甚至是线性的),且从后侧边缘129b到跟侧边缘
129c和/或从后侧边缘129b到趾侧边缘129a的过渡不必是90°转角,而是可或多或少是渐变的。和顶部18的后侧边缘19b一样,底部28的后侧边缘129b可具有在T0方向与期望接触点17a对准的距离击球面17的最大距离。
[0355] 与顶部18的边缘19和趾部、跟部或背部表面之间的过渡一样,底部28的边缘129到趾部、跟部或背部表面的过渡可设置成急转过渡、突然过渡或逐渐过渡。例如,参照图35,底部28的后侧边缘129b提供了从顶部28的大体水平的表面急转过渡到背部22的大体水平且相对面向的表面122的例子。在跟侧边缘129c处沿着跟部24的最向后部分从跟部24到底部28的过渡示出了突然过渡,几乎90°过渡的例子,如图36最佳所示。沿着跟部24的接近于插鞘区域的最向前部分从跟部24到底部28的过渡示出了更逐渐的过渡。根据一些方面,跟侧边缘129c的该向前部分可变得与周围表面在视觉上不可区分。这在例如跟部24包括光滑且逐渐过渡到底部28的翼面状表面25时发生。如图33最佳所示,在趾侧边缘
129a处从趾部20到底部28的过渡示出了非常逐渐的过渡的例子。
[0356] 根据一些方面且如图33和36最佳所示,底部28可包括扩散器36。扩散器36可从邻近插鞘区域26朝向趾部20延伸。此外,扩散器36的横截面积可随着扩散器36远离插鞘区域26延伸而逐渐增加。在该具体的示例性配置中,扩散器36的深度dd保持近似恒定,而扩散器36的从扩散器36的侧部36a到侧部36b所测量的宽度wd随着扩散器36远离插鞘区域26延伸而逐渐增加。期望在从插鞘区域26朝向趾部20流动的气流中积聚的任何不利的压力梯度将通过扩散器36的横截面积的增加而被缓和。因此,期望从流过底部28的空气的层流状态到紊流状态的任何过渡将一起被延迟或甚至消除。在一些构造中,底部28可包括多个扩散器。
[0357] 一个或多个扩散器36可被定向以在向下挥杆行程的至少一部分期间减小阻力,特别是当球杆杆头14绕着偏航轴旋转时。因此,在一些构造中,当插鞘区域26和/或跟部24引导挥杆时,扩散器36可被定向以分散空气流(即,减少不利的压力梯度)。扩散器36的定向可通过找到扩散器36的侧部36a、36b之间的中线,并且在弯曲中线的情况下,使用最小二乘法拟合确定相应的直线,来确定。在图33和36的构造中,扩散器36以与平行于撞击时刻球杆杆头轨迹方向To的方向成近似60°的角定向。扩散器36可以与平行于方向To的方向成近似10°到近似80°范围内的角来定向。可选择地,扩散器36可以与平行于方向To的方向成近似20°到近似70°,或者近似30°到近似近似70°或者近似40°到近似70°,或者甚至近似45°到近似65°范围内的角来定向。在一些构造中,扩散器36可从插鞘区域26朝趾部20和/或朝背部22延伸。在其他构造中,扩散器36可从跟部24朝趾部20和/或背部22延伸。
[0358] 扩散器36的侧部36a、36b中的一个或两者可以是弯曲的。尤其是,如图36最佳所示,在一些构造中,随着扩散器36远离插鞘区域26延伸,侧部36a、36b可在相同的大体方向上朝背部22弯曲。扩散器36的该曲率可增强扩散器延迟气流在较大的偏航角范围内从层流到紊流的过渡的能力。在其他构造中,扩散器36的侧部36a、36b可以是直的。可选择地,一个或两个侧部36a、36b可远离扩散器36的中心弯曲,使得扩散器36随着其远离插鞘区域26延伸而扩口。
[0359] 可选择地,扩散器36的深度dd可变化。例如,深度dd可随着扩散器远离插鞘区域26延伸而线性增加。作为另一例子,深度dd可随着扩散器远离插鞘区域26延伸而非线性地增加。甚至进一步地,扩散器36的深度dd不必是沿着扩散器36的宽度wd恒定的。例如,深度dd可在扩散器36的中心区域且不太接近于侧部36a、36b处是最大的。
[0360] 扩散器36可包括翼板32,翼板32近似中心地定位在扩散器36的侧部36a、36b之间且从插鞘区域26延伸到趾部20。在图33和36的示例结构中,从扩散器36的底部表面向上突出的翼板32在任一端锥化,以平滑地且逐渐地与扩散器36的底部表面合并。翼板32可具有等于或小于扩散器36的深度dd的最大高度hv,使得翼板32不会延伸超过底部28的基部表面。在一些构造中,扩散器36可包括多个翼板。在其他构造中,扩散器不必包括任何翼板。甚至进一步地,翼板32可沿着扩散器36的长度仅仅部分地延伸。
[0361] 如在图33中最佳所示的,扩散器36可延伸到趾部区域中。甚至进一步地,如图33所示,扩散器36可一直延伸直到顶部18的趾侧边缘19a。随着扩散器36向上朝向顶部18的趾侧边缘19a延伸,深度dd和或宽度wd可逐渐减小。在该示例性结构中,翼板32还示出为延伸到趾部区域中,且向上朝向趾侧边缘19a延伸。
[0362] 如图34最佳所示,球杆杆头14可包括另外的减阻结构。具体是,插鞘区域26可包括顶部-插鞘减阻装置26a。顶部-插鞘减阻装置26a可形成从插鞘16到顶部18的锥形过渡。顶部-插鞘减阻装置26a被期望以辅助维持平滑的层流气流流过顶部18。根据图34的示例性结构,顶部-插鞘减阻装置26a可以是相对长且窄的,且可延伸到顶部18上。这样相对长且窄的顶部-插鞘减阻装置26a的纵向延伸可以以与平行于撞击时刻球杆杆头轨迹方向T0的方向成逆时针角β来定向。通过非限制性实施例的方式,角β可在近似10°到近似80°的范围内。根据其他实施方式,角β可在近似15°到近似60°,近似20°到近似55°,近似25°到近似40°,或者甚至近似30°到近似45°的范围内。进一步,根据图34的示例结构,顶部-插鞘减阻装置26a可从插鞘16延伸到顶部18的近似三分之一到近似一半,在该位置,顶部-插鞘减阻装置26a可基本平滑地合并到顶部18的表面中。
[0363] 如图35最佳所示,背部22可包括“坎背特征”23。在该具体的实施方式中,坎背特征23包括背部表面23a,背部表面23a从顶部18的平缓弯曲、大体水平的表面相对突然地分离。背部表面23a可以是大体垂直的表面。进一步地,随着背部表面23a从顶部18朝向底部28延伸(即,当从球杆杆头的跟侧观察时),背部表面23a可具有相对直的轮廓。另外,随着背部表面23a围绕球杆杆头14的背部22延伸(即,当从上面观察时),背部表面23a可具有凸出的轮廓。
[0364] 还如图35最佳所示,背部22还可包括向后的锥形突起122。根据该示例性结构,锥形突起122沿着背部22的下部部分从跟部24延伸到趾部20。锥形突起122的上部表面被示出为从背部表面23a的下部边缘向后延伸。如图36最佳所示,锥形突起122的下部表面被示出为底部28的光滑的延续部分。锥形突起122的上部表面和下部表面沿着球杆杆头14的后侧边缘129b会聚到一起。根据该具体的实施方式,当从球杆杆头14的侧部观察时,向后的锥形突起122的上部表面和下部表面两者形成有大体凸形的表面。可替换的,当从侧部观察时,上部表面和下部表面中的一个或另一个可以是大体平面的或甚至略微凹形的。可期望的是,锥形突起的上部表面可允许在坎背特征23之后已经从球杆杆头14分离的空气随着其流经该上部表面而重新附着于球杆杆头14。
[0365] 根据该示例性结构,如图35和36最佳所示,锥形突起122还可设置为大体方形化的突起,即后侧边缘129b的在其与跟部24和/或趾部20相遇地方的端部(当从上面或下面观察时)不是圆形的或锥形的以与跟部24和/或趾部20逐渐接合。而是,当从上面(或下面)观察时,锥形突起122形成大体方形的转角(或,如图34所示,甚至略微夸大的尖锐的转角)。可以期望的是,锥形突起122的该成方形的跟侧和/或趾侧转角可防止在邻近跟部24和/或趾部20的气流中产生紊流,从而允许待被维持的层流或紊流重新附着到锥形突起122的锥形表面(当气流从击球面17到背部22大体定向时)。
[0366] 锥形突起122可向后延伸超过顶部18。换句话说,当球杆在60度杆底角位置时,当从上面观察时,锥形突起122可延伸超过顶部18。例如,如图34所示,突起122的趾侧转角和/或跟侧转角可延伸超过顶部18的边缘19。进一步地,尽管未示出,但是锥形突起122的中心部分还可延伸超过顶部的后侧边缘19b。根据一些方面,在顶部18的最大范围和锥形突起122的最大范围之间的距离(平行于T0方向测得的)可以小于或等于±5mm。
[0367] 甚至进一步地,如图35和36的示例结构中所最佳示出的,在锥形突起122遇到跟部24的地方,过渡被认为是突然过渡。例如,锥形突起122的表面的定向可相对于跟部24的表面的定向成近似70°到90°。进一步地,在锥形突起122遇到趾部20的地方,过渡还可以形成为突然过渡。可选择地,这些过渡中的一个或两个可以圆形的,而不是突然的。
[0368] 图37到44示出了根据甚至另一方面的高尔夫球杆杆头14的另一示例构造。如以上,在一些实施方式中,高尔夫球杆杆头可具有400cc或更大的体积、420cc或更大的体积或者甚至440cc或更大的体积。此外,球杆杆头可具有0.90或更大的球杆宽度-面长度比、0.92或更大的球杆宽度-面长度比,或者甚至0.94或更大的球杆宽度-面长度比。在另一实施方式中,高尔夫球杆杆头可具有仅仅380cc或更大的体积。此外,球杆杆头可具有仅0.88或更大的球杆宽度-面长度比。
[0369] 在该具体的实施方式中,高尔夫球杆杆头14包括击球面17的倒角区域17c、扩散器36、顶部-插鞘减阻装置26a、坎背特征23和向后的锥形突起122。例如,图41和42示出了提供插鞘区域26内的从插鞘16到顶部18和击球面17的光滑过渡的顶部-插鞘减阻装置26b。在该具体的构造中,顶部-插鞘减阻装置26b设置成与顶部18和击球面17切向合并距离插鞘16相对短的距离的边缘。进一步地,对比图33-36的顶部-插鞘减阻装置26a,图37-44的插鞘减阻装置26b不是延长的。
[0370] 图39、41和42还示出了顶部18的后侧边缘19b具有略微成圆形的、不太对称的弧形。如本文使用的,术语“圆形”不限于圆形的弧,而是意指“轻微弯曲的”,与“急转弯”相对。如图42最佳所示,底部28的后侧边缘129b向后突出超过顶部18,形成其中锥形突起122遇到跟部24以及其中锥形突起122遇到趾部20的转角。该构造中的转角从跟侧和从趾侧轻微内斜,但是略微急剧地指向向后方向。换句话说,当从上面观察时,跟部和趾部轮廓随着其接近锥形突起122的相应转角而是略微凸形的,同时锥形突起122的后侧边缘129b具有随着其接近转角而是轻微凹形的轮廓。
[0371] 作为另一示例,图43和44示出了位于球杆杆头14的底部28上的扩散器36。扩散器36从大体接近于插鞘区域26而延伸,且在顶部28上继续延伸且延伸到趾部20中。扩散器36的侧部36a示出为是大体直的且以与T0方向成近似65°的角大体朝向趾部20与背部22的交叉部分延伸。大体沿着与T0方向成近似75°的角延伸的侧部36b可包括朝向背部22的轻微弯曲,在该处扩散器36从底部28过渡到趾部20,或者其可以是大体直的。在该示例结构中,扩散器36以与T0方向成近似70°的角延伸。扩散器36的深度dd是近似恒定的。
[0372] 图40、41和44还示出了扩散器36从底部28向上且横跨趾部20到顶部18的趾侧边缘19a的延伸。在该实施方式中,扩散器36在趾部20中的深度dd是基本恒定的。进一步,在该具体的实施方式中,扩散器36在趾部20中的宽度wd是基本恒定的。
[0373] 和示出在图33-36中的球杆杆头14的示例构造一样,图37-44的球杆杆头14的示例构造中的扩散器36包括翼板32。
[0374] 图38-40示出了位于背部22上的坎背特征23,其底切顶部18,而不是直地向下延伸。因此,对于该实施方式,从顶部18到背部22的过渡可被认为是在顶部18的后侧边缘19b处的急转过渡。进一步,可在图38中看到,向后的锥形突起122的上部表面形成有大体凹形的表面,同时锥形突起122的下部表面是底部28的大体凸形的延伸。图38-40还示出了该示例性实施方式的坎背特征23从跟部22的向后部分横跨背部22延伸。在跟部24中,坎背特征23的端部具有锥形形状(见,图38),而坎背特征23的另一端部在其遇到趾部
20的地方具有钝的突变形状(见图39和40)。
[0375] 诸如在跟部24、击球面17的倒角区域17c、扩散器36、顶部-插鞘减阻装置26a、26b、坎背特征23和/或向后的锥形突起122的至少一部分上的翼面状表面25的减阻结构设置在球杆杆头14上,以便在使用者从其向后挥杆结束贯穿向下挥杆到击球位置进行高尔夫挥杆期间减小作用在球杆杆头上的阻力。具体地,翼面状表面25、扩散器36和顶部-插鞘减阻装置26a、26b可被提供以主要在球杆杆头14的跟部24和/或插鞘区域26大体引导挥杆时减小作用在球杆杆头14上的阻力。倒角区域17c、坎背特征23和锥形突起122可被提供以主要在击球面17大体引导挥杆时减小作用在球杆杆头14上的阻力。
[0376] 虽然已经显示、描述并指出了各种实施方式基本的新颖特征,但是要理解,所示设备的形式和细节上及其操作中的各种省略、替换和变化可以由本领域技术人员做出,而不偏离本发明的精神和范围。例如,高尔夫球杆杆头可以是任何球棒、木制球棒或类似物。另外,特别是旨在以大体相同的方式执行大体相同的功能以实现相同结果的这些元件的所有组合在本发明的范围内。从一个所述实施方式到另一个所述实施方式的元件的替换也是能完全预期和考虑的。因而,其旨在仅受其所附权利要求的范围所示地限制。