非高斯噪声下数字调制信号识别方法转让专利

申请号 : CN201210324087.9

文献号 : CN102882819B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李兵兵刘明骞曹超凤孙珺

申请人 : 西安电子科技大学

摘要 :

本发明公开了一种基于广义分数阶傅里叶变换(GFRFT)和分数低阶Wigner-Ville分布(FLOWVD)的数字调制识别新方法,其步骤为:对接收到的信号先经过采样然后通过希尔伯特变换进行信号的复包络的恢复;计算信号基于GFRFT的零中心归一化瞬时幅度谱密度的最大值;计算信号的FLOWVD幅度的最大值作为特征量;采用基于判决树的分类器,通过数据处理和设置门限及比较判决将不同调制方式的信号识别出来。在非高斯Alpha稳定分布噪声下,本发明不仅性能明显优于传统方法并且具有较高的识别率和良好的稳健性。

权利要求 :

1.非高斯噪声下数字调制信号的识别方法,其特征在于:包括如下步骤:(1)对接收到的信号y(t)进行预处理,即先经过采样得到y[n],然后通过希尔伯特变换进行信号的复包络的恢复;

(2)计算信号的零中心归一化瞬时幅度的GFRFT的最大值即特征量r1,其中GFRFT为广义分数阶傅里叶变换:2

r1=max|GFRFT[acn(i),p]/Ns式中,Ns个采样点, 为瞬时幅度a(i)的平均值;p为分数阶傅里叶变换的阶数;

(3)采用分类器1,设置信号集的判决门限δ1=0和判决门限δ2将信号集合{2ASK、

16QAM、2FSK、MSK、QPSK}分为{2ASK}、{16QAM}和{2FSK、MSK、QPSK}三类,则门限δ2的设置为:其中,max(γ16QAM)为16QAM信号的特征量均值γ16QAM的最大值,min(γ2ASK)为2ASK信号的特征值均值γ2ASK的最小值;(4)求2FSK、MSK、QPSK信号的FLOWVD的最大值作为特征量r2,其中FLOWVD为分数低阶Wigner-Ville分布:其中 为分数低阶Wigner-Ville分布,a为尺度因子, 为分数低阶Wigner-Ville分布的幅度最大值,并特征量r2作为分类器2输入的特征参数;

(5)采用分类器2,判决门限设置为:

其中δlim为区分相邻信号或信号集Y1,Y2的门限值, 为Y1的特征量均值的最大值, 为Y2的特征值均值的最小值,因此,MSK信号与2FSK信号的判决门限δ3和

2FSK信号与QPSK信号的判决门限δ4可将2FSK、MSK和QPSK信号识别出来;

(6)计算各个信号的正确识别率。

2.根据权利要求书1中所述的非高斯噪声下数字调制信号的识别方法,其特征在于:其中步骤(2)所述的计算信号的零中心归一化瞬时幅度的GFRFT的最大值即特征量r1,按如下步骤进行:

2.1计算信号x(t)的分数阶傅立叶变换(Fractional Fourier Transform,FRFT),其表达式为:式中,Kθ(t,u)为分数阶傅立叶变换的核函数,其表达式为:θ

其中,k取整数,F 表示θ角度分数阶傅里叶变换算子,θ=pπ/2为旋转角度,p为旋转因子,δ(·)为冲击函数,为了将Alpha稳定分布噪声的幅值合理映射到有限区间,同时使信号的相位保持不变,计算信号的广义分数阶傅里叶变换,其表达式为:其中, 为一非线性变换,H(·)为希尔伯特变换,

2.2假定第i时刻接收信号的幅度为a(i),把Ns个采样点组成一个帧,则基于GFRFT的零中心归一化瞬时幅度谱密度的最大值为:2

γmax=max|GFRFT[acn(i),p]/Ns式中, 为瞬时幅度a(i)的平均值;p为分数阶傅里叶变换的阶数;用均值来对瞬时幅度进行归一化的目的是为了消除信道增益的影响。

3.根据权利要求书1中所述的非高斯噪声下数字调制信号的识别方法,其特征在于:其中步骤(4)所述的求2FSK、MSK、QPSK信号的FLOWVD的最大值作为特征量r2,按如下步骤进行:计算信号的分数低阶Wigner-Ville分布,其表达式为: a+1 * a-1 a - * -其中x =|x| /x =|x| ·x,当x为实数时,x =|x|sgn(x),x =(x) = *(x ),

当a=0时QPSK信号的分数低阶Wigner-Ville分布为:式中, 其中 是

时对应的相位;

其中 是 时对应的相位,则QPSK信号的FLOWVD幅度的最大值 有以下关系:当a=0时2FSK信号的分数低阶Wigner-Ville分布为:则2FSK信号的FLOWVD幅度的最大值 有以下关系:其中fn为 时的频率,fm为 时的频率;

当a=0时MSK信号的分数低阶Wigner-Ville分布为:则MSK信号的FLOWVD幅度的最大值 有以下关系:

说明书 :

非高斯噪声下数字调制信号识别方法

技术领域

[0001] 本发明属于通信技术领域,具体涉及一种非高斯Alpha稳定分布噪声下数字调制信号识别方法,可用于对Alpha稳定分布噪声下的数字调制信号的调制方式类型进行识别。

背景技术

[0002] 数字调制信号识别就是在未知接收信号信息的前提下,确定数字信号的调制方式和相应的参数,从而为信号解调提供必要的参数及信息,因此数字调制识别在军事和民用领域都有着非常重要的应用。传统的数字调制识别是假设背景噪声服从高斯分布,以便于对信号进行分析计算,但在实际的无线通信系统中往往存在一些非高斯分布的噪声,这些噪声具有显著尖峰脉冲状波形和较厚概率密度函数拖尾,以美国南加州大学尼卡斯(Nikias)教授为代表的研究者在充分研究各种随机过程模型后,发现Alpha稳定分布模型是描述这类随机信号的一种更有效的噪声模型。因此,研究在Alpha稳定分布噪声背景下的数字调制识别方法具有实际的工程意义。
[0003] 近年来,已有学者对Alpha稳定分布噪声模型下的数字调制识别进行了一定的研究,但研究还很少。参见杨伟超,赵春晖,成宝芝.Alpha稳定分布噪声下的通信信号识别[J].应用科学学报,2010,28(2):111-114.。这种方法以分形盒维数作为识别特征,在Alpha稳定分布噪声背景下对信号进行了识别,但该方法仅能在一定混合信噪比范围内适用且识别性能较差;由于Alpha稳定分布噪声下的信号不具有二阶或二阶以上的统计量,参见贺涛.数字通信信号调制识别若干新问题研究[D].[博士论文].电子科技大学,2007.这种方法采用低阶量进行了调制识别的研究,但该方法识别性能较差;参见赵春晖,杨伟超,杜宇.采用分数低阶循环谱相干系数的调制识别[J].应用科学学报,2011,29(6):565-570.和赵春晖,杨伟超,马爽.基于广义二阶循环统计量的通信信号调制识别研究[J].通信学报,2011,32(1):144-150.这两种方法提出了分数低阶循环谱相干系数和广义二阶循环统计量的方法对数字调制信号进行识别,但该方法计算复杂度较高且循环谱指数b的设定缺少智能方法而导致普适性较差。因此,以上的方法不适合在实际的无线信道中应用。

发明内容

[0004] 本发明的目的是克服上述已有技术的不足,提供了一种Alpha稳定分布噪声下数字调制识别的新方法,以提高在考虑滚降滤波以及噪声特征指数变化的情况下数字调制信号的识别率。本发明选取常用的2ASK(Binary Amplitude Shift Keying,二进制振幅键控)、QPSK(Quaternary Phase Shift Keying,四进制相移键控)、16QAM(16 Quadrature Amplitude Modulation,16正交幅度调制)、2FSK(Binary Frequency Shift Keying,二进制移频键控)、MSK(Minimum Frequency Shift Keying,最小移频键控)这5种数字调制信号作为待识别信号集。
[0005] 实现本发明目的的技术方案,包括如下步骤:
[0006] (1)对接收到的信号y(t)进行预处理,即先经过采样得到y[n],然后通过希尔伯特变换进行信号的复包络的恢复;
[0007] (2)计算信号的零中心归一化瞬时幅度的GFRFT的最大值即特征量r1:
[0008] r1=max|GFRFT[acn(i),p]2/Ns
[0009] 式中,Ns个采样点, 为瞬时幅度a(i)的平均值;p为分数阶傅里叶变换的阶数;
[0010] (3)设置信号集的判决门限δ1=0和判决门限δ2将信号集合{2ASK、16QAM、2FSK、MSK、QPSK}分为{2ASK}、{16QAM}和{2FSK、MSK、QPSK}三类,则门限δ2的设置为:
[0011]
[0012] 其中,max(γ16QAM)为16QAM信号的特征量均值γ16QAM的最大值,min(γ2ASK)为2ASK信号的特征值均值γ2ASK的最小值。
[0013] (4)计算2FSK、MSK、QPSK信号的FLOWVD的最大值作为特征量r2:
[0014]
[0015] 其中 为分数低阶Wigner-Ville分布的幅度最大值;
[0016] (5)通过设置判决门限对这2FSK、MSK、QPSK信号进行识别,判决门限设置为:
[0017]
[0018] 其中δlim为区分相邻信号或信号集Y1,Y2的门限值, 为Y1的特征量均值的最大值, 为Y2的特征值均值的最小值。
[0019] (6)本发明采用基于判决树的分类器,通过数据处理和设置门限及比较判决将不同调制方式的信号识别出来,其具体流程如流程图所示。
[0020] 本发明与现有技术相比具有如下优点:
[0021] 1)本发明利用信号的零中心归一化瞬时幅度的GFRFT的最大值作为特征值将信号集2ASK、2FSK、MSK、QPSK、16QAM分成了{2ASK}、{16QAM}和{2FSK、MSK、QPSK}三类,这样即可以解决Alpha稳定分布噪声下的信号不具有二阶或二阶以上的统计量的问题,又可以从时域到频域显现出信号的特征,提高了信号的识别性能;
[0022] 2)本发明利用FLOWVD幅度的最大值作为特征参数将2FSK、MSK、QPSK分开,分数变换仅改变随机过程的幅度信息,而没有改变它的频率和相位信息,便于频域分析。当a=0时,所有的幅度信息消失,变成相位分数低阶协方差。这样不仅提高了识别性能,而且降低了方法的计算复杂度。
[0023] 仿真结果表明,在Alpha稳定分布噪声的特征指数α=1.5,未考虑滚降滤波条件下,混合信噪比≥5dB时,信号的识别率均达到90%以上;在升余弦滚降滤波器的滚降系数β=0.35,噪声的特征指数α=1.5时,在混合信噪比大于12dB情况下,本发明可以对5种数字调制信号实现有效地识别;在相同的仿真实验环境和相同的码元速率、载波频率、频偏、采样频率、采样点数等信号参数设置条件下,本发明具有比现有的方法具有更高的识别率和较低的计算复杂度,说明在Alpha稳定分布噪声下,本方法具有良好的稳健性。

附图说明

[0024] 图1中是本发明非高斯噪声下数字调制识别方法的流程图;
[0025] 图2中是本发明在噪声的特征指数α=1.5,未考虑滚降滤波条件下,对5种数字调制信号进行识别的结果图;
[0026] 图3中是本发明在混合信噪比为10dB,未考虑滚降滤波条件下,考察噪声的特征指数α值在(1,2)区间内变化对识别效果影响的图形;
[0027] 图4中是本发明5种数字调制信号的成形滤波器采用升余弦滚降滤波器,取滚降系数β=0.35,当噪声的特征指数α=1.5时,信号的识别结果图;

具体实施方式

[0028] 本发明的具体实现步骤如下:
[0029] 步骤1,对接收到的信号y(t)进行预处理,即先经过采样得到y[n],然后通过希尔伯特变换进行信号的复包络的恢复;
[0030] 步 骤2,计 算 信 号x(t) 的 分 数 阶 傅 立 叶 变 换 (Fractional Fourier Transform,FRFT),其表达式为:
[0031]
[0032] 式中,Kθ(t,u)为分数阶傅立叶变换的核函数,其表达式为:
[0033]
[0034] 其中,k取整数,Fθ表示θ角度分数阶傅里叶变换算子,θ=pπ/2为旋转角度,p为旋转因子,δ(·)为冲击函数。为了将Alpha稳定分布噪声的幅值合理映射到有限区间,同时使信号的相位保持不变,计算信号的广义分数阶傅里叶变换(Generalized Fractional Fourier Transform,GFRFT),其表达式为:
[0035]
[0036] 其中, 为一非线性变换,H(·)为希尔伯特变换。
[0037] 计算基于GFRFT的零中心归一化瞬时幅度谱密度的最大值为:
[0038] γmax=max|GFRFT[αcn(i),p]2/Ns
[0039] 式中, 为瞬时幅度a(i)的平均值;p为分数阶傅里叶变换的阶数;用均值来对瞬时幅度进行归一化的目的是为了消除信道增益的影响。
[0040] 步骤3,设置信号集的判决门限δ1=0和判决门限δ2将信号集合{2ASK、16QAM、2FSK、MSK、QPSK}分为{2ASK}、{16QAM}和{2FSK、MSK、QPSK}三类,则门限δ2的设置为:
[0041]
[0042] 其中,max(γ16QAM)为16QAM信号的特征量均值γ16QAM的最大值,min(γ2ASK)为2ASK信号的特征值均值γ2ASK的最小值。
[0043] 步 骤4,计 算 信 号 的 分 数 低 阶Wigner-Ville分 布 (Fractional Lower Wigner-Ville Distribution,FLOWVD),其表达式为:
[0044]