发动机的排气净化装置转让专利

申请号 : CN201080065872.6

文献号 : CN102884290B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 矢野雅一中岛智史竹田知行天野贵文

申请人 : 优迪卡汽车株式会社

摘要 :

由与发动机运转状态相应的燃料供应量推定排气所包含的规定的燃料成分(硫磺成分、烃成分等)的每单位时间的排出量,并且累计DOC转化器等排气净化元件的燃料成分的蓄积量。另外,根据流入到排气净化元件的排气温度推定每单位时间从排气净化元件脱离的燃料成分的脱离量,从燃料成分的蓄积量减去脱离量。并且,当燃料成分的蓄积量为规定值以上时,判断为使蓄积于排气净化元件的燃料成分强制性地脱离的时期到来,使警告灯点亮,并且执行使得排气的温度上升到比燃料成分的脱离温度高的强制脱离处理。

权利要求 :

1.一种发动机的排气净化装置,其特征在于,

具有:

排气净化元件,其配设于发动机的排气管;

温度传感器,其检测流入到上述排气净化元件的排气的温度;以及

控制单元,其内置有计算机,

上述控制单元推定排气所包含的规定的燃料成分的每单位时间的排出量,上述控制单元参照设定有与排气的温度对应的燃料成分的脱离量的映射,推定与由上述温度传感器检测到的排气的温度相应的燃料成分的脱离量,在上述映射中,上述燃料成分的每单位时间的脱离量设定为随着上述排气的温度高于上述燃料成分的脱离温度而逐渐增加,并且在上述排气的温度为上述脱离温度以下时设定为0,上述控制单元基于由上述温度传感器检测到的排气的温度推定从上述排气净化元件脱离的燃料成分的每单位时间的脱离量,上述控制单元基于上述燃料成分的每单位时间的排出量和脱离量推定蓄积于上述排气净化元件的燃料成分的蓄积量。

2.根据权利要求1所述的发动机的排气净化装置,其特征在于,上述控制单元还在上述燃料成分的蓄积量为规定值以上时,判定为使蓄积于上述排气净化元件的燃料成分强制性地脱离的时期到来。

3.根据权利要求2所述的发动机的排气净化装置,其特征在于,上述控制单元还在判定为使上述燃料成分强制性地脱离的时期到来时使通知装置进行动作。

4.根据权利要求2所述的发动机的排气净化装置,其特征在于,上述控制单元还在判定为使上述燃料成分强制性地脱离的时期到来时执行使得流入到上述排气净化元件的排气的温度上升到比燃料成分的脱离温度高的强制脱离处理。

5.根据权利要求1所述的发动机的排气净化装置,其特征在于,上述控制单元还在发动机停止时将上述燃料成分的蓄积量写入非易失性存储器,而在发动机起动时从上述非易失性存储器读出燃料成分的蓄积量。

6.根据权利要求1所述的发动机的排气净化装置,其特征在于,上述控制单元还响应来自外部的指示,强制性地重置上述燃料成分的蓄积量。

7.根据权利要求1所述的发动机的排气净化装置,其特征在于,上述控制单元基于每单位时间的燃料供应量和燃料中的燃料成分的含有率推定上述燃料成分的每单位时间的排出量。

8.根据权利要求1所述的发动机的排气净化装置,其特征在于,上述控制单元依次累计上述燃料成分的每单位时间的排出量,并且从该累计值依次减去燃料成分的每单位时间的脱离量,由此推定上述燃料成分的蓄积量。

说明书 :

发动机的排气净化装置

技术领域

[0001] 本发明涉及净化发动机的排气的排气净化装置。

背景技术

[0002] 作为净化发动机的排气的排气净化装置,捕集/除去颗粒状物质(PM;Particulate Matter)的柴油微粒过滤器(DPF;Diesel Particulate Filter)、同时净化一氧化碳(CO)、烃(HC)以及氮氧化物(NOx)的三元催化转化器、使用还原剂净化NOx的选择性催化还原(SCR;Selective Catalytic Reduction)转化器等被实用化。在这样的排气净化装置中,当在配设于发动机的排气管的DPF等排气净化元件蓄积有例如排气所包含的硫磺成分时,产生催化剂的劣化、排压上升等不良情况。因此,如日本特开2005-76495号公报(专利文献1)所记载的那样,提出如下技术:基于燃料消耗量和燃料的硫磺含有率,推定蓄积于排气净化元件的硫磺成分的蓄积量,当该蓄积量为规定值以上时,执行硫磺成分的强制脱离处理。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:特开2005-76495号公报

发明内容

[0006] 发明要解决的问题
[0007] 但是,在现有技术中,没有考虑到在排气温度比硫磺成分的脱离温度高的区域蓄积于排气净化元件的硫磺成分减少,因此硫磺成分的蓄积量的推定精度不高。因此,有可能即使允许值以上的硫磺成分蓄积于排气净化元件也不执行强制脱离处理等,不能维持作为排气净化装置的功能。此外,这样的问题不限于作为燃料成分的一例的硫磺成分,即使例如以HC作为主成分的未燃燃料等也同样可引起。
[0008] 因此,本发明鉴于现有技术的问题,着眼于燃料成分根据排气温度而脱离的特性,目的在于提供使蓄积于排气净化元件的燃料成分的蓄积量的推定精度提高的排气净化装置。
[0009] 用于解决问题的方案
[0010] 因此,发动机的排气净化装置具有:排气净化元件,其配设于发动机的排气管;温度传感器,其检测流入到排气净化元件的排气的温度;以及控制单元,其内置有计算机。并且,控制单元推定排气所包含的规定的燃料成分的每单位时间的排出量,参照设定有与排气的温度对应的燃料成分的脱离量的映射,推定与由上述温度传感器检测到的排气的温度相应的燃料成分的脱离量,在上述映射中,上述燃料成分的每单位时间的脱离量设定为随着上述排气的温度高于上述燃料成分的脱离温度而逐渐增加,并且在上述排气的温度为上述脱离温度以下时设定为0,基于由温度传感器检测到的排气的温度推定从排气净化元件脱离的燃料成分的每单位时间的脱离量,基于燃料成分的每单位时间的排出量和脱离量推定蓄积于排气净化元件的燃料成分的蓄积量。
[0011] 发明效果
[0012] 能高精度地推定排气净化元件的燃料成分的蓄积量。
[0013] 附图说明
[0014] 图1是示出排气净化装置的一例的整体构成图。
[0015] 图2是示出控制程序的一例的流程图。
[0016] 图3是推定与排气温度相应的燃料成分的脱离量的映射的说明图。
[0017] 具体实施方式
[0018] 下面,参照附图,对用于实施本发明的实施方式进行详细说明。
[0019] 图1示出排气净化装置的一例。
[0020] 在连接到柴油发动机10的进气歧管12的进气管14中沿着进气流通方向按顺序配设有过滤空气中的尘埃等的空气滤清器16、使进气增压的涡轮增压器18的压缩机18A、冷却通过涡轮增压器18而成为高温的进气的中冷器20。
[0021] 另一方面,在连接到柴油发动机10的排气歧管22的排气管24中沿着排气流通方向按顺序配设有涡轮增压器18的涡轮18B、连续再生式DPF装置26、具有喷射供应作为还原剂前体的尿素水溶液的喷嘴的还原剂喷射装置28、使用由尿素水溶液生成的氨(还原剂)对NOx进行选择还原净化的SCR转化器30、以及使通过SCR转化器30的氨氧化的氧化催化转化器32。连续再生式DPF装置26具有至少使一氧化氮(NO)向二氧化氮(NO2)氧化的柴油氧化催化器(DOC;Diesel Oxidation Catalyst)转化器26A和捕集/除去排气中的PM的DPF26B。此外,也能取代DPF26B而使用在其表面载有催化剂(活性成分和添加成分)的CSF(Catalyzed Soot Filter:催化烟尘过滤器)。在此,配设于排气管24的DOC转化器26A、DPF26B、SCR转化器30以及氧化催化转化器32中的至少一方相当于构成排气净化装置的一部分的排气净化元件。
[0022] 另外,在柴油发动机10中安装有排气再循环(EGR;Exhaust Gas Recirculation)装置34,排气再循环装置34通过将排气的一部分导入到进气使其再循环,由此利用燃烧温度的降低使NOx减少。EGR装置34具有:EGR管34A,其用于将流过排气管24的排气的一部分向进气管14导入;EGR冷却器34B,其冷却流过EGR管34A的排气;以及EGR控制阀34C,其用于控制向进气管14导入的排气的EGR率。
[0023] 作为排气净化装置的控制系统,在连续再生式DPF装置26的DOC转化器26A的排气上游安装有温度传感器36,温度传感器36检测流入到DOC转化器26A的排气的温度(排气温度)T1。在连续再生式DPF装置26的DOC转化器26A与DPF26B之间安装有温度传感器38,温度传感器38检测流入到DPF26B的排气的温度(排气温度)T2。在连续再生式DPF装置26与还原剂喷射装置28之间安装有温度传感器40,温度传感器40检测流入到SCR转化器30和氧化催化转化器32的排气的温度(排气温度)T3。此外,为了检测流入到氧化催化转化器32的排气温度,可以在SCR转化器30与氧化催化转化器32之间还安装温度传感器。
[0024] 温度传感器36、38以及40的各输出信号被输入到内置有计算机的控制单元42。另外,作为柴油发动机10的运转状态的一例,检测旋转速度Ne的旋转速度传感器44和检测负荷Q的负荷传感器46的输出信号也被输入到控制单元42。在此,作为柴油发动机10的负荷 Q,能应用例如进气流量、进气压力、增压压力、油门开度、节流阀开度等与扭矩密切关联的状态量。此外,可以使得柴油发动机10的旋转速度Ne和负荷Q通过CAN(Controller Area Network:控制器局域网)等从对柴油发动机10进行电子控制的发动机控制单元(未图示)读入。
[0025] 并且,控制单元42执行存储于ROM(Read Only Memory:只读存储器)等非易失性存储器的控制程序,由此基于来自各种传感器的信号判定在排气净化元件是否蓄积超出允许值的燃料成分(硫磺成分、HC成分等)。另外,控制单元42当判定为在排气净化元件蓄积了超出允许值的燃料成分时,为了使排气温度升温来使燃料成分强制脱离,对安装于柴油发动机10的燃料喷射装置输出燃料增量指令,并且使附设于组合仪表的警告灯48(通知装置)点亮。
[0026] 图2示出以柴油发动机10起动为契机,控制单元42按单位时间(例如1秒)反复执行的控制程序的内容。此外,控制单元42按照与图2所示的控制程序不同的控制程序,根据发动机运转状态等分别对还原剂喷射装置28和EGR控制阀34C进行电子控制。
[0027] 在步骤1(在图中省略记载为“S1”。以下同样。)中,控制单元42运算与发动机运转状态相应的每单位时间的燃料供应量。即,控制单元42例如从负荷传感器46读取负荷Q,参照设定有与负荷对应的燃料供应量的映射,运算与负荷Q相应的燃料供应量。此外,燃料供应量也可以从未图示的发动机控制单元读入。
[0028] 在步骤2中,控制单元42例如使每单位时间的燃料供应量乘以构成燃料的规定的燃料成分的含有率,由此推定每单位时间的燃料成分的排出量。在此,燃料成分的含有率例如只要取与燃料特性相应的固定值即可。
[0029] 在步骤3中,控制单元42例如利用“蓄积量=蓄积量+每单位时间的排出量”的公式,推定成为蓄积于监视对象的排气净化元件、即DOC转化器26A、DPF26B、SCR转化器30或者氧化催化转化器32的燃料成分的蓄积量。
[0030] 在步骤4中,例如,如图3所示,控制单元42参照设定有与排气 温度对应的燃料成分的脱离量的映射,推定从温度传感器36、38或者40读入的、流入到成为监视对象的排气净化元件的与排气温度Ti(i=1~3)相应的燃料成分的脱离量。在图3所示的映射中,在排气温度为燃料成分的脱离温度T0以下的区域,设定为燃料成分不能脱离的“0”。此外,与排气温度对应的燃料成分的脱离量按设为目标的燃料成分通过例如模拟、实验等求出即可。
[0031] 在步骤5中,控制单元42基于燃料成分的脱离量,例如利用“蓄积量=蓄积量-脱离量”的公式,更新蓄积于成为监视对象的排气净化元件的燃料成分的蓄积量。
[0032] 在步骤6中,控制单元42判定蓄积于排气净化元件的燃料成分的蓄积量是否为规定值以上。在此,规定值是用于判定是否应执行蓄积于排气净化元件的燃料成分的强制脱离处理的阈值,例如,具有比排气净化元件所允许的燃料成分的允许蓄积量低一些的值。并且,控制单元42如果判定为燃料成分的蓄积量为规定值以上,则使处理向步骤7推进(是),而如果判定为燃料成分的蓄积量小于规定值,则使处理结束(否)。
[0033] 在步骤7中,控制单元42为了通知蓄积于排气净化元件的燃料成分的强制脱离处理正在执行,使附设于组合仪表的警告灯48点亮。在此,可以取代警告灯48,而使作为通知装置的一例的蜂鸣器等工作。
[0034] 在步骤8中,控制单元42使得排气温度上升到比燃料成分的脱离温度高,由此使蓄积于排气净化元件的燃料成分强制脱离,因此对安装于柴油发动机10的燃料喷射装置输出燃料供应量的增量指令。此外,为了使排气温度升高,也可以执行进气闸门或者排气闸门的开闭控制、可变涡轮增压器的叶片开度控制、后喷射控制等公知的强制脱离处理。
[0035] 在这样的排气净化装置中,柴油发动机10的排气经由排气歧管22、涡轮增压器18的涡轮18B导入到连续再生式DPF装置26的DOC转化器26A。导入到DOC转化器26A的排气的一部分NO向NO2氧化并且流向DPF26B。在DPF26B中,排气中的PM被捕集/除去,并且 使用由DOC转化器26A所生成的NO2氧化PM,由此同时进行PM的捕集/除去和再生。
[0036] 另外,根据发动机运转状态从还原剂喷射装置28喷射供应的尿素水溶液使用排气热和排气中的水蒸气而水解,向作为还原剂而执行功能的氨转化。已知如下情况:该氨在SCR转化器30中与排气中的NOx选择性地还原反应,向作为无害成分的水(H2O)和氮气(N2)净化。另一方面,利用配设于其排气下游的氧化催化转化器32使通过SCR转化器30的氨氧化,所以能抑制氨原样地被释放到大气中。
[0037] 在这样的排气净化过程中,依次累计由燃料供应量所推定的每单位时间的燃料成分的排出量,并且从该累计值依次减去与排气温度相应的燃料成分的脱离量,由此推定蓄积于成为监视对象的排气净化元件的燃料成分的蓄积量。此时,着眼于累积于排气净化元件的燃料成分在排气温度比燃料成分的脱离温度高的区域减少的特性,不仅考虑燃料成分的排出量,而且也考虑其脱离量,由此能高精度地推定排气净化元件的燃料成分的蓄积量。并且,当燃料成分的蓄积量为规定值以上时,附设于组合仪表的警告灯48点亮,并且执行燃料成分的强制脱离处理。
[0038] 在此,蓄积于排气净化元件的燃料成分的蓄积量也可以由控制单元42在发动机停止时写入非易失性存储器,而在发动机起动时从非易失性存储器读出。这样的话,燃料成分的蓄积量不会由于发动机停止而重置,所以能继续使用在此之前所运算的值,能抑制燃料成分的蓄积量的推定精度降低。
[0039] 另外,在修配厂等,考虑到进行排气净化元件的清扫等,也可以设置如下功能:响应来自外部的指示,强制性地重置燃料成分的蓄积量。而且,可以使得蓄积于排气净化元件的燃料成分的强制脱离不是自动地,而是根据发现警告灯48点亮的司机等的指示而执行。
[0040] 此外,本发明不限于柴油发动机10的排气净化装置,也能应用于同时净化汽油发动机的排气所包含的CO、HC以及NOx的三元催化转化器。另外,本发明不限于DOC转化器26A、DPF26B、SCR转 化器30、氧化催化转化器32以及三元催化转化器,也能应用于配设于排气管的各种排气净化元件。而且,本发明可以将多个排气净化元件设为监视对象。
[0041] 附图标记说明
[0042]