具有旋转发动机的复合发动机系统转让专利

申请号 : CN201210262765.3

文献号 : CN102900510B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : A.朱利安

申请人 : 普拉特-惠特尼加拿大公司

摘要 :

本发明涉及具有旋转发动机的复合发动机系统。具体地,一种复合发动机系统包括:旋转发动机,所述旋转发动机的体积压缩比低于其体积膨胀比,和限定在转子的周围壁中的在每个室中的凹陷,凹陷的体积大于所述室的排量的5%。涡轮区段中的膨胀补偿了旋转发动机的相对低的膨胀比。

权利要求 :

1.一种复合发动机系统,包括:

旋转发动机,所述旋转发动机具有定子主体和转子主体,所述定子主体具有限定内腔的壁,所述转子主体安装成在所述内腔中偏心公转,当所述转子相对于所述定子运动时,所述转子和定子主体的周围壁协作以提供可变体积的旋转室,每个室的体积在最小体积和最大体积之间变化,所述最大和最小体积之间的差定义了排量,所述旋转发动机的体积压缩比低于其体积膨胀比,所述转子的周围壁具有限定在其中的在每个室中的凹陷,每个凹陷的体积大于所述排量的5%,所述旋转发动机具有至少一个进入端口和至少一个排出端口,所述至少一个进入端口和至少一个排出端口与每个室相继地连通;

压缩机区段,所述压缩机区段与所述至少一个进入端口连通;和

涡轮区段,所述涡轮区段连接到所述至少一个排出端口。

2.如权利要求1所述的系统,其中,所述旋转发动机是汪克尔发动机,所述内腔具有带有两个凸角的外旋轮线形状,并且所述转子主体具有三个周向间隔的顶点部分,所述转子主体接合到轴的偏心部分,所述转子在所述内腔内进行轨道公转,其中,所述顶点部分的每一个保持与所述定子的周围壁密封接合并且分开三个旋转室。

3.如权利要求1所述的系统,其中,每个凹陷的体积是所述排量的至少6%。

4.如权利要求1所述的系统,其中,每个凹陷的体积是所述排量的至多15%。

5.如权利要求1所述的系统,其中,每个凹陷的体积是所述排量的至多11%。

6.如权利要求1所述的系统,其中,每个凹陷的体积是所述排量的大约8%。

7.如权利要求1所述的系统,其中,每个凹陷的体积是所述排量的大约10%。

8.如权利要求1所述的系统,其中,每个凹陷的体积是所述排量的大约8%到大约10%。

9.如权利要求1所述的系统,其中,将所述体积压缩比除以所述体积膨胀比而得到的比率在0.3和0.8之间。

10.如权利要求1所述的系统,其中,每个凹陷由形成在所述周围壁中的单个凹穴限定。

11.如权利要求1所述的系统,其中,所述涡轮区段的功率输出对应于所述复合发动机系统的总功率输出的从20%到35%。

12.一种改善复合发动机系统的燃烧稳定性的方法,所述复合发动机系统包括至少一个旋转发动机,所述至少一个旋转发动机具有多个旋转室,每个旋转室具有在最小体积和最大体积之间变化的体积,所述最大和最小体积之间的差定义了排量,所述旋转发动机的转子的周围壁具有限定在其中的在每个室中的凹陷,所述方法包括:定位所述旋转发动机的进入和排出端口,使得所述旋转发动机的体积压缩比低于其体积膨胀比;并且设置每个凹陷的体积,使得每个凹陷的体积大于所述排量的5%。

13.如权利要求12所述的方法,其中,设置每个凹陷的体积被进行成使得每个凹陷的体积是所述排量的至少6%。

14.如权利要求12所述的方法,其中,设置每个凹陷的体积被进行成使得每个凹陷的体积是所述排量的至多15%。

15.如权利要求12所述的方法,其中,设置每个凹陷的体积被进行成使得每个凹陷的体积是所述排量的至多11%。

16.如权利要求12所述的方法,其中,设置每个凹陷的体积被进行成使得每个凹陷的体积是所述排量的大约8%。

17.如权利要求12所述的方法,其中,设置每个凹陷的体积被进行成使得每个凹陷的体积是所述排量的大约10%。

18.如权利要求12所述的方法,其中,设置每个凹陷的体积被进行成使得每个凹陷的体积是所述排量的大约8%到大约10%。

19.如权利要求12所述的方法,其中,定位所述进入和排出端口被进行成使得所述体积压缩比和所述体积膨胀比之间的比率在0.3和0.8之间。

20.如权利要求12所述的方法,还包括设置所述系统的涡轮区段的尺寸,以使所产生的涡轮功率输出对应于所述复合发动机系统的总功率输出的从20%到35%。

说明书 :

具有旋转发动机的复合发动机系统

[0001] 相关申请的交叉引用
[0002] 本申请要求2011年7月28日提交的美国临时申请No. 61/512,570的优先权,其全部内容通过引用并入本文中。

技术领域

[0003] 本申请一般地涉及包括旋转内燃发动机的复合发动机系统。

背景技术

[0004] 旋转发动机(例如汪克尔发动机)使用活塞的偏心旋转将压力转换为旋转运动,而不是使用往复式活塞。在这些发动机中,转子包括多个顶点或密封件分,其在转子的整个旋转运动期间保持与发动机的转子腔的周围壁接触以在转子旋转时产生多个旋转室。
[0005] 在不断致力于实现更大功率输出的过程中,为了实现这种增大的功率输出所需的高体积膨胀比,汪克尔发动机具有相对低的转子凹陷体积。然而,这种发动机可能无法完全针对在涡轮复合系统中使用进行优化,因而存在改进的空间。

发明内容

[0006] 在一个方面中,提供了一种复合发动机系统,包括:旋转发动机,所述旋转发动机具有定子主体和转子主体,所述定子主体具有限定内腔的壁,所述转子主体安装成在所述腔中偏心公转,当所述转子相对于所述定子运动时,所述转子和定子主体的周围壁协作以提供可变体积的旋转室,每个室的体积在最小体积和最大体积之间变化,所述最大和最小体积之间的差定义了排量,所述旋转发动机的体积压缩比低于其体积膨胀比,所述转子的周围壁具有限定在其中的在每个室中的凹陷,每个凹陷的体积大于所述排量的5%,所述旋转发动机具有至少一个进入端口和至少一个排出端口,所述至少一个进入端口和至少一个排出端口与每个室相继地连通;压缩机区段,所述压缩机区段与所述至少一个进入端口连通;和涡轮区段,所述涡轮区段连接到所述至少一个排出端口。
[0007] 在另一方面中,提供了一种改善复合发动机系统的燃烧稳定性的方法,所述复合发动机系统包括至少一个旋转发动机,所述至少一个旋转发动机具有多个旋转室,每个旋转室具有在最小体积和最大体积之间变化的体积,所述方法包括:定位所述旋转发动机的进入和排出端口,使得所述旋转发动机的体积压缩比低于其体积膨胀比;并且设置每个所述室的限定在所述旋转发动机的转子中的一部分的尺寸,使得所述部分限定了所述最大和最小体积之间的差的大于5%。

附图说明

[0008] 现在参照附图,其中:
[0009] 图1是复合发动机系统的框图;
[0010] 图2是可在诸如图1所示系统中使用的旋转内燃发动机的示意性剖面图;
[0011] 图3是图2的发动机的转子的示意性局部周围视图;并且
[0012] 图4是图3的转子的示意性局部剖面图。

具体实施方式

[0013] 现在参照图1,示意性地示出了复合发动机系统8。系统8包括压缩机11和涡轮13,压缩机11和涡轮13由轴15连接并且充当一个或多个旋转发动机10的涡轮增压器。压缩机11可以是单级或多级离心式装置和/或轴向式装置。旋转发动机10或者多个旋转发动机从压缩机11接收压缩空气。空气任选地循环通过压缩机11和(一个或多个)旋转发动机10之间的中冷器16。
[0014] 离开旋转发动机10的排气被供应到压缩机涡轮13并且还被供应到功率涡轮17,此处所示的涡轮13、17是串联的,即排气首先流过两个涡轮中的一个(在那里,压力被降低),然后流过另一个涡轮(在那里,压力被进一步降低)。在替代实施例(未示出)中,涡轮13、17被布置成并联的,即排气被分流并以相同的压力供应到每个涡轮。在另一替代实施例中,仅提供一个涡轮。
[0015] 压缩机涡轮13从排气提取能量以经由连接轴15驱动压缩机11,并且功率涡轮17从排气提取能量以驱动输出轴19。输出轴19可经由齿轮系统21连接到轴22,轴22连接到(一个或多个)旋转发动机10。轴19、22上的组合输出可用于向系统8所集成于其中的车辆应用提供推进功率。该功率可通过齿轮箱(未示出)输送,该齿轮箱将轴19、22的输出速度调节到该应用上的期望速度。在替代实施例中,两个轴19、22可被独立地用于驱动分离的元件,例如螺旋桨、直升机转子、负载压缩机或发电机,这取决于该系统是涡轮螺旋桨发动机、涡轮轴发动机还是APU(辅助功率单元)。
[0016] 尽管未示出,系统8还包括冷却系统,其包括用于冷却旋转发动机的外主体的冷却剂(例如水-乙烯、油、空气)的循环系统、用于旋转发动机的内部机械零件的油冷却剂、一个或多个冷却剂换热器等等。
[0017] 复合发动机系统8可以如2010年7月13日授权的Lents等人的美国专利No. 7,753,036或者2010年8月17日授权的Julien等人的美国专利No. 7,775,044中描述的,两项专利的全部内容通过引用并入本文中。
[0018] 旋转发动机10形成了复合循环发动机系统8的芯部。参照图2,示意性地示出了旋转发动机10的一个实施例,也称为汪克尔发动机。旋转发动机10包括外主体12,外主体12具有轴向间隔的端壁14,周围壁18在它们之间延伸以形成转子腔20。腔20的周围壁18的内表面具有限定了两个凸角(lobe)的轮廓,其优选地为外旋轮线。
[0019] 内主体或转子24被接收在腔20中。转子24具有邻近于外主体端壁14的轴向间隔的端面26以及在它们之间延伸的周围面28。周围面28限定了三个周向间隔的顶点部分30以及具有向外弓形边的大致三角形轮廓。顶点部分30与周围壁18的内表面密封接合以在内转子24和外主体12之间形成三个旋转工作室32。转子24的几何轴线从外主体12的轴线偏移并且平行于外主体12的轴线。
[0020] 工作室32被密封。每个转子顶点部分30具有顶点密封件52,其从一个端面26延伸到另一个端面并且从周围面28径向突出。每个顶点密封件52通过各自弹簧被径向向外偏压抵靠周围壁18。端部密封件54接合每个顶点密封件52的每个端部,并且通过合适的弹簧被偏压抵靠各自的端壁14。转子24的每个端面26具有至少一个弧形面密封件60,其从每个顶点部分30延伸到每个相邻的顶点部分30,在其整个长度上相邻于转子周围但是在转子周围内侧。弹簧轴向向外地推每个面密封件60,从而面密封件60轴向地突出远离相邻转子端面26并与腔中的相邻端壁14密封接合。每个面密封件60与相邻于其端部的端部密封件54密封接合。
[0021] 尽管图中未示出,但转子24轴承架设在轴的偏心部分上并且包括与转子轴线共轴的相位调整齿轮,该相位调整齿轮与固定定子相位调整齿轮啮合,固定定子相位调整齿轮与所述轴共轴地被固定到外主体。轴使得转子24旋转,并且啮合的齿轮引导转子24以在定子腔内进行轨道公转。油密封件被设置在相位调整齿轮周围以阻止润滑油在各自的转子端面26和外主体端壁14之间从相位调整齿轮径向向外地泄漏流动。
[0022] 在一个轨道公转期间,每个室的体积变化并且围绕定子腔移动,以经历进气、压缩、膨胀和排气的四个相位,这些相位类似于具有四冲程循环的往复式内燃发动机中的冲程。
[0023] 发动机包括主进入端口40,此处被示为限定在端壁14中;在替代实施例中,主进入端口40可被限定穿过周围壁18。主进入端口40通过进气导管34与压缩机11的排气连通,进气导管34被限定为端壁14中的通道。主进入端口40将空气输送到每个室32,并且还提供了燃料喷射端口36,用于在每个室32中的空气已被压缩后将燃料输送到每个室32中。燃料,例如煤油(航空涡轮发动机燃料)或其他合适燃料,被输送到室32中使得室32被分层地形成有点火源附近的富燃的燃料-空气混合物以及其他地方的较贫燃的混合物,并且可使用本领域已知的任何合适的点火系统(例如,火花塞、电热塞)在壳体中点燃燃料-空气混合物。
[0024] 发动机还包括排出端口44,此处被示为被限定穿过周围壁18;在替代实施例中,排出端口44可被限定穿过端壁14。排出端口44与涡轮13、17中的至少一个的进口连通。
[0025] 旋转发动机10在米勒或阿特金森循环的原理下操作,其压缩比低于其膨胀比。例如,将体积压缩比除以体积膨胀比得到的比率可在0.3和0.8之间,并且更特别地约为0.4-0.5。因此,当与压缩比和膨胀比彼此相等或近似相等的旋转压缩机相比,主进入端口40定位成更远离(即作为活塞旋转的函数来测量)排出端口44。然后,相对于排出端口44的角度,可确定主进入端口40的角度以实现给定进入空气压力时的期望峰值循环压力。主进入端口
40的位置可在7点钟位置和10点钟位置之间变化。在所示实施例中,主进入端口40在8点钟位置和9点钟位置之间延伸。
[0026] 在所示实施例中,主进入端口40与排出端口44间隔开,从而转子24在所有转子位置均防止它们之间的连通。在替代实施例中,在转子24的公转期间,主进入端口40和排出端口44可与彼此暂时地连通。
[0027] 旋转发动机10还可包括第二进入端口或清洗端口42,其也与压缩机11的排气连通。此处所示的清洗端口42被限定穿过端壁14并且如主进入端口40一样与同一个进气导管34连通;替代地,清洗端口42可被限定穿过周围壁18和/或被独立于主进入端口40限定。清洗端口42沿着转子公转和旋转的方向R位于主进入端口40后方以及排出端口44前方。清洗端口42定位成例如沿着每个公转的各自部分通过每个室32与排出端口44连通,以有效地清洗每个室32。在替代实施例中,清洗端口42可省略,尤其但不排他地当进入端口40和排出端口44彼此暂时连通时。
[0028] 参照图3-4,转子24的周围面28包括限定在其中的凹陷38,凹陷38位于每对相邻顶点部分30之间。凹陷38限定了对应室32的体积的一部分;当室32位于其最小体积时,例如位于上止点时,凹陷38限定了室32的体积的显著部分。
[0029] 典型的汪克尔发动机具有相对低的转子凹陷体积,以便具有高的体积压缩比而获得大体较高的功率输出。然而,低凹陷体积限制了燃烧体积,其进而会限制所燃烧的燃料量、旋转速度和燃烧质量,尤其是对于使用重质燃料的汪克尔发动机。已经发现,可以在系统8具有可接受的功率输出的同时将凹陷38的体积增大到高于典型汪克尔发动机中所见到的通常体积。在一个具体实施例中,每个凹陷38的体积对应于转子24的对应室32的排量(排代体积)的5%和15%之间,排量被定义为一个室32的最大和最小体积之间的差。在另一具体实施例中,每个凹陷38的体积是排量的至少6%和至多11%。在又一具体实施例中,每个凹陷38的体积对应于排量的大约8%至10%。
[0030] 凹陷38可被限定为周围面中的单个、两个或多个凹穴,其一起限定了凹陷体积。凹陷38的形状可不同于所示具体实施例中的形状。
[0031] 凹陷38的增大的体积允许降低的压缩比,这可以改善燃烧稳定性和效率。当转子24接近上止点时的较高燃烧体积可允许旋转发动机10由于有更多的空气可用而燃烧更多的燃料,这样就使得旋转发动机更快地转动并且增大了功率密度。体积与壁表面的增大的比率也可降低热损耗,这趋向于熄灭火焰。增大的燃烧室体积还可允许在设计喷洒时的灵活性。
[0032] 然而,凹陷38的增大的体积相应地降低了膨胀比,这样就趋向于降低旋转发动机在单独使用时的功率输出。然而,在复合系统8中,旋转发动机10的较低的膨胀比通过涡轮13、17中的膨胀得到补偿。
[0033] 在一个具体实施例中,涡轮13、17的膨胀比被选择成使得涡轮区段所提供的功率输出对应于复合发动机系统8的总功率输出的从20%到35%。在一个具体实施例中,这可通过使得涡轮区段中的膨胀比类似于增压压缩压力比(即,压缩机11的压缩压力比)来实现。
[0034] 对于给定空气质量流量,涡轮区段的增大的功率输出可提供增大的功率,这可导致在给定功率下的更小、更轻且更高效的发动机。旋转发动机10的低体积压缩比可帮助重质燃料(例如柴油、煤油(航空涡轮发动机燃料)、等效生物燃料)保持在低到足以防止自燃的压力下,这可帮助确保循环以带有点火源的直接喷射运行,可节省结构重量并且可降低内部泄漏。
[0035] 尽管具有增大体积的凹陷的旋转发动机10可有助于允许在非中冷系统(例如US 7,775,044中描述的)中的大体积和改善的燃烧,其也可被应用在其它合适的系统中,例如US 7,753,036中所示的具有或不具有中冷的系统,假设选择了合适的膨胀比。在中冷系统的情况下,使用更大的凹陷体积可实际上促进稳定的燃烧,从而改善这种中冷系统。
[0036] 以上描述仅仅意图是示例性的,并且本领域技术人员将会意识到在不偏离所公开的(一个或多个)发明的范围的情况下可对所描述的实施例进行改变。例如,本文的教导可应用于任何合适的旋转发动机,例如旋叶泵送机或者其他合适的发动机,从而不限于应用于汪克尔发动机。根据对本公开的回顾,本领域技术人员将会明白落入本发明范围内的其他修改,并且此类修改意图落入所附权利要求的范围内。