车辆部件用低摩擦涂层及其制造方法转让专利

申请号 : CN201210218701.3

文献号 : CN103101244B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 崔光勋吕寅雄洪雄杓姜赫

申请人 : 现代自动车株式会社

摘要 :

本发明提供车辆部件用低摩擦涂层及其制造方法,该涂层包括:在基材表面上的Ti层;在Ti层表面上的TiN层;在TiN层表面上的TiAgN层;以及转移到TiAgN层表面上的Ag层。

权利要求 :

1.一种低摩擦涂层,其包括:

Ti层;

TiN层;

TiAgN层,其中所述TiN层被夹在所述Ti层与所述TiAgN层之间;和转移到所述TiAgN层的表面上的Ag层。

2.如权利要求1所述的低摩擦涂层,其中通过Ti电弧源将所述Ti层沉积在基材表面上;

通过氮气中的Ti电弧源将所述TiN层沉积在所述Ti层上;通过Ti电弧源、Ag溅射源、和氮气将所述TiAgN层沉积在所述TiN层表面上;并且在通过Ag溅射源将Ag层沉积在所述TiAgN层的表面上之后,通过剪切和垂直载荷将所述Ag层转移到所述TiAgN层的表面中。

3.如权利要求1所述的低摩擦涂层,其中所述Ti层的厚度为0.08~0.15μm、所述TiN层的厚度为0.05~0.1μm、所述TiAgN层的厚度为1.5~2μm和转移的Ag层的厚度为0.1μm或更薄。

4.如权利要求3所述的低摩擦涂层,其中所述Ag层为0.0000000001~0.1μm。

5.一种制造如权利要求1所述的低摩擦涂层的方法,其包括:(a)清洁基材表面;

(b)将沉积室的内部气氛准备成真空/高温气氛;

(c)通过Ti电弧源将Ti层沉积在所述基材表面;

(d)通过Ti电弧源和氮气将TiN层沉积在所述Ti层的表面;

(e)通过Ti电弧源、Ag溅射源和氮气将TiAgN层沉积在所述TiN层的表面;并且(f)通过Ag溅射源将Ag层沉积在所述TiAgN层的表面,还包括:

通过剪切和垂直载荷将所述Ag层转移到所述TiAgN层的表面。

6.如权利要求5所述的方法,其中,步骤(b)中的所述真空/高温气氛包括10-5~10-6托的真空和400~500℃的高温。

7.如权利要求5所述的方法,其中,所述Ti层形成为0.08~0.15μm的厚度。

8.如权利要求5所述的方法,其中,所述TiN层形成为0.05~0.1μm的厚度。

9.如权利要求5所述的方法,其中,所述TiAgN层形成为1.5~2μm的厚度。

10.如权利要求5所述的方法,其中,所述Ag层形成为0.1μm或更薄的厚度。

11.如权利要求10所述的方法,其中所述Ag层形成为0.0000000001~0.1μm的厚度。

说明书 :

车辆部件用低摩擦涂层及其制造方法

[0001] 相关申请的交叉引用
[0002] 基于35U.S.C.§119(a),本申请要求于2011年11月15日提交的韩国专利申请第10-2011-0118709的优先权,其全部内容引入本文以供参考。

技术领域

[0003] 本公开涉及一种车辆部件用低摩擦TiAgN涂布材料。更加具体地,本公开涉及一种低摩擦TiAgN涂布材料及其制造方法,其中该涂布材料不仅具有如同DLC的高硬度和低摩擦
特性,而且还具有高温耐磨性。

背景技术

[0004] 通常而言,可以使用等离子体涂布技术来将另一种材料涂布在未经处理的材料上,从而使未处理的材料增加机械和功能特性。等离子体涂布技术可以被划分为两个基本
类型:化学气相沉积(VCD)和物理气相沉积(PVD)。
[0005] 数种PVD被经常使用,例如,真空沉积、溅射、离子镀等。根据等离子体活化法和涂布材料电离法,离子镀被用在多种涂布方法中。例如,电弧离子镀使用电弧放电来使作为负极的涂布材料(目标物)蒸汽电离;结果,其被成功用于硬涂布,因为其由于快速的蒸发速度而具有快速的涂布速度,这样产生较好的生产率、以及高度的电离、撞击与迁移能量。
[0006] 类金刚石(DLC)涂层主要被用于传统车辆部件用低摩擦涂层。然而,尽管DLC涂层具有已被大批量生产和广泛使用的优势,但其存在显著的问题,因为它在高温和低温时均具有耐磨性低且摩擦不足的特性。此外,它还具有相对长的摩擦稳定域的问题。
[0007] 因此,领域内需要具有高硬度特性、低摩擦特性和高温耐磨特性的部件涂层来替代传统的DLC涂层。

发明内容

[0008] 本发明提供车辆部件用低摩擦TiAgN涂布材料及其制造方法,其中该涂布材料不仅具有DLC的高硬度和低摩擦特性,而且具有高温耐磨性。
[0009] 根据本发明的示例性实施方式,车辆部件用低摩擦TiAgN涂层包括基材表面的Ti层;Ti层表面上的TiN层;TiN层表面上的TiAgN层;以及转移在TiAgN层表面上的Ag层。更加具体地,涂层包括:通过Ti电弧源而沉积在基材表面上的Ti层;通过Ti电弧源和氮气而沉积在Ti层表面上的TiN层;通过Ti电弧源、Ag溅射源和氮气而沉积在TiN层表面上的TiAgN层;
以及在经由Ag溅射源而沉积在TiAgN层表面上之后通过剪切和垂直荷载而转移(transfer)在TiAgN层表面上的Ag层。
[0010] Ti层、TiN层、TiAgN层和Ag层的厚度可以分别为约0.08~0.15μm、约0.05~0.1μm、约1.5~2μm和约0.1μm或更薄(不包括0)。
[0011] 根据本发明的示例性实施方式的用于制造涂层的涂布方法包括:准备步骤,清洁基材表面然后将沉积室的内部气氛准备成真空/高温气氛;第一缓冲步骤,通过Ti电弧源将Ti层沉积在基材表面上;第二缓冲步骤,通过Ti电弧源和氮气将TiN层沉积在Ti层表面上;
第一涂布步骤,通过Ti电弧源、Ag溅射源和氮气将TiAgN层沉积在TiN层表面上;以及第二涂布步骤,通过Ag溅射源将Ag层沉积在TiAgN层表面上。在第二涂布步骤中,在使Ag层沉积后,可以通过剪切和垂直荷载将Ag层转移到TiAgN层的表面。
[0012] 制备步骤可以形成10-5~10-6托的真空和400~500℃的高温气氛。
[0013] 第一缓冲步骤可以将Ti层形成为约0.08~0.15μm的厚度。第二缓冲步骤可以将TiN层形成为约0.05~0.1μm的厚度。第一涂布步骤可以将TiAgN层形成为约1.5~2μm的厚度。第二涂布步骤可以将Ag层形成为约0.1μm或更薄(不包括0)的厚度。

附图说明

[0014] 现在将参考附图图示的本发明的某些示例性实施方式来详细地描述本发明的上述和其它特征,下文给出的这些实施方式仅仅用于示例说明,因此不是对本发明的限制,其中:
[0015] 图1和图2是示出根据本发明的示例性实施方式的低摩擦涂层的横截面及制造方法的图。图3是图1和图2所示涂层与传统技术DLC涂层的摩擦系数的比较图;并且图4是图1
和图2所示涂层与传统DLC涂层的摩擦稳定域的比较图。
[0016] 应当理解到,所附的附图并非必然是按比例的,其说明了本发明基本原理的各种优选特征的一定程度上简化的代表。在附图中,附图标记在几张图中通篇指代本发明的相
同或等同部件。

具体实施方式

[0017] 下面将详细地参照本发明的各个实施方式,其实施例图示在所附附图中,并在下文加以描述。尽管将结合示例性实施方式描述本发明,但应当理解,本说明书无意于将本发明局限于这些示例性实施方式。相反,本发明不仅要涵盖这些示例性实施方式,还要涵盖由所附权利要求所限定的本发明的精神和范围内的各种替代形式、修改、等效形式和其它实
施方式。
[0018] 除非特别说明或从上下文明显得到,否则本文所用的术语“约”理解为在本领域的正常容许范围内,例如在均值的2个标准偏差内。“约”可以理解为在所述数值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%或0.01%内。除非另外从上下文清楚得到,本文提供的所有数值都由术语“约”修饰。
[0019] 本文中提供的范围应理解为该范围内所有数值的简写。例如,1~50的范围应理解为包括选自1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、
26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、或50的任何数字、数字的组合、或子范围、以及所有介于上述整数之间的小数值,例如,1.1、1.2、
1.3、1.4、1.5、1.6、1.7、1.8、和1.9。关于子范围,具体考虑从范围内的任意端点开始延伸的“嵌套的子范围”。例如,1~50的示例性范围的嵌套子范围可以包括一个方向上的1~10、1~
20、1~30和1~40,或在另一方向上的50~40、50~30、50~20和50~10。
[0020] 应理解,本文使用的术语“车辆”或“车辆的”或其它类似术语包括通常的机动车,例如,包括多功能运动车(SUV)、公共汽车、卡车、各种商务车的客车,包括各种船只和船舶的水运工具,飞行器等等,并且包括混合动力车、电动车、插入式混合电动车、氢动力车和其它代用燃料车(例如,来源于石油以外的资源的燃料)。如本文所提到的,混合动力车是具有两种或多种动力源的车辆,例如,具有汽油动力和电动力的车辆。
[0021] 在下文中,根据本发明优选实施方式的用于车辆部件的低摩擦涂层及其制造方法将参考附图进行详细描述。
[0022] 图1和图2是示出根据本发明的示例性实施方式的低摩擦涂层的横截面及其制造方法的图。本发明的低摩擦涂层包括在基材表面上的Ti层100;在Ti层100表面上的TiN层
300;在TiN层300表面上的TiAgN层500;以及转移在TiAgN层500表面上的Ag层700’。换言之,低摩擦涂层包括Ti基层100、TiN层300、和TiAgN层500,其中TiN层300夹在Ti基层100与
TiAgN层500之间。另外,Ag层700’被转移到TiAgN层中。
[0023] 更加具体地,本发明的用于车辆部件的低摩擦涂层包括:通过Ti电弧源而沉积在基材表面上的Ti层100;通过Ti电弧源和氮气而沉积在Ti层100表面上的TiN层300;通过Ti
电弧源、Ag溅射源和氮气而沉积在TiN层300表面上的TiAgN层500;以及在经由Ag溅射源而
沉积在TiAgN层500表面上之后通过剪切和垂直荷载而转移在TiAgN层500表面上的Ag层
700’。
[0024] 根据本发明的示例性实施方式,Ti层100、TiN层300、TiAgN层500和转移的Ag层700’的厚度可以分别为0.08~0.15μm、0.05~0.1μm、1.5~2μm和0.1μm或更薄(不包括0)。
[0025] 根据示例性实施方式,制造车辆部件用低摩擦涂层的方法包括:准备步骤,清洁基材表面然后将沉积室的内部气氛准备成真空/高温气氛;第一缓冲步骤,通过Ti电弧源将Ti层沉积在基材表面上;第二缓冲步骤,通过Ti电弧源和氮气将TiN层沉积在Ti层表面上;第一涂布步骤,通过Ti电弧源、Ag溅射源和氮气将TiAgN层沉积在TiN层表面上;以及第二涂布步骤,通过Ag溅射源将Ag层沉积在TiAgN层表面上。根据示例性实施方式,在第二涂布步骤中,在使Ag层沉积后,通过剪切和垂直荷载将Ag层转移到TiAgN层的表面。
[0026] 可以通过PVD(物理气相沉积)来形成本发明的涂层。在该方法中,进行初始的清洁工序。在清洁步骤中,作为涂布再渗碳的基材表面之前的预处理步骤,通过使用乙醇(例如,进行约10~15分钟)和丙酮(例如,进行约3~5分钟)的超声波清洗并干燥(例如,进行约5~10分钟)来除去测试样品表面上的杂质,以获得均匀的涂布质量。
[0027] 之后,在真空工序中,在使用PVD设备的旋转泵的腔室中将真空度形成为10-2~10-3托,之后使用涡轮式主泵将真空气氛增加到10-5~10-6托。使用位于腔室顶部的电离压力计来检查10-2托或更低的真空度,并且在10-5托或更低的真空度进行该工序。
[0028] 在加热工序中,腔室中的温度被设定为约400~500℃或更高,从而促进N(氮)的反应,且加热时间设定为约40~60分钟,从而使待涂布的测试样品的表面和内部温度分布以及腔室中的温度气氛均匀。
[0029] 在上述清洁工序中,使用离子枪清洁已经用乙醇和丙酮除去杂质的测试样品约15~20分钟或更长,以改善缓冲层与基材之间的粘合物性。之后,进行第一缓冲步骤、第二缓冲步骤、第一涂布步骤和第二涂布步骤。
[0030] 在第一缓冲步骤中,使用离子源进行Ti层的固定,以改善作为功能涂层的TiAgN层的粘合特性,并且使Ti元素和Ar气碰撞到待涂布的测试样品中,以获得表面清洁效果,并通过向具有高能量密度的电弧源(70A~80A)施加大功率偏压(400~600V)来将Ti元素和Ar气注入到测试样品的基材中,并且沉积厚度设定为0.08~0.15μm。
[0031] 在第二缓冲步骤中,如果TiAgN层直接沉积在Ti层上,通过因晶格常数差异而形成在界面上的应力奇异点可能减少粘合特性;结果,可能造成界面应力集中,并最终造成涂层的毁坏。因此,使用电弧源(70~80A)来使TiN层沉积成0.05~0.1μm的厚度或更薄,以改善界面之间的结合强度。
[0032] 在第一涂布步骤中,通过活化电弧源(80~120V)和溅射源(0.7~1A)的两个离子源来进行TiAgN层涂布(1.5~2μm)。然而,电弧源和测试样品以20~25μm的距离隔开,以防止可由电弧源形成的大粒子的沉积,从而改善表面的粗糙度。
[0033] 在第二涂布步骤中,使用溅射源(0.6~0.8A)将Ag层涂布成0.05~0.1μm或更薄,以改善功能元素Ag的低摩擦特性,而不同于传统缓冲的目的是对粘合特性的改进。通过对着电弧源的Ti粒子形成具有Ag微粒子的层实施表面粗糙度和磨合(running-in)效果,从而在真实环境(组合的载荷)中改善摩擦特性。
[0034] 图1示出Ag顶层沉积的状态,并且图2示出通过增加垂直和水平剪切力来将Ag层转移到更低部分的TiAgN层的状态。通过载荷和摩擦来除去部分Ag层,而另一部分则转移到
TiAgN层以形成具有较强的Ag功能特性(低摩擦)的修饰TiAgN层。由此,也可以达到作为初始摩擦稳定特性的磨合效果(一种状态,其中,在实验开始之时,在表面粗糙度影响下在接触面上摩擦系数增加,之后除去粗糙之处和表面氧化物膜,再然后将其稳定下来)。
[0035] 最后,进行炉内冷却至室温,以防止涂层的改变并使特性均匀。
[0036] 图3是图1和图2所示涂层与传统DLC涂层的摩擦系数的比较图。已证实,室温下的摩擦特性,当Ag层是转移的TiAgN(Ag)时,摩擦特性比一般TiAgN改进200%或更多。此外,高温下的摩擦特性比大批量生产的DLC改进141%。换言之,改善了高温耐磨性。
[0037] 图4是图1和图2所示涂层与传统DLC涂层的摩擦稳定域的比较图。已证实,当Ag层是转移的TiAgN(Ag)时,与大批量生产的DLC以及一般的TiAgN相比,摩擦特性好,并且作为磨合效果的摩擦稳定域减少。
[0038] 由上述示例性结构构成的车辆部件用低摩擦涂层和制造该涂层的方法,可以提供不仅具有DLC的高硬度和低摩擦特性且具有高温耐磨性的TiAgN涂层。
[0039] 尽管将结合示例性实施方式描述本发明,但应当理解,本说明书无意于将本发明局限于这些示例性实施方式。相反,本发明不仅要涵盖这些示例性实施方式,还要涵盖由所附权利要求所限定的本发明的精神和范围内的各种替代形式、修改、等效形式和其它实施
方式。