一种低硅纳米SAPO-34分子筛的合成方法转让专利

申请号 : CN201310093558.4

文献号 : CN103130241B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 胡杰徐华胜王鹏飞

申请人 : 上海绿强新材料有限公司上海化工研究院

摘要 :

本发明涉及一种低硅纳米SAPO-34分子筛的合成方法,将硅源、铝源、模板剂R、去离子水、磷源按顺序混合,得到一凝胶混合物;将该凝胶混合物装入内衬为聚四氟乙烯的不锈钢高压反应釜中,密闭后放入烘箱,进行第一步传统水热晶化;向第一步传统水热晶化液中加入分散剂S并搅拌0.5~4小时,移入内衬为聚四氟乙烯的反应釜中,密闭后装入微波反应器,进行第二步微波水热晶化;洗涤、干燥、焙烧即得到纳米SAPO-34分子筛。与现有技术相比,本发明大幅降低晶化温度、缩短整个合成工艺的时间。该纳米分子筛可以广泛应用于烃类的转化,分离和吸附,尤其在甲醇制烯烃过程中具有高转化率、高低碳烯烃的选择性、低积碳速率、反应寿命长等优点。

权利要求 :

1.一种低硅纳米SAPO-34分子筛的合成方法,其特征在于,采用传统的水热和微波加热相结合的方法合成纳米级SAPO-34分子筛,具体方法如下:a)将硅源、铝源、模板剂R、去离子水、磷源按顺序混合,在10℃~60℃下搅拌0.5~

4h,得到一凝胶混合物;

b)将该凝胶混合物装入内衬为聚四氟乙烯的不锈钢高压反应釜中,密闭后放入烘箱,加热到一定温度,进行第一步传统水热晶化;

c)向第一步传统水热晶化液中加入分散剂S并搅拌0.5~4小时,移入内衬为聚四氟乙烯的反应釜中,密闭后装入微波反应器,加热到一定温度,进行第二步微波水热晶化;

d)去离子水洗涤、100℃~120℃干燥2~3h、500℃~600℃焙烧2~4h即得到纳米SAPO-34分子筛;

所述的分散剂S为乙醇、异丙醇、聚乙二醇、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基硫酸钠、十二烷基苯磺酸钠、聚乙烯醇,二乙醇胺中的一种或几种混合物;

所述的铝源、硅源、磷源、模板剂R、去离子水、分散剂S的摩尔配比如下:SiO2:Al2O3=

0.05~0.5:1,P2O5:Al2O3=1.5~5.0:1,R:Al2O3=0.5~5.5:1,H2O:Al2O3=10~200:1,S:Al2O3=0.01~1:1;

所述的第一步传统水热晶化的温度为100℃~150℃,时间为0.3~5小时;

所述的第二步微波水热晶化的温度为120℃~160℃,时间为0.5~3小时。

2.根据权利要求1所述的一种低硅纳米SAPO-34分子筛的合成方法,其特征在于,所述的SiO2:Al2O3=0.1~0.45:1;R:Al2O3=0.5~3:1。

3.根据权利要求1所述的一种低硅纳米SAPO-34分子筛的合成方法,其特征在于,所述的铝源为拟薄水铝石、异丙醇铝、氢氧化铝、活性氧化铝中的一种或几种;硅源为硅溶胶、正硅酸乙酯、白炭黑、活性二氧化硅中的一种或几种;磷源为正磷酸、偏磷酸、亚磷酸溶液一种或几种;模板剂R为四乙基氢氧化铵、三乙胺、二乙胺中的一种或几种混合物。

4.根据权利要求1所述的一种低硅纳米SAPO-34分子筛的合成方法,其特征在于,所述的纳米SAPO-34分子筛至少有一维小于100nm。

5.根据权利要求1所述的一种低硅纳米SAPO-34分子筛的合成方法,其特征在于,所述的纳米SAPO-34分子筛应用于烃类的转化,分离和吸附。

说明书 :

一种低硅纳米SAPO-34分子筛的合成方法

技术领域

[0001] 本发明属于分子筛技术领域,具体涉及一种低硅纳米SAPO-34分子筛的制备方法。

背景技术

[0002] 1984年,美国联合碳化物公司(UCC)开发了磷酸硅铝系列分子筛(SAPO-n,n代表结构型号)。其中最为人瞩目的是SAPO-34分子筛。该种分子筛的MTO催化性能优异,甲+醇转化率100%或近乎100%,乙烯和丙烯的选择性在60%左右,几乎没有C5以上的产物。
特别是UOP公司开发的以SAPO-34为活性组分的催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性的进展。
[0003] 传统的水热法合成的SAPO-34分子筛易积碳,导致以SAPO-34分子筛为活性组分的催化剂单程寿命很短。
[0004] US4752651专利研究了分子筛晶粒尺寸对催化性能的影响,并指出SAPO-34分子筛的尺寸减小有利于提高其催化性能。
[0005] 通过减小SAPO-34分子筛的粒径,特别是当粒径达到纳米级时,可以很好的解决该分子筛催化剂的内扩散问题,减少二次反应的发生,从而改善SAPO-34分子筛易积碳的问题,达到延长催化剂单程寿命的目的。
[0006] 传统的水热法合成SAPO-34分子筛,晶化温度一般都比较高,晶化时间长,耗能大,诸如专利CN102557073A,CN101525141A,CN101462742A,采用传统的水热法合成SAPO-34分子筛,晶化温度180℃-205℃,晶化时间18-72h。在运用原位合成技术时,会对后期催化剂的载体具有较大的破坏作用,影响催化剂的磨耗率。
[0007] Hendrik van Heyden等人通过微波加热的方法,可以合成出100nm-500nmCHA结构的SAPO-34分子筛。
[0008] 专利CN102616810A加入二缩三乙二醇、三缩四乙二醇等亲水溶剂,合成平均粒径20-300纳米的SAPO-34分子筛,晶化温度160℃-230℃,优选180℃-200℃,微波晶化时间
0.5-4h。该专利缩短了晶化时间,但是晶化温度较高。
[0009] 因此,通过微波加热降低晶化温度或缩短晶化时间,再引入合适的分散剂达到进一步减小晶粒的目标,是制备纳米分子筛较为简易可行的方法。

发明内容

[0010] 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种低硅纳米SAPO-34分子筛的合成方法。
[0011] 本发明的目的可以通过以下技术方案来实现:一种低硅纳米SAPO-34分子筛的合成方法,其特征在于,采用传统的水热和微波加热相结合的方法合成纳米级SAPO-34分子筛,具体方法如下:
[0012] a)将硅源、铝源、模板剂R、去离子水、磷源按顺序混合,在10℃~60℃下搅拌0.5~4h,得到一凝胶混合物;
[0013] b)将该凝胶混合物装入内衬为聚四氟乙烯的不锈钢高压反应釜中,密闭后放入烘箱,加热到一定温度,进行第一步传统水热晶化;
[0014] c)向第一步传统水热晶化液中加入分散剂S并搅拌0.5~4小时,移入内衬为聚四氟乙烯的反应釜中,密闭后装入微波反应器,加热到一定温度,进行第二步微波水热晶化;
[0015] d)去离子水洗涤、100℃~120℃干燥2~3h、500℃~600℃焙烧2~4h即得到纳米SAPO-34分子筛。
[0016] 所述的铝源、硅源、磷源、模板剂R、去离子水、分散剂S的摩尔配比如下:SiO2∶Al2O3=0.05~0.5∶1,P2O5∶Al2O3=1.5~5.0∶1,R∶Al2O3=0.5~5.5∶1,H2O∶Al2O3=10~200∶1,S∶Al2O3=0.01~1∶1。
[0017] 所述的SiO2∶Al2O3=0.1~0.45∶1;R∶Al2O3=0.5~3∶1。
[0018] 所述的铝源为拟薄水铝石、异丙醇铝、氢氧化铝、活性氧化铝中的一种或几种;硅源为硅溶胶、正硅酸乙酯、白炭黑、活性二氧化硅中的一种或几种;磷源为正磷酸、偏磷酸、亚磷酸溶液一种或几种;模板剂R为四乙基氢氧化铵、三乙胺、二乙胺中的一种或几种混合物。
[0019] 所述的分散剂S为水、乙醇、异丙醇、聚乙二醇、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基硫酸钠、十二烷基苯磺酸钠、聚乙烯醇,二乙醇胺中的一种或几种混合物。
[0020] 所述的第一步传统水热晶化的温度为100℃~150℃,时间为0.3~5小时。
[0021] 所述的第二步微波水热晶化的温度为120℃~160℃,时间为0.5~3小时。
[0022] 所述的纳米SAPO-34分子筛至少有一维小于100nm。
[0023] 所述的纳米SAPO-34分子筛应用于烃类的转化,分离和吸附,尤其适用于MTO过程。可以单独使用,也可以作为催化剂的载体或活性组分的形式使用。
[0024] 通过调整原料配比可以改变该SAPO-34分子筛的形状,可以为立方体结构,也可为片状结构,可根据实际应用情况酌情调整。
[0025] 与现有技术相比,本发明的优点:
[0026] 采用传统的水热和微波加热相结合的晶化方法,大幅降低晶化温度、缩短整个合成工艺的时间。
[0027] 引入分散剂S,尤其是具有两亲性的表面活性剂的引入,控制溶胶体系的传质,抑制SAPO-34分子筛晶粒的生长速度,使其停止在纳米尺度。
[0028] 由于SAPO-34分子筛晶粒减小到纳米尺度,其在甲醇制烯烃(MTO)过程中,较小颗粒的SAPO-34分子筛具有更高的低碳烯烃的选择性、更低积碳速率、更长的反应寿命。

附图说明

[0029] 图1为S-1~S-8样品的XRD谱图;
[0030] 图2为S-1样品的SEM照片;
[0031] 图3为S-2样品的SEM照片;
[0032] 图4为S-4样品的SEM照片;
[0033] 图5为S-6样品的SEM照片;
[0034] 图6为S-8样品的SEM照片。

具体实施方式

[0035] 以下通过实施例对本发明进行进一步说明,但本发明并不局限于这些实施例。
[0036] 实施例1
[0037] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定体积的蒸馏水(与老化液体积之比为1∶2)并搅拌均匀,将其置于高压釜中,160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-1)。其XRD图谱见图1,SEM照片见图2,由照片可以看出所得SAPO-34分子筛为立方体型,尺寸均一,约为100nm。
[0038] 对比实例1
[0039] 将硅溶胶、拟薄水铝石、磷酸、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶1∶0.6∶3.5∶36混合,30℃下搅拌3h,加入模板剂继续搅拌4h,得到SAPO-34分子筛初始凝胶,室温下老化24h,然后装入带聚四氟乙烯内衬的不锈钢高压釜中,再于200℃下在常规反应器中晶化36h,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-2)。其XRD图谱见图1,SEM照片见图3,由照片可以看出所得SAPO-34分子筛为立方体型,尺寸均一,约为1500nm。可见传统水热法也可以得到立方体型的SAPO-34分子筛,但是尺寸较大。
[0040] 实施例2
[0041] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定量的十二烷基硫酸钠溶液S(S∶Al2O3=0.01∶1)并搅拌均匀,将其置于高压釜中,
160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-3)。其XRD图谱见图1,SEM照片见图3,由照片可以看出所得SAPO-34分子筛为薄片状,尺寸均一,约为20×300nm。
[0042] 实施例3
[0043] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定量的十二烷基硫酸钠溶液S(S∶Al2O3=1∶1)并搅拌均匀,将其置于高压釜中,160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-4)。其XRD图谱见图1,确认为SAPO-34分子筛且为薄片状,约为50×300nm。
[0044] 实施例4
[0045] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定量的十六烷基溴化铵溶液S(S∶Al2O3=0.01∶1)并搅拌均匀,将其置于高压釜中,
160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-5)。其XRD图谱见图1,SEM照片见图4,由照片可以看出所得SAPO-34分子筛为薄片状,尺寸均一,约为20×500nm。
[0046] 实施例5
[0047] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定量的十六烷基溴化铵溶液S(S∶Al2O3=1∶1)并搅拌均匀,将其置于高压釜中,160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-6)。其XRD图谱见图1,可确认所得为SAPO-34分子筛且为薄片状,约为20×400nm。
[0048] 实施例6
[0049] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定量的二乙醇胺溶液S(S∶Al2O3=0.01∶1)并搅拌均匀,将其置于高压釜中,160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-7)。其XRD图谱见图1,SEM照片见图5,由照片可以看出所得SAPO-34分子筛为薄片状,尺寸均一,约为40×100nm。
[0050] 实施例7
[0051] 将硅溶胶、拟薄水铝石、四乙基氢氧化铵、去离子水按照摩尔比为n(Al2O3)∶n(P2O5)∶n(SiO2)∶n(TEAOH)∶n(H2O)=1∶2∶0.4∶3.5∶140混合,30℃下搅拌2h,然后缓慢滴加磷酸溶液。继续搅拌2h后,将得到的溶液装入带聚四氟乙烯内衬的不锈钢高压釜中,再于130℃下在常规反应器中晶化3h,得到含有老化液的一次晶体,向一次晶体中补加一定量的二乙醇胺溶液S(S∶Al2O3=1∶1)并搅拌均匀,将其置于高压釜中,160℃下在微波反应器中晶化80min,洗涤,120℃干燥,550℃焙烧,即得到SAPO-34分子筛(样品编号S-8)。其XRD图谱见图1,可确认所得为SAPO-34分子筛且为薄片状,约为30×150nm。
[0052] 实施例8
[0053] 将实施例7和对比实例1所得样品压片、破碎为20-40目颗粒。称取1.35克样品装入固定床反应器,进行活性评价。具体反应条件如下:反应温度450℃,氮气流速30ml/-1min,甲醇重量空速2.0h ,水醇比2∶1。反应后产物经气相色谱在线分析,结果如下表:
[0054]
[0055] 实施例9
[0056] 一种低硅纳米SAPO-34分子筛的合成方法,采用传统的水热和微波加热相结合的方法合成纳米级SAPO-34分子筛,具体方法如下:
[0057] a)将硅源、铝源、模板剂R、去离子水、磷源按顺序混合,在10℃下搅拌4h,得到一凝胶混合物;
[0058] b)将该凝胶混合物装入内衬为聚四氟乙烯的不锈钢高压反应釜中,密闭后放入烘箱,加热到一定温度,进行第一步传统水热晶化,温度为100℃,时间为5小时;
[0059] c)向第一步传统水热晶化液中加入分散剂S并搅拌0.5小时,移入内衬为聚四氟乙烯的反应釜中,密闭后装入微波反应器,加热到一定温度,进行第二步微波水热晶化,温度为120℃,时间为3小时;
[0060] d)去离子水洗涤、100℃干燥3h、500℃焙烧4h即得到纳米SAPO-34分子筛。
[0061] 所述的铝源、硅源、磷源、模板剂R、去离子水、分散剂S的摩尔配比如下:SiO2∶Al2O3=0.05∶1,P2O5∶Al2O3=1.5∶1,R∶Al2O3=0.5∶1,H2O∶Al2O3=
10∶1,S∶Al2O3=0.01∶1。
[0062] 所述的铝源为异丙醇铝;硅源为白炭黑;磷源为亚磷酸溶液;模板剂R为三乙胺。所述的分散剂S为水、乙醇、异丙醇、聚乙二醇、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基硫酸钠、十二烷基苯磺酸钠、聚乙烯醇,二乙醇胺中的一种或几种混合物。
[0063] 所述的纳米SAPO-34分子筛至少有一维小于100nm。
[0064] 所述的纳米SAPO-34分子筛应用于烃类的转化,分离和吸附,尤其适用于MTO过程。可以单独使用,也可以作为催化剂的载体或活性组分的形式使用。
[0065] 通过调整原料配比可以改变该SAPO-34分子筛的形状,可以为立方体结构,也可为片状结构,可根据实际应用情况酌情调整。
[0066] 实施例10
[0067] 一种低硅纳米SAPO-34分子筛的合成方法,采用传统的水热和微波加热相结合的方法合成纳米级SAPO-34分子筛,具体方法如下:
[0068] a)将硅源、铝源、模板剂R、去离子水、磷源按顺序混合,在60℃下搅拌0.5h,得到一凝胶混合物;
[0069] b)将该凝胶混合物装入内衬为聚四氟乙烯的不锈钢高压反应釜中,密闭后放入烘箱,加热到一定温度,进行第一步传统水热晶化,温度为150℃,时间为0.3小时;
[0070] c)向第一步传统水热晶化液中加入分散剂S并搅拌4小时,移入内衬为聚四氟乙烯的反应釜中,密闭后装入微波反应器,加热到一定温度,进行第二步微波水热晶化,温度为160℃,时间为0.5小时;
[0071] d)去离子水洗涤、120℃干燥2h、600℃焙烧2h即得到纳米SAPO-34分子筛。
[0072] 所述的铝源、硅源、磷源、模板剂R、去离子水、分散剂S的摩尔配比如下:SiO2∶Al2O3=0.5∶1,P2O5∶Al2O3=5.0∶1,R∶Al2O3=5.5∶1,H2O∶Al2O3=
200∶1,S∶Al2O3=1∶1。
[0073] 所述的铝源为活性氧化铝;硅源为活性二氧化硅;磷源为偏磷酸;模板剂R为三乙胺。所述的分散剂S为十六烷基三甲基溴化铵。
[0074] 所述的纳米SAPO-34分子筛至少有一维小于100nm。
[0075] 所述的纳米SAPO-34分子筛应用于烃类的转化,分离和吸附,尤其适用于MTO过程。可以单独使用,也可以作为催化剂的载体或活性组分的形式使用。
[0076] 通过调整原料配比可以改变该SAPO-34分子筛的形状,可以为立方体结构,也可为片状结构,可根据实际应用情况酌情调整。