铟镓锌氧化物(IGZO)纳米粉体及其制备方法与应用转让专利

申请号 : CN201110455651.6

文献号 : CN103130493B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周力行周育贤杨智超

申请人 : 财团法人工业技术研究院

摘要 :

本发明提供一种铟镓锌氧化物(IGZO)纳米粉体,包括:InGaZnO4晶体结构以及微量元素,其中该InGaZnO4晶体结构如下式所示:x(In2O3)-y(Ga2O3)-z(ZnO),其中,x∶y∶z=1∶1∶0.5-2,以及该微量元素包括硼(Boron)和/或铝(Aluminum),含量介于约100-1000ppm。本发明亦提供一种铟镓锌氧化物(IGZO)纳米粉体的制备方法与其所制备的溅镀用靶材。

权利要求 :

1.一种铟镓锌氧化物(IGZO)纳米粉体,包括:

一InGaZnO4晶体结构以及一微量元素,其中该InGaZnO4晶体结构如式(I)所示:x(In2O3)–y(Ga2O3)–z(ZnO) (I)其中,x:y:z=1:1:0.5-2,以及该微量元素包括硼和/或铝,含量介于100-1000ppm;

所述铟镓锌氧化物纳米粉体是由下述方法制备而得,该制备方法包括:将一铟金属化合物、一镓金属化合物及一锌金属化合物溶于一溶剂中;

加入一微量元素及一沉淀剂以产生一沉淀物,其中该微量元素包括硼和/或铝,含量介于100-1000ppm;以及以700-1400℃烧结该沉淀物以形成一含铟镓锌氧化物纳米粉体。

2.如权利要求1所述的铟镓锌氧化物(IGZO)纳米粉体,其纯度大于99%。

3.如权利要求1所述的铟镓锌氧化物(IGZO)纳米粉体,其为一单相的InGaZnO4晶体结构。

4.如权利要求1所述的铟镓锌氧化物(IGZO)纳米粉体,其中不含ZnGa2O4尖晶石相。

5.如权利要求1所述的铟镓锌氧化物(IGZO)纳米粉体,所述纳米粉体的平均粒径小于

100nm,径长比等于1。

6.一种溅镀用靶材,由权利要求1至5中任一项所述的铟镓锌氧化物(IGZO)纳米粉体,经均压成形及烧结处理而得。

7.一种铟镓锌氧化物(IGZO)纳米粉体的制备方法,包括:将一铟金属化合物、一镓金属化合物及一锌金属化合物溶于一溶剂中,其中该铟金属化合物、该镓金属化合物及该锌金属化合物中铟:镓:锌的摩尔比为2:2:1~1:1:1;

加入一微量元素及一沉淀剂以产生一沉淀物,其中该微量元素包括硼和/或铝,含量介于100-1000ppm;以及以700-1400℃烧结该沉淀物以形成一含铟镓锌氧化物纳米粉体。

8.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中在烧结该沉淀物之前还包括清洗并分离该沉淀物。

9.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该铟金属化合物包括硝酸铟、硫酸铟、亚硫酸铟、磷酸铟、次磷酸铟,该镓金属化合物包括硝酸镓、硫酸镓、亚硫酸镓、磷酸镓、次磷酸镓,以及该锌金属化合物包括硝酸锌、硫酸锌、亚硫酸锌、磷酸锌、次磷酸锌。

10.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该沉淀剂包括碳酸钠、氨水、氢氧化钠、氢氧化钾或上述沉淀剂的组合。

11.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该烧结的温度介于800-1200℃。

12.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该含铟镓锌氧化物(IGZO)纳米粉体,其纯度大于99%。

13.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该含铟镓锌氧化物(IGZO)纳米粉体为一单相的InGaZnO4晶体结构。

14.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该含铟镓锌氧化物(IGZO)纳米粉体不含ZnGa2O4尖晶石相。

15.如权利要求7所述的铟镓锌氧化物(IGZO)纳米粉体的制备方法,其中该含铟镓锌氧化物(IGZO)纳米粉体的平均粒径小于100nm,径长比等于1。

说明书 :

铟镓锌氧化物(IGZO)纳米粉体及其制备方法与应用

技术领域

[0001] 本发明涉及一种铟镓锌氧化物(IGZO)纳米粉体、其制备方法以及其所制备的溅镀用靶材。

背景技术

[0002] 新兴a-IGZO薄膜材料有机会取代目前的a-Si或poly-Si作为薄膜晶体管(TFT)。3+ 2+
此材料的电子特性较a-Si佳,主要原因为:(1)In 提供高电子移动速率;(2)Zn 提供非
3+
晶结构稳定性;(3)Ga 提供高载量电子密度,此材料可适用于现有平面显示器(FPD)工业
2
制程,亦可用于大面积基材。a-IGZO电子迁移率(大约为10cm/Vs,临界电压飘移几乎一
2
致)与可靠度比传统氢化非晶硅(<1cm/Vs)薄膜晶体管高,具有稳定的非晶态结构、高电子载子密度以及均匀性优于低温多(复)晶硅薄膜晶体管且可在室温下制程等特性,因此a-IGZO薄膜晶体管具有取代氢化非晶硅薄膜晶体管与低温多(复)晶硅薄膜晶体管来制作有源矩阵有机发光显示器(Active Matrix Organic Light Emitting Display:AMOLED)的潜力。
[0003] 现今薄膜晶体管(TFT)工业界一般均以射频/直流电(RF/DC)溅镀系统制备a-IGZO薄膜材料,这是因为溅镀法具有品质佳、成本低廉、可大量生产且低污染等因素。
[0004] IGZO靶材品质与RF/DC溅镀系统溅镀出的IGZO薄膜电性与物理性质有关,主要影响溅镀透明导电薄膜品质的因素除了薄膜沉积的参数外,不外乎跟靶材的相对密度、导电性、晶粒大小、微结构与纯度亦有很大密切关系。透明导电膜如掺杂镓的氧化锌(Ga-doped ZnO,GZO)等与钯材的密度有直接影响。靶材密度低,表面具有很多空洞,容易在靶材表面形成凸起物(nodules),造成靶材表面电场分布不均,极易在表面产生较强的电场,Ar或其它气体离子撞击靶材局部能量太高,容易将氧原子撞击游离,形成高电阻的区域,在镀膜过程中一些粒子会从这些凸起物跑到薄膜,降低镀膜品质。这些粒子在镀膜室中亦会造成电场分布不均(electrical discharge),因此影响镀膜制程的稳定度,降低产能。而未来大面积镀膜制程更需求提高制程稳定度。在镀膜生产制程中必须定期去除靶材表面的凸起物,降低镀膜产能。
[0005] 目前商业市售的IGZO溅镀靶材主要以物理方式的固态反应法制作。做法是将In2O3、ZnO和Ga2O3三种粉体(平均粒径微米等级)直接机械研磨,再加上造粒研磨、加压成形、高温烧结(1200-1500℃)等步骤,制成溅镀用靶材,此固态反应法虽然制程简单,但机械混和的均匀程度有所限制,当球磨过程中掺杂的金属氧化物分布不均匀,或是球磨完后被磨碎的金属氧化物比表面积不够大时,靶材在烧结过程中ZnGa2O4尖晶石(spinel)析出相就容易产生,会造成靶材中凸起物增加,进而影响镀膜制程稳定度影响RF/DC溅镀IGZO薄膜的品质。另外,混合粒子亦较大(0.6-1.0μm),压制靶材时容易造成不均,降低靶材密度,影响溅镀效果。固态反应法虽可大量制备IGZO钯材,但因以物理方式制作的In2O3,ZnO和Ga2O3粉体直接机械研磨,以掺杂适当的Ga或In入ZnO晶体结构中以取代Zn原子来控制或降低电阻值,可能造成Ga掺杂不均,亦是IGZO导电材料内的各元素的均匀分布成为降低电阻值的主要问题点,从而影响RF/DC溅镀IGZO薄膜的品质。
[0006] 有鉴于此,业界亟需一种能够改善目前粉体混合固态反应法制成溅镀用靶材的元素不均、掺杂量提升问题的溅镀用靶材的制备方法,其纳米粉体可降低靶材烧结温度,减少耗能,有助于节能减碳效果。

发明内容

[0007] 本发明提供一种铟镓锌氧化物(IGZO)纳米粉体,包括:InGaZnO4晶体结构以及微量元素,其中该InGaZnO4晶体结构如式(I)所示:
[0008] x(In2O3)-y(Ga2O3)-z(ZnO) (I)
[0009] 其中,x∶y∶z=1∶1∶0.5-2,以及该微量元素包括硼(Boron)和/或铝(Aluminum),含量介于约100-1000ppm。
[0010] 本发明还提供一种溅镀用靶材,所述靶材由上述铟镓锌氧化物(IGZO)纳米粉体,经均压成形及烧结处理而得。
[0011] 本发明还提供一种铟镓锌氧化物(IGZO)纳米粉体的制备方法,包括:将一铟金属化合物、一镓金属化合物及一锌金属化合物溶于一溶剂中,其中所述铟金属化合物、镓金属化合物及锌金属化合物中铟∶镓∶锌的摩尔比为2∶2∶1~1∶1∶1;加入一微量元素及一沉淀剂以产生一沉淀物,其中该微量元素包括硼和/或铝,含量介于约100-1000ppm;以及以700-1400℃烧结该沉淀物以形成一含铟镓锌氧化物纳米粉体。

附图说明

[0012] 为使本发明的上述和其它目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合附图,作详细说明如下。
[0013] 图1是根据本发明的实施例,显示IGZO纳米粉体的X线绕射图。
[0014] 图2是根据本发明的实施例,显示IGZO纳米粉体的电子显微镜影像图。

具体实施方式

[0015] 以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的优点及功效。本发明亦可通过其它不同的实施方式加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不悖离本发明所揭示的精神下赋予不同的修饰与变更。
[0016] 本发明主要是以三种盐类为起始原料,在溶剂中溶解来制备成均匀混合的溶液;然后加入适当的沉淀剂后,在溶液中生成复盐、氢氧化物、固溶体、复氧化物等的前驱沉淀物;最后,将所得的沉淀物经过水洗及过滤的程序,最后再经过干燥、热分解或脱水来制得所需的结晶性铟镓锌氧化物(IGZO)纳米粉体。
[0017] 根据本发明的实施例所提供的铟镓锌氧化物(IGZO)纳米粉体的制备方法,首先将一铟金属化合物、一镓金属化合物及一锌金属化合物溶于一溶剂中,其中铟∶镓∶锌的摩尔比为2∶2∶1~1∶1∶1,较佳为1∶1∶1。上述铟金属化合物可包括但不限于:硝酸铟、硫酸铟、亚硫酸铟、磷酸铟、次磷酸铟,上述镓金属化合物可包括但不限于:硝酸镓、硝酸镓、硫酸镓、亚硫酸镓、磷酸镓、次磷酸镓,以及上述锌金属化合物可包括但不限于:硝酸锌、硫酸锌、亚硫酸锌、磷酸锌、次磷酸锌,形成含有铟、镓、锌等金属离子的溶液后;接着加入一微量元素及一沉淀剂以产生一沉淀物,其中上述微量元素包括,例如:硼和/或铝,其中硼和/或铝的含量各自介于约100-1000ppm,较佳介于约200-800ppm,更佳介于约
300-500ppm,以及上述沉淀剂可包括但不限于氨水、碳酸钠、氢氧化钠、氢氧化钾或上述的组合,且上述沉淀剂与锌的摩尔比介于约3-8,较佳约5;然后清洗并分离上述沉淀物,之后再以700-1400℃,较佳800-1200℃烧结上述沉淀物3-8小时,较佳5小时,以形成一含铟镓锌氧化物纳米粉体,所得的铟镓锌氧化物(IGZO)纳米粉体,其纯度大于约99%,较佳大于约99.5%。
[0018] 与传统的固相反应法相比,共沉淀法存在的杂质较少,因而获得的粉末具有较高的化学均匀性,其主要特色为设备成本低廉、程序简易、大量生产。本发明于合成IGZO纳米粉体组成上添加B、Al等元素来细化靶材晶粒并抑制杂相的生成,与现有IGZO的组成有所差异。
[0019] 在本发明的实施例中,上述方法所得的铟镓锌氧化物(IGZO)纳米粉体,包括:InGaZnO4晶体结构以及微量元素,其中上述InGaZnO4晶体结构如式(I)所示:
[0020] x(In2O3)-y(Ga2O3)-z(ZnO) (I)
[0021] 其中,x∶y∶z=1∶1∶0.5-2,以及上述微量元素包括硼和/或铝,其中硼和/或铝的含量各自介于约100-1000ppm,较佳介于约200-800ppm,更佳介于约300-500ppm。在一实施例中,上述铟镓锌氧化物(IGZO)纳米粉体,其纯度可大于约99%,较佳大于约
99.5%。依照本发明所制得的铟镓锌氧化物(IGZO)纳米粉体可为一单相的InGaZnO4晶体结构,且其中不含ZnGa2O4尖晶石(spinel)相。上述铟镓锌氧化物(IGZO)纳米粉体的平均粒径约小于100nm,较佳小于约80nm,更佳小于约50nm,且径长比(l/d aspect ratio)可约等于1~2,其中径长比(l/d)为单颗纳米粉体的直径(d)与长度(1)的比值。
[0022] 将本发明的铟镓锌氧化物(IGZO)纳米粉体与聚乙烯醇(polyvinyl acetate,PVA,商品)和去离子水混合成水溶液,PVA含量为0.1~0.3wt%(100cc水溶液),PVA最佳含量为0.15~0.25wt%(100cc水溶液),IGZO粉体含量10~25wt%,IGZO粉体最佳含量15~20wt%,混合后的IGZO水溶液先经过喷雾造粒,制作出粒径大于5~20μm的IGZO球形粒子,接着把IGZO球形粒子经万能试验机加压成形,下压速率为0.3~2mm/min,成形压力5~30MPa,最佳下压速率为0.5~1.3mm/min,最佳成形压力为15~25MPa,成形完后的生胚再经冷均压处理,冷均压施压压力为150~400MPa,最佳施压压力为250~350MPa,最后将致密化的生胚置入高温烧结炉进行烧结,其烧结条件如下:室温升温至300℃,升温速率为0.5~3℃/min,最佳升温速率为0.8~2.5℃/min;300℃持温去除聚乙烯醇(PVA),持温时间为1~5小时,最佳持温时间为1.5~4小时;300℃升温至烧结温度,升温速率
0.5~3℃/min,烧结温度为1200~1600℃,最佳升温速率为0.8~2℃/min,最佳烧结温度为1350~1550℃;上述靶材烧结时间持温2~8小时,最佳烧结时间为4~6小时;接着自然炉冷,最后可得溅镀用靶材。
[0023] 综上所述,本发明以前趋物共沉降法(co-precipitation)制作的IGZO纳米粉体,目的是制备粒径小而均一化的高结晶度及纯度的IGZO纳米粉体,以应用于制备高品质IGZO靶材。依据本发明的方法所制备的IGZO纳米粉体乃直接合成,不需长时间机械研磨,可使In、Ga、Zn等元素更均匀分布于纳米粉体中,提升靶材致密度与均匀度,并且由于纳米粉体粒径较小,可降低烧结温度(700-900℃),如此一来不仅符合节省能源的需求,还有制程简单、快速以及产物纯度高等优点。
[0024] 以下通过特定的具体实施例进一步说明本发明的特点与功效,但非用于限制本发明的范畴。
[0025] 【实施例1】
[0026] 本实施例通过以下方法测量纳米粉体的物性。
[0027] 纳米粉体的结晶构造
[0028] 使用X线绕射装置(Philips公司制造,型号PW-1700)。
[0029] 纳米粉体的粒径
[0030] 使用电子显微镜影像分析装置(JEOL公司制造,型号5400)。
[0031] 纳米粉体的组成
[0032] 使用X光能量散布分析仪(JEOL公司制造,型号5400)。
[0033] 首先,取22g铟金属化合物(硝酸铟)、15g镓金属化合物(硝酸镓)、17g锌金属化合物(硝酸锌)以及1ml的微量元素(1000μg/ml B,在H2O中)溶于480ml纯水中,搅拌0.5小时,再加入30g沉淀剂(碳酸钠),在室温下搅拌2小时,再以去离子水清洗三次并分离沉产生的白色沉淀物。接着,置于110℃烘干可得到白色粉体,然后再分别以800℃高温烧结3小时成含铟镓锌金属氧化物。图1是根据本发明的实施例,显示IGZO纳米粉体的X线绕射图,经由X线绕射可确认纳米粉体中存在InGaZnO4的结晶。图2是根据本发明的实施例,显示IGZO纳米粉体的电子显微镜影像图,比例尺为100nm,经由电子显微镜影像分析纳米粉体的粒径约50nm。经由X光能量散布及组成分析仪可确认纳米粉体中的铟镓锌氧化物是(In2O3)-(Ga2O3)-2(ZnO),所得的IGZO纳米粉体的组成分析结果如表1所示。
[0034] 表1
[0035]元素 重量百分比% 原子数百分比%
O 20.00 55.95
Zn 30.15 20.65
Ga 15.71 10.09
In 34.14 13.31
总和 100.00
[0036] 【实施例2】
[0037] 先将实施例1中所得的铟镓锌氧化物(IGZO)纳米粉体与聚乙烯醇(PVA,商品)和去离子水混合成水溶液,PVA含量为0.2wt%(100cc水溶液),IGZO粉体含量20wt%,混合后的IGZO水溶液先经过喷雾造粒,制作出粒径5~12μm的IGZO球形粒子,再把喷雾造粒后的的粉体置入内径为4寸的模具中,以万能试验机进行4寸生胚压制,其生胚制作条件为施加压力25MPa,持压时间1分钟;成形后的生胚再经冷均压处理,以300MPa施压压力使生胚致密化。
[0038] 最后将致密化的生胚置入高温烧结炉进行烧结,其烧结条件如下:室温升温至300℃,升温速率为1.5℃/min;300℃持温去除PVA,持温时间为2小时;300℃升温至烧结温度,升温速率率1℃/min,烧结温度为1500℃;靶材烧结时间持温4小时;最后自然炉冷。
最后烧结完后靶材以研磨机将靶材表面研磨平整再经线切割加工处理即可得到一3寸靶材。靶材致密度>99%,纯度>99.9%。
[0039] 【实施例3】
[0040] 先将实施例1中所得的铟镓锌氧化物(IGZO)纳米粉体与聚乙烯醇(PVA,商品)和去离子水混合成水溶液,PVA含量为0.2wt%(100cc水溶液),IGZO粉体含量20wt%,混合后的IGZO水溶液先经过喷雾造粒,制作出粒径5~12μm的IGZO球形粒子,再把喷雾造粒后的粉体置入内径为4寸的模具中,以万能试验机进行4寸生胚压制,其生胚制作条件为施加压力25MPa,持压时间1分钟;成形后的生胚再经冷均压处理,以250MPa施压压力使生胚致密化。
[0041] 最后将致密化的生胚置入高温烧结炉进行烧结,其烧结条件如下:室温升温至300℃,升温速率为1℃/min;300℃持温去除PVA,持温时间为2小时;300℃升温至烧结温度,升温速率为1℃/min,烧结温度为1400℃;靶材烧结时间持温5小时;最后自然炉冷。最后烧结完后靶材经以研磨机将靶材表面研磨平整再经线切割加工即可得到一3寸靶材。靶材致密度>99%,纯度>99.9%。
[0042] 虽然本发明已经以数个较佳实施例揭露如上,然其并非用以限定本发明。任何所属技术领域的技术人员,在不脱离本发明的精神和范围内,可作任意的修改与改变,因此本发明的保护范围视权利要求书所界定为准。