陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器转让专利

申请号 : CN201180051086.5

文献号 : CN103180268B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 平野智资立川俊洋宫原淳一花待年彦

申请人 : 日本发条株式会社

摘要 :

本发明提供一种抑制烧结时埋设在内部的耐热性金属材料的碳化、且防止耐热性金属材料的导电性的降低的陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器。本发明的陶瓷烧结体是烧结陶瓷前体而形成的、且在上述烧结时金属皮膜被碳化而形成金属碳化物皮膜(4)的陶瓷烧结体,其中,所述陶瓷前体具备:由耐热性金属材料构成的加热线(2)、形成于加热线(2)的表面且由金属碳化物的标准生成自由能比形成加热线(2)的材料小的金属材料构成的金属皮膜、将形成有金属皮膜的加热线(2)配置到作为陶瓷基体的原材料的粉体中的规定的位置并加压成型而形成的陶瓷成型体。

权利要求 :

1.一种陶瓷烧结体的制造方法,其特征在于,其包括以下步骤:皮膜形成步骤:在作为耐热性金属材料的钼或钼合金的表面形成作为金属碳化物的标准生成自由能比该耐热性金属材料小的金属材料的选自钛、钽或锆的金属皮膜,成型步骤:将在所述皮膜形成步骤中形成了皮膜的所述耐热性金属材料配置到作为陶瓷基体的原材料的粉体中的规定的位置,并加压成型而使陶瓷成型体成型,烧结步骤:将在所述成型步骤中成型的陶瓷成型体烧结而生成陶瓷烧结体。

2.根据权利要求1所述的陶瓷烧结体的制造方法,其特征在于,其中,所述陶瓷基体为氮化铝、氮化硅或氧化铝。

3.根据权利要求1所述的陶瓷烧结体的制造方法,其特征在于,其中,所述陶瓷烧结体的烧结温度为1300~2000℃。

4.根据权利要求1~3中任一项所述的陶瓷烧结体的制造方法,其特征在于,其中,所述金属皮膜的厚度为0.10~10.0μm。

5.一种陶瓷烧结体,其特征在于,其是烧结陶瓷前体而形成的、且在所述烧结时金属皮膜被碳化而形成金属碳化物皮膜的陶瓷烧结体,其中,所述陶瓷前体具备:作为耐热性金属材料的钼或钼合金、

形成于所述耐热性金属材料的表面、且作为金属碳化物的标准生成自由能比所述耐热性金属材料小的金属材料的选自钛、钽或锆的金属皮膜、以及将形成有所述金属皮膜的耐热性金属材料配置到作为陶瓷基体的原材料的粉体中的规定的位置并加压成型而形成的陶瓷成型体。

6.根据权利要求5所述的陶瓷烧结体,其特征在于,其中,所述陶瓷基体为氮化铝、氮化硅或氧化铝。

7.根据权利要求5所述的陶瓷烧结体,其特征在于,其中,所述陶瓷烧结体的烧结温度为1300~2000℃。

8.根据权利要求5~7中任一项所述的陶瓷烧结体,其特征在于,其中,所述金属皮膜的厚度为0.10~10.0μm。

9.一种陶瓷加热器,其特征在于,其具备权利要求5~7中任一项所述的陶瓷烧结体。

10.一种陶瓷加热器,其特征在于,其具备权利要求8所述的陶瓷烧结体。

说明书 :

陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器

技术领域

[0001] 本发明涉及陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器。

背景技术

[0002] 以往,在半导体的制造工艺、例如CVD或蚀刻等处理中,为了加热晶圆,使用在由陶瓷构成的加热板中埋设有发热体的陶瓷加热器。该陶瓷加热器是将作为发热体的具有耐热性的钼等金属埋设在陶瓷基体中并成型后,将成型的陶瓷基体在高温下加热烧结,但因烧结时埋设金属与粉末中的碳成分反应而被碳化,具有导电性不均一地降低、在加热板中产生温度分布的问题。
[0003] 与此相对,公开了以下技术:通过以由相同的材料构成的金属构件以非导通的状态包围埋设在陶瓷基体中的金属制的发热体,将埋设有该发热体的陶瓷基体烧成,使上述金属构件优先于上述发热体被碳化或氧化,从而提供具有高的均热性的陶瓷加热器(例如,参照专利文献1)。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2009-295960号公报

发明内容

[0007] 发明所要解决的问题
[0008] 然而,在专利文献1中记载的技术中,具有通过金属构件以非导通的状态包围发热体这样麻烦的问题。
[0009] 本发明是鉴于上述问题而进行的,其目的在于提供抑制及稳定化烧结时埋设在内部的金属材料的碳化、防止金属的导电性的降低的陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器。
[0010] 用于解决问题的方法
[0011] 为了解决上述的课题、并达成目的,本发明的陶瓷烧结体的制造方法,其特征在于,其包括以下步骤:皮膜形成步骤:在耐热性金属材料的表面形成由金属碳化物的标准生成自由能比该耐热性金属材料小的金属材料构成的金属皮膜;成型步骤:将在上述皮膜形成步骤中形成了皮膜的上述耐热性金属材料配置到作为陶瓷基体的原材料的粉体中的规定的位置,并加压成型而使陶瓷成型体成型;烧结步骤:将在上述成型步骤中成型的陶瓷成型体烧结而生成陶瓷烧结体。
[0012] 此外,本发明的陶瓷烧结体的制造方法,其特征在于,在上述发明中,上述耐热性金属材料为选自钼或钼合金、或钨或钨合金、铌或铌合金中的高熔点低热膨胀金属。
[0013] 此外,本发明的陶瓷烧结体的制造方法,其特征在于,在上述发明中,上述金属皮膜由钛、铝、钽或锆形成。
[0014] 此外,本发明的陶瓷烧结体的制造方法,其特征在于,在上述发明中,上述陶瓷基体为氮化铝、氮化硅或氧化铝。
[0015] 此外,本发明的陶瓷烧结体的制造方法,其特征在于,在上述发明中,上述陶瓷烧结体的烧结温度为1300~2000℃。
[0016] 此外,本发明的陶瓷烧结体的制造方法,其特征在于,在上述发明中,上述金属皮膜的厚度为0.10~10.0μm。
[0017] 此外,本发明的陶瓷烧结体,其特征在于,其是烧结陶瓷前体而形成的、且在上述烧结时金属皮膜被碳化而形成金属碳化物皮膜的陶瓷烧结体,其中,所述陶瓷前体具备:耐热性金属材料、形成于上述耐热性金属材料的表面且由金属碳化物的标准生成自由能比上述耐热性金属材料小的金属材料构成的金属皮膜、以及将形成有上述金属皮膜的耐热性金属材料配置到作为陶瓷基体的原材料的粉体中的规定的位置并加压成型而形成的陶瓷成型体。
[0018] 此外,本发明的陶瓷烧结体,其特征在于,在上述发明中,上述耐热性金属材料为选自钼或钼合金、钨或钨合金、铌或铌合金中的高熔点低热膨胀金属。
[0019] 此外,本发明的陶瓷烧结体,其特征在于,在上述发明中,上述金属皮膜由钛、铝、钽或锆形成。
[0020] 此外,本发明的陶瓷烧结体,其特征在于,在上述发明中,上述陶瓷基体为氮化铝、氮化硅或氧化铝。
[0021] 此外,本发明的陶瓷烧结体,其特征在于,在上述发明中,上述陶瓷烧结体的烧结温度为1300~2000℃。
[0022] 此外,本发明的陶瓷烧结体,其特征在于,在上述发明中,上述金属皮膜的厚度为0.10~10.0μm。
[0023] 此外,本发明的陶瓷加热器,其特征在于,其具备上述中任一项所述的陶瓷烧结体。
[0024] 发明的效果
[0025] 根据本发明,通过在耐热性金属材料上形成由金属碳化物的标准生成自由能比该耐热性金属材料小的金属材料构成的金属皮膜,将形成了该金属皮膜的耐热性金属性材料埋设到陶瓷材料内并加压成型,将成型后的陶瓷成型体烧结,使得该金属皮膜优先与陶瓷中的碳发生反应,因此抑制耐热性金属材料的碳化并防止导电性的降低,同时即使在上述耐热性金属材料被碳化的情况下,也具有能够将该碳化反应稳定化而抑制耐热性金属材料的导电性的不均一化的效果。

附图说明

[0026] 图1是表示本发明的实施方式所述的陶瓷加热器的加热线的配线的一个例子的平面图。
[0027] 图2是图1的陶瓷加热器的A-A线的截面图。
[0028] 图3是图1的陶瓷加热器的B-B线的局部放大截面图。
[0029] 图4是说明本发明的实施方式所述的陶瓷加热器的制造工序的截面图。
[0030] 图5是说明本发明的实施方式所述的陶瓷加热器的制造工序的截面图。
[0031] 图6是说明本发明的实施方式所述的陶瓷加热器的制造工序的截面图。
[0032] 图7是说明本发明的实施方式所述的陶瓷加热器的制造工序的截面图。
[0033] 图8是表示现有例所述的陶瓷加热器的部分截面的照片。
[0034] 图9是表示实施例1所述的陶瓷加热器的部分截面的照片。

具体实施方式

[0035] 以下,对本发明的实施方式所述的陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器,边参照附图边进行详细说明。附图中,对相同部分附以相同的符号。另外,附图为示意图,应该留意部位的尺寸及厚度的关系、或各部位的尺寸及厚度的比率与现实的情况不同。
[0036] 本发明的实施方式所述的陶瓷加热器10具备圆盘状的加热板1、和埋设在加热板1中的箔状的加热线2。图1是表示本发明的实施方式所述的陶瓷加热器10的加热线的配线的一个例子的平面图。图2是图1的陶瓷加热器10的A-A线的截面图。图3是图1的陶瓷加热器10的B-B线的局部放大截面图。
[0037] 加热板1在半导体制造工序中,作为用于对晶圆进行蚀刻或成膜等的载置板发挥功能。根据晶圆等工件的形状,加热板1制成200~500mm左右的圆盘形状。作为加热板1的材料,适宜使用氮化铝(AlN)、氮化硅(SiNx)、氧化铝(Al2O3)等。加热板1以相应于所使用的材料及烧结助剂的温度烧结,例如,氮化铝(AlN)以1600~2000℃、氮化硅(SiNx)以1600~2000℃、氧化铝(Al2O3)以1300~1600℃分别进行烧结。
[0038] 加热线2如图1所示那样以涡卷状配线并埋设在加热板1内。加热线2中,适宜使用耐热性的金属材料、例如选自钼或钼合金、钨或钨合金、铌或铌合金中的高熔点低热膨胀金属。加热线2制成厚度(T)为25~200μm、宽(W)为1~10mm的箔状。然而,除了箔状以外,也可以使用截面制成矩形、或圆形的线状或线圈状的加热线。
[0039] 在加热线2的表面,如图3所示那样形成有金属碳化物皮膜4。金属碳化物皮膜4是形成于加热线2的表面的金属皮膜4a(参照图4)通过加热板1的烧结被碳化而形成的。0
金属皮膜4a的材料(Ma)选自金属碳化物(MaC)的标准生成自由能(△GMaC)比加热线2
0
的金属材料(Mb)的碳化物(MbC)的标准生成自由能(△GMbC)小的材料。
[0040] 作为金属皮膜4a的材料选定的基准的金属碳化物的标准生成自由能使用规定的温度范围内的标准反应自由能。在本实施方式中,将加热板1的烧结温度附近的金属碳化物的标准反应自由能作为基准来判断。通过在加热线2的表面形成选自烧结温度附近的金属碳化物的标准反应自由能比加热线2的金属材料的金属碳化物的标准反应自由能小的材料中的金属皮膜4a,从而在烧结时金属皮膜4a比加热线2的材料优先与加热板1内以数ppm的数量级含有的碳发生反应而形成金属碳化物皮膜4。通过在加热线2的表面形成金属皮膜4a,能够抑制作为加热线2的材料的金属的碳化。除此以外,即使在因没有被金属皮膜4a捕捉尽的碳而导致加热线2的金属材料被碳化的情况下,由于该金属材料的碳化物层在加热线2与金属碳化物皮膜4之间大致均一地形成,所以也能够抑制在加热板1内配线的加热线2的导电性的不均一化,防止陶瓷加热器10的温度分布的产生。
[0041] 作为金属皮膜4a,钛、铝、钽或锆适合,但根据烧结温度或加热线金属种,也可以使用钙、铬、钒等。在使用钼或钼合金作为加热线2的情况下,作为金属皮膜4a适宜使用钛。金属皮膜4a的厚度优选设定为0.10~10.0μm。这是由于,若太薄,则不能有效地抑制加热线2的碳化,此外若太厚,则由加热时的热膨胀差带来的影响变大。
[0042] 在加热线2的两端连接有电极端子3。电极端子3通过钎焊等固定在加热板1上。通过对电极端子3施加电压,使电流流过加热线2,从而加热线2发热,对加热板1上载置的工件进行加热。
[0043] 接着,对本实施方式所述的陶瓷加热器10的制造方法进行说明。图4~图7是说明本发明的实施方式所述的陶瓷加热器10的制造工序的截面图。
[0044] 首先,在加热线2的表面形成金属皮膜4a(参照图4)。金属皮膜4a通过蒸镀或溅射等形成于加热线2的表面。或者,也可以用由金属皮膜4a的材料构成的2片金属箔以上下的方式覆盖加热线2,通过压延粘接而在加热线2上形成金属皮膜4a。或者也可以通过喷镀等方法在加热线2的表面形成金属皮膜4a。
[0045] 加热板1首先将下部成型体1a加压成型。下部成型体1a是将作为加热板1的原料的陶瓷粉体规定量填充到模具中并加压成型而形成的。
[0046] 接着,如图5所示那样,在成型后的下部成型体1a上,将形成有金属皮膜4a的加热线2在规定的位置配线。
[0047] 将加热线2配线后,如图6所示那样,在配线有加热线2的下部成型体1a上,进一步填充规定量的陶瓷粉体,用模具加压成型而将上部成型体1b成型,形成陶瓷成型体1c。
[0048] 接着,如图7所示那样,烧结陶瓷成型体1c。在使用氮化铝作为陶瓷原料的情况下,在氮气氛中、在1600~2000℃、10~40MPa下进行数小时加热压缩。
[0049] 在烧结陶瓷成型体1c而形成作为陶瓷烧结体的加热板1时,形成于加热线2的表面的金属皮膜4a优先于加热线2的金属材料与陶瓷成型体1c中的碳成分发生反应,形成金属碳化物皮膜4。由此,能够防止加热线2的导电性的降低。进而,通过形成金属碳化物皮膜4,即使在加热线2的金属材料被碳化的情况下,也能够将该金属材料的碳化稳定化,抑制配线在加热板内的加热线2的导电性的不均一化。
[0050] 烧结后,将加热板1进行切削加工,形成用于从外部供给电力的电极端子3。
[0051] 以上,本实施方式中对陶瓷加热器进行了说明,但本发明的陶瓷烧结体的制造方法及陶瓷烧结体也可以使用于埋设有导电性金属的陶瓷制品、例如具备静电夹盘功能的工作台、等离子体蚀刻装置或等离子体CVD装置等内置有高频电极的陶瓷制的工作台等。
[0052] 实施例
[0053] 为了确认本实施方式所述的陶瓷加热器10的性能,进行以下的试验。作为加热板1的材料使用氮化铝。由纯钼的金属箔形成2mm×6700mm×75μm的尺寸的加热线2,在该加热线2的表面通过溅射形成1μm的厚度的以钛作为材料的金属皮膜4a。将形成有金属皮膜4a的加热线2配线到加热板1内的规定的位置,进行加压成型,烧结(烧结温度为1800℃、压力为20MPa、6小时)而制造陶瓷加热器10。
[0054] 图8是表示现有例1所述的陶瓷加热器的部分截面的照片。图9是表示实施例1所述的陶瓷加热器10的部分截面的照片。在现有例1中,加热板1的材料为氮化铝,由纯钼的金属箔形成2mm×6700mm×75μm的尺寸的加热线2,将该加热线2配线到加热板1内的规定的位置,进行加压成型,烧结(烧结温度为1800℃、压力为20MPa、6小时)而制造,与实施例1只是在钼的加热线2的表面没有形成钛的金属皮膜4a这点不同。
[0055] 如图8所示那样,在加热线2的表面没有形成金属皮膜4a的现有例1中,碳化钼5在加热线2内不均一地形成。与此相对,可知实施例1所述的陶瓷加热器10如图9所示那样,在加热线2与金属碳化物皮膜4(碳化钛)之间,大致均一地形成碳化钼5,碳化钼5生成的比例与现有例1相比变小。
[0056] 此外,表1中表示实施例1和现有例1的加热线2的电阻值。表1的参考例1是在烧结实施例1的陶瓷加热器前测定的加热线2的电阻值。如表1所示的那样,可知在现有例1中,烧结前为2.1Ω的电阻值在烧结后增加至4.0Ω(上升90%),与此相对,实施例1中烧结后为2.9Ω(上升38%),大幅地抑制了其增加。
[0057] 表1
[0058]加热线电阻值(Ω)
实施例1 2.9
现有例1 4.0
参考例1 2.1
[0059] 如实施例1所示的那样,在由钼构成的加热线2的表面,通过在陶瓷加热器的烧结温度(1800℃)附近的金属碳化物的标准生成自由能比碳化钼小的钛来形成金属皮膜4a,能够大幅地抑制烧结后的陶瓷加热器10的电阻值的上升。
[0060] 产业上的可利用性
[0061] 如上所述,本发明的陶瓷烧结体的制造方法、陶瓷烧结体及陶瓷加热器可以使用于半导体制造装置,特别适合制造高品质的晶圆。
[0062] 符号的说明
[0063] 1 加热板
[0064] 2 加热线
[0065] 3 电极端子
[0066] 4a 金属皮膜
[0067] 4 金属碳化物皮膜
[0068] 5 碳化钼
[0069] 10 陶瓷加热器