阴离子交换膜及制造方法转让专利

申请号 : CN201180060490.9

文献号 : CN103237600B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J.R.林

申请人 : 伊沃夸水处理技术有限责任公司

摘要 :

本发明的实施方案提供了阴离子交换膜及其制造方法。在本文中所描述的阴离子交换膜由至少一种包含叔胺的官能单体的聚合产物制成,其中所述叔胺在聚合过程中与季铵化试剂反应。

权利要求 :

1.用于电渗析的阴离子交换膜,包括:

具有多孔第一侧、多孔第二侧和从所述多孔第一侧延伸至所述多孔第二侧的连续多孔结构的多微孔膜支持物;和放置在该连续多孔结构中的交联的离子转移聚合物,该聚合物形成在连续多孔结构中并且包含:具有至少一种包含叔胺的官能单体、至少一种交联单体、至少一种季铵化试剂和至少一种聚合引发剂的单体溶液的聚合产物,其中所述至少一种包含叔胺的官能单体选自乙烯基咪唑和乙烯基咔唑。

2.权利要求1的阴离子交换膜,其中所述至少一种交联单体选自二乙烯基苯、乙二醇二甲基丙烯酸酯、乙烯基苄基氯、二氯乙烷、丙二醇二甲基丙烯酸酯、异丁二醇二甲基丙烯酸酯、八-乙烯基 八乙烯基二甲基甲硅烷基 乙烯基 混合物、八乙烯基 三硅烷醇乙基 三硅烷醇异丁基 三硅烷醇异辛基 八硅烷 八氢 环氧环己基- 笼型混合物、缩水甘油基- 笼型混合物、甲基丙烯酸 笼型混合物、或者丙烯醛基 笼型混合物。

3.权利要求1的阴离子交换膜,其中所述至少一种季铵化试剂选自苄基氯、苄基溴、乙烯基苄基氯、二氯乙烷或碘甲烷。

4.权利要求1的阴离子交换膜,其中所述至少一种聚合引发剂选自有机过氧化物、2,

2’-偶氮双[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、α,α’-偶氮异丁腈、2,2'-偶氮双(2-甲基丙脒)二盐酸盐、2,2’-偶氮双[2-(2-咪唑啉-2-基)丙烷]或二甲基2,2’-偶氮双(2-甲基丙酸酯)。

5.权利要求4的阴离子交换膜,其中所述有机过氧化物为过氧化苯甲酰。

6.权利要求1的阴离子交换膜,其中所述至少一种聚合引发剂选自4-甲氧基苯酚和4-叔丁基邻苯二酚。

7.权利要求1的阴离子交换膜,其中所述多微孔膜支持物包含聚丙烯、高分子量聚乙烯、超高分子量聚乙烯或聚偏二氟乙烯。

8.权利要求1的阴离子交换膜,其中所述多微孔膜支持物的厚度大于55微米并且小于

155微米。

9.权利要求1的阴离子交换膜,其中所述多微孔膜支持物的厚度大于20微米并且小于

55微米。

10.权利要求1的阴离子交换膜,其中所述阴离子交换膜的表观选择渗透性为至少

90%。

11.权利要求10的阴离子交换膜,其中所述阴离子交换膜的表观选择渗透性为至少

95%。

12.用于制造能够用于电渗析的离子交换膜的方法,包括:选择合适的具有多孔第一侧、多孔第二侧和从所述多孔第一侧延伸至所述多孔第二侧的连续多孔结构的多孔基底;

用单体溶液浸透所述多孔基底,所述溶液包含至少一种包含叔胺的官能单体、至少一种交联单体、至少一种季铵化试剂以及至少一种聚合引发剂;

从所述多孔基底的表面移除过量的溶液,留下被溶液填充的连续多孔结构,引发聚合反应,以在所述多孔基底的连续多孔结构中放置交联的阴离子交换聚合物,其中所述至少一种包含叔胺的官能单体选自乙烯基咪唑和乙烯基咔唑。

13.权利要求12的方法,其中所述至少一种交联单体选自二乙烯基苯、乙烯基苄基氯、二氯乙烷、八缩水甘油基-多面体低聚倍半硅氧烷和乙二醇二甲基丙烯酸酯。

14.权利要求12的方法,其中所述至少一种季铵化试剂选自苄基氯、乙烯基苄基氯、二氯乙烷或碘甲烷。

15.权利要求12的方法,其中所述至少一种聚合引发剂选自有机过氧化物、2,2’-偶氮双[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、α,α’-偶氮异丁腈、2,2'-偶氮双(2-甲基丙脒)二盐酸盐、2,2’-偶氮双[2-(2-咪唑啉-2-基)丙烷]和二甲基2,2’-偶氮双(2-甲基丙酸酯)。

16.权利要求15的方法,其中所述有机过氧化物为过氧化苯甲酰。

17.权利要求12的方法,其中所述至少一种聚合引发剂选自4-甲氧基苯酚和4-叔丁基邻苯二酚。

18.权利要求12的方法,其中所述多孔基底包含聚丙烯、高分子量聚乙烯、超高分子量聚乙烯或聚偏二氟乙烯。

19.权利要求12的方法,其中所述多孔基底的厚度大于55微米并且小于155微米。

20.权利要求12的方法,其中所述多孔基底的厚度大于20微米并且小于55微米。

说明书 :

阴离子交换膜及制造方法

[0001] 本申请要求2010年10月15日提交的美国临时申请61/393715的优先权。

技术领域

[0002] 本发明的实施方式提供了阴离子交换膜及其制造方法。

背景技术

[0003] 阴离子交换膜在电势或化学势下输送阴离子。阴离子交换膜将具有固定的正电荷以及移动的带负电的阴离子。离子交换膜的特性通过固定的离子基团的量、类型和分布来控制。在强碱和弱碱阴离子交换膜中,季胺和叔胺分别产生固定的带正电的基团。
[0004] 离子交换膜的最重要应用为通过电渗析(ED)的对水进行脱盐,在反向电渗析中作为发电源以及在燃料电池中作为隔板。其它的应用包括在电镀和金属表面处理工业中回收金属离子以及在食品和饮料工业中的各种应用。
[0005] 电渗析通过在直流电压的驱动力下用配对的阳离子和阴离子选择性膜来转移离子和某些带电的有机物来除去水的盐分。ED装置由导电的和设置为小室的相对壁的基本上水不可渗透性的阳离子选择性膜和阴离子选择性膜构成。邻近的小室形成小室对。膜堆由许多、有时为数百的小室对构成,并且ED系统可由许多堆构成。每个膜堆在其一端具有DC(直流电)正极并且在另一端具有DC阴极。在DC电压下,离子移动至相反电荷的电极。
[0006] 小室对由两种类型的小室构成,稀释小室和浓缩小室。作为说明性的实例,考虑具有共用的阳离子交换膜壁和构成两个小室的两个阴离子交换膜壁的小室对。即,第一阴离子交换膜和阳离子交换膜构成稀释小室,阳离子交换膜和第二阴离子膜构成浓缩小室。在稀释小室中,阳离子将穿过面向正极的阳离子交换膜,但是在面向负极的方向上被浓缩小室的配对的阴离子交换膜所停止。类似地,阴离子穿过稀释小室的面向负极的阴离子交换膜,但是将被相邻对的面向正极的阳离子交换膜而停止。以这种方式,稀释小室内的盐将会被移除并且在相邻的浓缩小室中,阳离子将会由一个方向进入,并且阴离子由相对的方向进入。设置所述堆中的流动以使得稀释和浓缩的流被保持分离,并且由稀释流产生脱盐的水流。
[0007] 在ED方法中,材料通常会在电场方向上的膜表面积聚,其可能并通常确实会降低方法效率。为了对付该作用,反向电渗析(EDR)被研发并且是目前使用的主要方法。在EDR中,电极定期地例如每十五至六十分钟在极性上反转。而且稀释和浓缩流也被同时转换,浓缩流变为稀释流,反之亦然。以这种方式,污垢沉积被移除并被冲走。
[0008] 一旦稀释小室中的浓度降低至低于约2000毫克/升(mg/l),电阻就会处于电力需求变得越来越昂贵的水平。为了克服这一点,并且为了能够产生高质量的水,开发了电极电离作用(EDI),有时被称为连续电极电离作用(CEDI)。在该方法中,所述的小室填充有离子交换介质,通常为离子交换树脂珠。所述的离子交换介质的导电性比溶液高数个数量级。离子被所述珠传输至膜表面以传递至浓缩小室。当进料浓度被充分降低时,EDI相对于ED能够在更低的电力下制造更加纯净的水。
[0009] 对于水的脱盐,ED方法相对于RO具有优势。它们需要更少的预处理,其将会降低运行成本。它们将会具有更高的产品水回收率以及更高的盐水浓度,即更少的盐被丢弃。
[0010] 一价选择性或单价选择性膜主要转移单价离子。单价选择性阳离子交换膜主要转移钠、钾等。同时,单价选择性阴离子膜转移诸如氯、溴、硝酸根等的离子。
[0011] 反渗透(RO)在通过膜工艺来由海水制造淡水中占主导。虽然电渗析(ED)被用于淡盐水和污水的脱盐作用,但是对于海水应用来说其通常被认为是过于昂贵的。为了可与RO竞争,ED和EDR将需要小于1欧姆-cm2,优选小于0.8欧姆-cm2,并且最优选小于0.5欧姆-cm2的膜电阻。所期望的离子选择渗透性大于90%,更优选大于95%,并且最优选大于98%。所述的膜必须具有长的服务期限,并且是物理坚硬和化学耐久以及低成本的。
[0012] 反向电渗析(RED)将通过混合不同盐分的两种水溶液所产生的自由能转化为电能。盐度区别越大,用于发电的势能就越大。例如,研发人员已经研究了使用死海水和淡水或海水的RED。荷兰的研发人员将河水混入海洋和海水中。RED膜优选地将具有低电阻和高共离子选择性以及长使用寿命,可接受的强度和尺寸稳定性,并且重要的是低成本。
[0013] 聚合物电解质膜(PEM)为一类既能充当电解质又能充当隔板防止来自于正极的氢和供给至负极的氧直接物理混合的离子交换膜。PEM包含带正电的基团,通常为磺酸基,附着至构成PEM的聚合物或者作为该聚合物的一部分。质子迁移穿过所述膜,通过从一个固定的正电荷跳跃至另一个来渗透所述膜。
[0014] PEM的要求包括化学、热和电化学稳定性,以及当膨胀并处于机械应力下时足够的机械稳定性和强度。其它的要求包括低电阻,在直接甲醇燃料电池(DMFC)中低甲醇传输或优选地无甲醇传输,以及低成本。
[0015] 双极性膜由层压或结合在一起的阳离子交换膜和阴离子交换膜构成,有时在其间存在薄中性层。在电场下,水被分解为H+和OH-离子。氢氧根离子传输穿过阴离子交换膜,H+离子穿过阴离子交换层,并且将在各自的小室中形成碱和酸。使用双极性膜还产生有机酸。
[0016] 离子交换膜的发展需要优化特性从而克服竞争效应。用于水的脱盐作用的离子交换膜通常必须满足四个主要特性才被认为是成功的。它们是:
[0017] 低电阻,以降低在运行过程中的电位降并提高能源效率;
[0018] 高选择渗透性-即,对于抗衡离子的高渗透性,但是对于共离子为几乎不可渗透的;
[0019] 高化学稳定性-承受0至14的pH和氧化性化学品的能力;
[0020] 机械强度-所述膜必须能够承受被制造成模块或其它的加工设备时被处理的应力。所述膜还必须在操作中具有良好的尺寸稳定性,并且当接触其的流体改变浓度或温度的时候不会过度地溶胀或皱缩。
[0021] 膜研发人员已经认识到对于给定的用于制造离子交换膜的化学过程来说,更薄的膜将产生更低的电阻并且还允许每单位体积的设备具有更多的膜面积。然而,更薄的膜更容易受环境影响产生尺寸上的变化,例如在接触它们的流体的离子浓度变化或者操作温度变化时。此外,研发并制造不含有缺陷的膜对于更薄的膜的情况来说是更加困难的,因为在膜制造过程中其相对于更厚的膜来说存在更小的误差容限,在更厚的膜的情形下,膜厚会盖住可能发生在膜形成中的缺陷。
[0022] 发明详述
[0023] 国际申请# PCT/US 10/46777通过引用而全文并入,其描述了通过令一种或多种单官能可离子化的单体与至少一种多官能单体在多孔基底的孔内聚合来制造离子交换膜的方法。
[0024] 如在本文中所描述的,发明人已经发现通过使用具有叔胺基团的官能化的单体利用季铵化化学作用,可以获得低阻抗高渗透性以及良好的耐化学性的阴离子交换膜。季铵官能团为强碱性的并且被离子化以在0至13的pH范围内起作用,允许广泛的操作范围。特别实用的为具有含氮环的乙烯基化合物。
[0025] 优选的叔胺单体为乙烯基咪唑和乙烯基咔唑。
[0026] 包含叔胺的单体与至少一种交联单体和至少一种季铵化试剂以及一种或多种聚合引发剂聚合以形成在多孔基底的孔内的可离子化的聚合物。
[0027] 包含叔胺的单体可以与至少一种第二官能单体、至少一种交联单体和至少一种季铵化试剂以及一种或多种聚合引发剂共聚合,所述第二官能单体例如但不限于:乙烯基苄基三甲基氯化铵、甲基丙烯酰氧乙基三甲基氯化铵( trimethylammonium ethylmethacyrlic chloride)、甲基丙烯酰胺基丙基三甲基氯化铵、(3-丙烯酰胺基丙基)三甲基氯化铵、2-乙烯基吡啶、和4-乙烯基吡啶。
[0028] 此外,这些方法中的任一种均可以利用至少一种所添加的非官能第二单体来实施,例如但不限于:苯乙烯、乙烯基甲苯、4-甲基苯乙烯、叔丁基苯乙烯、α-甲基苯乙烯、甲基丙烯酸酐、甲基丙烯酸、n-乙烯基-2-吡咯烷酮、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基-三-(2-甲氧基乙氧基)硅烷、偏二氯乙烯、偏二氟乙烯、乙烯基甲基二甲氧基硅烷、2,2,2-三氟乙基甲基丙烯酸烯丙基胺、乙烯基吡啶、马来酸酐、甲基丙烯酸缩水甘油酯、甲基丙烯酸羟乙酯、甲基丙烯酸甲酯或甲基丙烯酸乙酯。
[0029] 所述至少一种交联剂优选为二乙烯基苯或乙二醇二甲基丙烯酸酯。
[0030] 任选地,至少一种交联剂可以选自丙二醇二甲基丙烯酸酯、异丁二醇二甲基丙烯酸酯、八-乙烯基 (Octa-vinyl )(Hybrid Plastics,OL1160)、八乙烯基二甲基甲硅烷基 (Octavinyldimethylsilyi )(Hybrid Plastics,OL1163)、乙烯基 混合物(Vinyl Mixture)(Hybrid Plastics,OL1170)、八乙烯基
(Octavinyl )(Hybrid Plastics,OL1160)、三硅烷醇乙基
(Trisilabolethyl )(Hybrid Plastics,SO1444)、三硅烷醇异丁基
(Trisilanolisobutyl )(Hybrid Plastics,O1450)、三硅烷醇异辛基
(Trisilanolisooctyl )(Hybrid Plastics,SO1455)、八硅烷  (Octasilane
)(Hybrid Plastics,SH1310)、八氢 (Octahydro )(Hybrid 
Plastics,SH1311)、环氧环己基- 笼型混合物(epoxycyclohexyl- cage 
mixture)(Hybrid Plastics,EP04080)、缩水甘油基- 笼型混合物(glycidyl-cage mixture)(Hybrid Plastics,EP0409)、甲基丙烯酸 笼型混合物
(methacryl Cage Mixture)(Hybrid Plastics,MA0735)、或者丙烯醛基 笼
型混合物(Acrylo Cage Mixture)(Hybrid Plastics,MA0736)。
[0031] 已发现可使用的溶剂为正丙醇和二丙二醇。在某些情形下可以使用类似的含羟基的溶剂,如醇,例如异丙醇、丁醇;二元醇,如各种二醇,或者多元醇,如丙三醇。另外可以使用非质子溶剂,如N-甲基吡咯烷酮和二甲基乙酰胺。它们作为例子给出,对从业人员不构成限制。二丙二醇为优选的溶剂。
[0032] 用于本发明的自由基引发剂包括但不限于:过氧化苯甲酰(BPO)、过硫酸铵、2,2’-偶氮二异丁腈(AIBN)、2,2'-偶氮双(2-甲基丙脒)二盐酸盐、2,2’-偶氮双[2-(2-咪唑啉-2基)丙烷]二盐酸盐、2,2’-偶氮双[2-(2-咪唑啉-2-基)丙烷]和二甲基2,2’-偶氮双(2-甲基丙酸酯)。
[0033] 膜研发和制造领域的技术人员将认识到这种便捷的试验方法可被改造为其它的实验室规模的方法,并且可被按比例放大以连续地制造。
[0034] 例如,基底孔的填充或浸透可以在稍微升高的温度下(>40℃)实施以降低空气溶解度,或者该步骤可以在适度的真空处理浸没在配方溶液中的基底试样之后来实施。基底试样可被预浸渍并随后被放置在聚酯或类似的薄片上,覆盖有盖片并使之平滑以移除气泡。数个预浸渍的部件可被层合并随后放置在聚酯或类似的薄片上,覆盖盖片并使之平滑以移除空气泡。
[0035] 除了在烘箱中加热,浸透的基底夹层可被放置在加热表面上,温度和时间须足以引发并完成聚合。也可使用引发聚合反应的其它方法。紫外光或电离辐射,例如伽玛辐射或电子束辐射,可被用于引发聚合反应。
[0036] 低电阻降低了脱盐作用所需的电能并降低了运行成本。具体的膜电阻以欧姆-厘米(Ω-cm)来测定。更便利的工程手段为面电阻,欧姆-cm(2 Ω-cm2)。面电阻可以通过使用具有两个面积已知的电极的电池来测量,通常使用铂或黑石墨,面积已知的膜试样在它们之间处于电解质溶液中。电极并不接触所述膜。膜电阻通过用存在所述膜时的测试结果减去不存在膜时的电解质电阻来确定。所述电阻还可以通过确定电池内的电压-电流曲线来测量,所述电池具有被所述膜隔开的两个充分搅拌的室。甘汞电极测量横跨所述膜的电压降。通过改变电压和测量电流可以获得电压降-电流曲线的斜率。也可以使用电化学阻抗。在这种方法中,交流电被应用于所述膜。在单一频率下的测量给出与所述膜的电化学特性相关的数据。通过使用频率和振幅的变化,可以获得详细的结构化信息。在这里,电阻将通过试验部分中所描述的方法来确定。
[0037] 选择渗透性是指在电渗析过程中抗衡离子对共离子的相对传输。对于理想的阳离子交换膜来说,仅带正电的离子将穿过所述膜,选择渗透性为1.0。选择渗透性通过在所述膜分离不同浓度的单价盐溶液时测量横跨所述膜的电势来测定。本文所使用的方法和计算描述于实验部分中。
[0038] 为了满足这些初始目标,本发明人研发了一类复合离子交换膜,其中附连有带电离子基团的交联聚合物被包含在多微孔膜基底的孔中。所述的多孔膜基底优选地小于约155微米厚,更优选小于约55微米厚。
[0039] 具有大于约45%孔隙率的基底膜为优选的,具有大于约60%孔隙率的那些为更优选的。在最优选的实施方案中,所述的基底膜的孔隙率大于约70%。优选的基底膜的额定孔径(rated pore size)为约0.05微米至约10微米,更优选的范围为约0.1微米至约1.0微米。最优选的多孔基底的额定孔径为约0.1微米至约0.2微米。
[0040] 多微孔的膜支撑物可以由聚烯烃、聚烯烃共混物、聚偏二氟乙烯或其它聚合物来制造。一类优选的基底包括主要制造用作电池隔板的薄聚烯烃膜。更优选的一类基底为由超高分子量聚乙烯(UHMWPE)制造的薄电池隔板。
[0041] 为了制造所期望的离子交换膜,本发明人研发了通过在基底的孔中聚合交联的聚合物将交联的带电聚合物放置在这些孔中的方法。所述方法涉及利用带电单体、多官能单体(例如交联剂)和聚合反应引发剂的溶液浸透多孔基底。在这里我们使用术语可离子化单体表示具有至少一个共价键接的带电基团的单体种类。所述的带电基团可以带正电或带负电。在一种实施方案中,所述的交联聚合物可以通过聚合多官能带电单体来制造。所述聚合可以通过热或UV光而引发,优选地由例如为自由基引发剂的聚合反应引发剂来引发。单官能单体为具有用于推进该聚合反应的单中心的单体。多官能单体具有多于一个的聚合反应中心并且由此可形成网络化的或交联的聚合物。
[0042] 下文的实验室方法被用于通过制造用于电阻率和选择渗透性测试的小试样来评价配方和方法效果。冲切出直径43mm的多孔膜基底试样。还冲切出大一些(直径50mm或100mm)的透明聚酯薄片的圆盘。105mm的铝称量盘(weighting boat)被典型地用于支撑一系列的试样。所述试样被夹在两个聚酯膜圆盘之间。首先,基底试样利用单体溶液而被彻底润湿,从而制成测试试样。这通过将所配制的溶液添加至铝称量盘,并且将在其上有基底试样的聚酯膜圆盘浸没在所述溶液中以使得多孔支撑物被浸透而完成。随后从单体溶液中取出浸透的支撑物并放置在一块聚酯膜上。例如通过用便利工具(如小玻璃棍)或者用手弄平或挤压所述试样而将气泡从试样中移除。第二聚酯圆盘随后被层压在第一试样之上,并被弄平以在所述试样和在其下方以及上方的聚酯膜层之间具有完全地表面接触。第二多孔基底随后被层压在上方的聚酯膜上,浸透、弄平并重复添加另外的聚酯膜层,从而给出两个试样和三个保护聚酯膜层的多层夹层。典型的实验性生产将具有10个或更多个浸透的基底试样层的多层夹层。如果需要的话,铝称量盘的边缘可向下折边以保持所述圆盘/试样组件。
[0043] 称量盘和组件随后被放置在可密封袋中,其典型地为自封聚乙烯袋,并且在密封所述袋之前填充低正压的惰性气体,通常为氮气。包含称量盘和试样组件的袋被放置在80℃的烘箱中持续直至约60分钟。所述袋随后被取出并冷却,并将现在已经反应的离子交换膜试样在40℃-50℃下放置在0.5N NaCl溶液中至少30分钟,在NaCl溶液中浸泡直至18小时被发现是令人满意的。实施例
[0044] 下文的实施例被用于说明研发所涉及的膜所付出的努力。研究结果表明可以制造出具有所期望特性的离子交换膜并且利用进一步的试验作出改善是可能的。这些结果意在对膜研发及相关领域的技术人员给出了说明和指示研发方向,并不用于限制本文中所公开的内容的范围。
[0045] 所使用的支持物的特性和供给商在下面表1中给出。
[0046] 表1:所使用的基底
[0047]
[0048] 对代表性的多孔基底进行基线选择渗透性和电阻测试。使用异丙醇-乙醇和D.I.水各预冲洗5分钟,然后使用0.5N NaCl(aq)冲洗它们3次。下文的表2示出由此制造的AEM的以欧姆 cm2表示的面电阻和它们表观选择渗透性%的结果:
[0049] 表2
[0050]
[0051] 实施例1. 
[0052] 在4 oz的广口瓶中,在搅拌下合并17.08 g的1-乙烯基咪唑、9.14 g的乙烯基苄基氯、5.39 g的二乙烯基苯(80%)、16.61 g的苄基氯、20.65 g的二丙二醇(DPG)和0.40 g的Vazo-64。立即形成澄清的棕色溶液。将基底Solupor 16P10A, 16P05A, Teklon, Aporous S 14, Celgard EZ2090, EZ2590, Novatexx 2431ND, Delstar 6SLG, Ahlstrom 3329, Delpore DP3924-80PNAT, Delpore 6002-20PNAT浸渍在所述溶液中1小时以确保彻底的孔填充。然后将它们被夹在Mylar圆盘之间,通过压力除去Mylar圆盘之间的气泡并将夹层基底放置在铝称量盘中。将所述称量盘装入Ziploc®袋中,将所述袋用氮气加压并放置在80℃烘箱中一小时。将由此制得的膜试样放置在0.5N NaCl(aq)中来调节。下面表3示出由此制造的AEM的以欧姆 cm2表示的面电阻和它们的表观选择渗透性%的结果:
[0053] 表3基底 R (欧姆 cm2) 表观选择渗透性%
Ahsltrom 3329                200微米厚 31.75 92.62
Aporous S14 2.145 93.11
Celgard X021 (EZ2590)         32微米厚 2.68 92.78
Teklon HPIP                   32微米厚 5.00 94.26
Solupor 16P05A               115微米厚 2.55 92.95
Solupor 16P1OA              200微米厚 3.55 92.62
Delpore6002-20PNAT 非织物 3.64 89.01
Novatexx 2431ND 7.51 73.03
Delstar 6SLG非织物 12.62 87.70
Celgard EZL2090 3.29 90.52
Delpore6002-20PNAT非织物 第二试样 2.35 89.86
[0054] 实施例2
[0055] 在4 oz的广口瓶中,在搅拌下合并15.71 g的1-乙烯基咪唑、25.47 g的乙烯基苄基氯、13.25 g的DPG和0.42 g的Vazo-64。立即形成澄清的棕色溶液。将基底Solupor 16P10A, 16P05A和Teklon HPIP浸渍在所述溶液中1小时以确保彻底的孔填充。
[0056] 然后将它们夹在Mylar圆盘之间,通过压力除去Mylar圆盘之间的气泡并将夹层基底放置在铝称量盘中。将所述称量盘装入Ziploc袋中,将所述袋用氮气加压并放置在80℃烘箱中一小时。将由此制得的膜试样放置在0.5N NaCl(aq)中来调节。下面表4示出由此制造的AEM的以欧姆 cm2表示的面电阻和它们的表观选择渗透性%的结果。
[0057] 还示出了可由Astom-Japan购得的离子交换膜AMX和CMX。二者均为125微米厚。
[0058] 表4 描述 R (欧姆 cm2) 表观选择渗透性%
Teklon HPIP                  32微米厚 6.55 91.64
Solupor 16P1OA             120微米厚 3.54 92.62
Astom AMX(阴离子交换膜) 3.13 96.07
Astom CMX(阳离子交换膜) 2.37 106.50
[0059] 表3和4中的结果表明由本发明的方法制造的膜相对于更厚的膜来说具有近乎相同的特性。更薄的膜允许每模块或壳体容积中膜的数量的增加并由此导致每单位体积更高的生产率。
[0060] 实施例3
[0061] 在4 oz的广口瓶中,在搅拌下合并17.12 g的1-乙烯基咪唑、20.00 g的乙烯基苄基氯、16.00 g的苄基氯、11.02 g的DPG和0.51 g的Vazo-64。立即形成澄清的棕色溶液。将基底Solupor 16P10A和Teklon (HPIP, 32微米, 单层)浸渍在所述溶液中1.5小时以确保彻底的孔填充。
[0062] 然后将它们夹在Mylar圆盘之间,通过压力除去Mylar圆盘之间的气泡并将夹层基底放置在铝称量盘中。将所述称量盘装入Ziploc®袋中,将所述袋用氮气加压并放置在80℃烘箱中40分钟。将由此制得的膜试样放置在0.5N NaCl(aq)中来调节。下面表5示出由此制造的AEM的以欧姆 cm2表示的面电阻和它们的表观选择渗透性%的结果。
[0063] 还示出了可由Astom-Japan购得的离子交换膜AMX,其厚度为125微米。表5
描述 R (欧姆 cm2) 表观
Teklon HPIP             32微米 2.33 95.09
Solupor 16P1OA          120微米 2.17 95.57
Astom AMX(阴离子交换膜) 2.73 94.55
[0064] 实施例4
[0065] 在4 oz的广口瓶中,在搅拌下合并8.55 g的1-乙烯基咪唑、10.01 g的乙烯基苄基氯、1.02 g的二乙烯基苯(80%)、12.01 g的苄基氯、5.61 g的DPG和0.31 g的Vazo-64。立即形成澄清的棕色溶液。将基底Solupor 16P10A和Teklon HPIP (单层) , Aporous H6A和 elgard EZ2590浸渍在所述溶液中75分钟以确保彻底的孔填充。
[0066] 然后将它们夹在Mylar圆盘之间,通过压力除去Mylar圆盘之间的气泡并将夹层基底放置在铝称量盘中。将所述称量盘装入Ziploc®袋中,将所述袋用氮气加压并放置在80℃烘箱中47分钟。将由此制得的膜试样放置在0.5N NaCl(aq)中来调节。下面表6示出由此2
制造的AEM的以欧姆 cm表示的面电阻和它们的表观选择渗透性%的结果。
[0067] 还示出了可由Astom-Japan购得的离子交换膜AMX,其厚度为125微米。
[0068] 表6 描述 R (欧姆 cm2) 表观选择渗透性%
Teklon HPIP               32微米 4.24 95.21
Solupor 16P1OA            120微米 2.62 94.71
Aporous H6A               52微米 2.55 95.04
Celgard EZ2590            27微米 1.98 94.55
Astom AMX(阴离子交换膜) 2.73 94.55
[0069] 实施例5
[0070] 在8 oz的广口瓶中,在搅拌下合并30.7 g的1-乙烯基咪唑、17.2 g的乙烯基苄基氯、42.5 g的苄基氯、11.8 g的二乙烯基苯(80%)、27.0 g的DPG和0.41 g的Vazo-64。立即形成澄清的棕色溶液。将基底试样Solupor 16P05A浸渍在所述溶液中2小时以确保彻底的孔填充。
[0071] 然后将它们夹在Mylar圆盘之间,通过压力除去Mylar圆盘之间的气泡并将夹层基底放置在铝称量盘中。将所述称量盘装入Ziploc®袋中,将所述袋用氮气加压并放置在80℃烘箱中1小时。将由此制得的膜试样放置在0.5N NaCl(aq)中来调节。下面表7示出由此制2
造的AEM的以欧姆 cm表示的面电阻和它们的表观选择渗透性%的结果。
[0072] 还示出了可由Astom-Japan购得的离子交换膜AMX。其厚度为125微米。
[0073] 表7 描述 R (欧姆 cm2) 表观选择渗透性%
Solupor 16P05A           115微米 2.60 95.00
Astom AMX(阴离子交换膜) 3.10 95.08
[0074] 实施例6
[0075] 在20 ml的玻璃瓶中,在搅拌下合并3.43 g的1-乙烯基咪唑、3.0 g的乙烯基苄基氯、1.0 gm的EP0409(Hybrid Plastics, 缩水甘油基-POSS(R)笼型混合物(glycidyl-POSS® cage mixture)CAS # 68611-45-0)、3.2 g的苄基氯、2.20 g的DPG和0.10 g的Vazo-64。立即形成澄清的棕色溶液。将基底试样Solupor 16P10A浸渍在所述溶液中0.5小时以确保彻底的孔填充。
[0076] 然后将它们夹在Mylar圆盘之间,通过压力除去Mylar圆盘之间的气泡并将夹层基底放置在铝称量盘中。将所述称量盘装入Ziploc®袋中,将所述袋用氮气加压并放置在90℃烘箱中1小时。将由此制得的膜试样放置在0.5N NaCl(aq)中来调节。下面表8示出由此制造的AEM的以欧姆 cm2表示的面电阻和它们的表观选择渗透性%的结果。
[0077] 还示出了可由Astom-Japan购得的离子交换膜AMX,其厚度为125微米。
[0078] 表8 2
描述 R (欧姆 cm ) 表观选择渗透性%
Solupor 16P10A            120微米 2.59 93.92
Astom AMX(阴离子交换膜) 2.42 93.59
[0079] 用于膜面电阻率和表观选择渗透性表征的试验步骤
[0080] 膜电阻和抗衡离子传输数(选择渗透性)可以使用电化学电池来测量。这种台式试验为我们提供了非常有效的和快速的使用小件试样的试验。设备和步骤。
[0081] 试验准备
[0082] (1)Solartron 1280电化学测试单元
[0083] Solartron 1280电化学测试单元使我们能够在电池两侧上的两个铂电极之间施加电流并测量横跨膜的电压降。其具有4个接头:工作电极(WE)、对电极(CE)、参比电极(RE1和RE2)。CE和WE被用于施加电流,RE1和RE2被用于测量电压降。
[0084] (2)参比电极
[0085] 用于膜表征的参比电极(参见在图1中的插入件)在R&D实验室中制得。1/4’’玻璃管被软化,然后弯曲并拉伸至所示的形式。将多孔塞插入到尖端中以控制溶液流动至低速率。
[0086] 银/氯化银导线在每天的测试中均为新制得的。2-3mA的电流由电源和安培表供给并控制至浸没在0.1N HCl溶液中的铂导线负极和银导线正极。在数分钟之后,银导线开始变黑,显示在表面上形成AgCl层。在参比电极管内使用的溶液为1.0M KCl溶液。因为所述溶液将会漏出多孔尖端,所以在试验过程中KCl的持续添加是必须的(约每20分钟)。
[0087] (3)膜测试电池
[0088] 图1示出用于测量膜的电阻和抗衡离子选择渗透性的试验的详细电化学测试电池构造。可以使用冲压裁切机将膜切成圆盘。所述的参比电极被用于监测横跨测试膜的电压降,并且该2个铂圆盘被用于提供穿过所述膜的电流。电池的圆柱形通道具有7.0cm2的横截面积。
[0089] (4)溶液
[0090] 所有的溶液均需要以它们的有效数字所指示的定量水平来制备。这些包括0.500N NaCl、1.0N HCl和1.0N NaOH(腐蚀性的,使用塑料容器或容量瓶)。0.5N Na2SO4被用于在不形成氯气的情况下供给电极隔室。
[0091] 3-III.测试步骤
[0092] (1)电阻测试
[0093] 电阻在这里是指面电阻 Ω-cm2。测试包括3个步骤。
[0094] (a) 设定电极位置:在测试之前,设定参比电极水平位置。为了设定参比电极位置,刚性塑料圆盘被用作用于所述膜的替身。每个参比电极均被调整为刚接触塑料圆盘并由两组螺丝固定它们的位置。
[0095] (b) 测量溶液导电率:塑料圆盘随后被移除并且通过移除两个0.50cm的塑料块而令两个参比电极移动到相距1.0cm。两个参比电极之间的电压降在所施加的电流下(约10-50mA)由Solartron 1280来记录。两个参比电极之间的距离(在这里为1.00cm)、电流密度(10.00mA)和电压(0.1mV精度)被用于获得所述溶液(典型地为0.5N NaCl)的导电率。
[0096] (c) 测量膜电阻:随后通过试样滑块来放置膜试样,并再次测定电压和电流。膜的电阻为总电阻减去在步骤(b)中测得的溶液电阻。
[0097] (2)抗衡离子选择渗透性(传输数)
[0098] 测试程序为:
[0099] (a) 如电阻测试的部分(a)中所描述的设定参比电极的位置。所述的参比电极位置可以是大致的,因为在该测试中测量的电压在理论上独立于距离,但是推荐所述位置尽可能可重现地定位。
[0100] (b) 溶液:在利用滑块安放试样膜之后,将0.500N NaCl溶液倒入被测试膜分隔的电池的右侧部分中,以及将0.250N NaCl倒入电池的左侧部分中。
[0101] (c) 测量电压:使用连接至铂电极的电压表来测量电压(不施加电流),并且将数据录入电子表格以获得抗衡离子选择渗透性。
[0102] 3-IV.试样计算:
[0103] C = 导电率(西门子/cm)
[0104] ρ = 电阻(欧姆/cm)
[0105] R = 电阻系数(欧姆-cm2或Ω·cm2)
[0106] A = 面积(cm2)
[0107] U,V = 测试电压(mV)
[0108] I = 测试电流(mA)
[0109] L = 参比电极之间的距离。
[0110] (1)导电率 在10.00mA电流和33.1 mV下测试0.500M NaCl的导电率,参比电极距离为1.00cm,溶液的导电率:
[0111] 。
[0112] (2)面电阻 膜的面电阻计算需要减去溶液电阻。对于具有38.0mV的测试电势的CMX膜来说,面电阻为:
[0113] 。
[0114] (3)渗透选择性(传输数) 阴离子(+)或阴离子(-)膜的选择渗透性T±由下式获得:
[0115]
[0116] 其可变换为:
[0117]
[0118] 其中,V为参比电极所测试的电压,R为气体常数(8.314焦·K-1·摩尔-1),T为溶液的开氏温度,F为法拉第常数(96480库仑/摩尔),并且aR和aL为在电池内膜两侧的溶液浓度(活性形式)。