发光二极管像素单元电路和显示面板转让专利

申请号 : CN201310206508.2

文献号 : CN103310729B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 青海刚祁小敬

申请人 : 京东方科技集团股份有限公司成都京东方光电科技有限公司

摘要 :

本发明提供了一种发光二极管像素单元电路和显示面板,用以解决因薄膜晶体管的阈值电压不同所导致的显示面板亮度不均的问题,同时将触摸屏电路集成于像素单元电路中,实现发光二极管显示面板的触控功能。所述电路包括驱动模块,所述驱动模块中设置有驱动控制单元,所述驱动控制单元包括阈值电压与驱动薄膜晶体管的阈值电压相匹配的匹配管,位于第一开关元件和第一电容之间,用于通过控制所述第一电容充放电,在清除第一电容中原来数据电压的同时将所述匹配管的阈值电压和新的数据电压写入第一电容中,从而补偿所述驱动薄膜晶体管的阈值电压。

权利要求 :

1.一种发光二极管像素单元电路,所述电路包括驱动模块和发光二极管,其特征在于,所述驱动模块包括:驱动薄膜晶体管、第一开关元件、第二开关元件、第一电容和驱动控制单元;其中,所述驱动薄膜晶体管的栅极连接第一节点,源极连接电源正电压输出端,漏极连接所述发光二极管的阳极;

所述发光二极管的阴极连接电源负电压输出端;

所述第一电容位于第一节点与作为驱动控制单元的第一连接端的第二节点之间;

所述第一开关元件串联在作为驱动控制单元的第二连接端的第三节点和数据线之间;

所述第二开关元件串联在电源正电压输出端和第一节点之间;

所述驱动控制单元包括阈值电压与驱动薄膜晶体管的阈值电压相匹配的匹配管,位于第一开关元件和第一电容之间,用于通过控制所述第一电容充放电,在清除第一电容中原来数据电压的同时将所述匹配管的阈值电压和新的数据电压写入第一电容中,从而补偿所述驱动薄膜晶体管的阈值电压;

其中,所述驱动控制单元包括第三开关元件、第四开关元件和第五开关元件;其中,所述第三开关元件,串联在第三节点和第二节点之间;

所述第四开关元件,与第三开关元件反向并联,共同设置在第三节点和第二节点之间;

所述第五开关元件,串联在第二节点和参考电压输出端之间;

所述电路还包括感应模块,所述感应模块包括第六开关元件、第七开关元件、第二电容、放大薄膜晶体管和感应元件;其中,所述第六开关元件,串联在第一节点和放大薄膜晶体管的栅极之间;

所述第七开关元件,串联在放大薄膜晶体管的漏极和感应线之间;

所述第二电容,串联在放大薄膜晶体管的栅极与第七开关元件的控制端之间;

所述感应元件,连接所述放大薄膜晶体管的栅极;

所述感应模块复用驱动模块中的电源正电压以及扫描信号,用于通过控制感应模块中的第二电容充放电,使得手指的触控信号被感应模块中的放大薄膜晶体管放大。

2.如权利要求1所述电路,其特征在于,所述第一至第七开关元件分别为第一至第七薄膜晶体管。

3.如权利要求2所述电路,其特征在于,

所述第一薄膜晶体管的栅极与本行像素的扫描信号连接,源极与数据线连接,漏极与第三节点连接;

所述第二薄膜晶体管的栅极与本行像素的扫描信号连接,源极与电源正电压输出端连接,漏极与第一节点连接;

所述第三薄膜晶体管的栅极与漏极同时连接第二节点,源极与第三节点连接;

所述第四薄膜晶体管的栅极与漏极同时连接第三节点,源极与第二节点连接;

所述第五薄膜晶体管的栅极连接本行像素的控制信号,源极连接第二节点,漏极连接参考电压输出端。

4.如权利要求2所述电路,其特征在于,

所述第六薄膜晶体管的栅极连接本行像素的扫描信号,源极连接第一节点,漏极连接放大薄膜晶体管的栅极;

所述第七薄膜晶体管的栅极连接下一行像素的扫描信号,源极连接放大薄膜晶体管的漏极,漏极连接感应线;

所述放大薄膜晶体管的栅极连接第六薄膜晶体管的漏极,源极连接电源正电压,漏极连接第七薄膜晶体管的源极。

5.如权利要求1~4任一所述电路,其特征在于,所有薄膜晶体管均为P型薄膜晶体管。

6.如权利要求1所述电路,其特征在于,所述感应元件为感应电极,用于当人触摸该感应电极时,与人体之间形成感应电容。

7.权利要求2所述电路,其特征在于,所述第四薄膜晶体管与所述驱动薄膜晶体管的尺寸和形状相同。

8.一种显示面板,其特征在于,所述显示面板包括权利要求1~7任一权项所述的发光二极管像素单元电路。

说明书 :

发光二极管像素单元电路和显示面板

技术领域

[0001] 本发明涉及显示技术领域,尤其涉及一种发光二极管像素单元电路和显示面板。

背景技术

[0002] 有源矩阵有机发光二极管(AMOLED,Active Matrix-Organic Light Emitting Diode)显示面板相比传统的液晶面板,具有反应速度较快、对比度更高、视角较广等特点。AMOLED显示面板的像素依靠阵列(Array)基板上相关驱动电路驱动发光显示,参见图1,图
1为现有技术中2T1C像素驱动电路。从图1中可以看出,现有技术中2T1C像素驱动电路包括两个薄膜晶体管(TFT,Thin-Film Transistor)和1个电容,其中,薄膜晶体管M1起到开关作用,用于控制数据线与薄膜晶体管DTFT的栅极的连接,薄膜晶体管DTFT为驱动薄膜晶体管,其在饱和状态下能够产生驱动电流,驱动AMOLED发光。图2为图1所示像素驱动电路的扫描信号G(n)与数据线上的灰阶电压信号Vd的时序图,当扫描信号为低电平时,薄膜晶体管M1导通,数据线上的灰阶电压Vd对电容C充电,当扫描信号为高电平时,薄膜晶体管T1截止,电容C用于保存灰阶电压。由于电源电压VDD电位较高,因此DTFT处于饱和状态,此时,OLED的驱动电流I为:
[0003] I=K(Vsg-|Vth|)2=K(VDD-Vdata-|Vth|)2
[0004] 其中,Vsg为DTFT的栅源电压,Vth为DTFT的阈值电压,VDD为电源正电压,Vd为数据线上的灰阶电压,K是一个与晶体管尺寸和载流子迁移率有关的常数,一旦TFT尺寸和工艺确定,K确定。
[0005] 但是在实际生产工艺过程中,即便是使用相同的工艺参数,制作出来的面板不同位置的TFT的阈值电压也可能有较大差异,使得所述不同位置的TFT的临界饱和电压也不同,导致在同一灰阶电压下OLED的驱动电流不一样,使得采用该电路的显示面板不同的位置亮度会有差异,亮度均一性差。

发明内容

[0006] 本发明实施例提供了一种发光二极管像素单元电路和显示面板,用以解决因驱动薄膜晶体管的阈值不同所导致的显示面板亮度不均的问题。
[0007] 本发明实施例提供了一种发光二极管像素单元电路,所述电路包括驱动模块和发光二极管,其中,所述驱动模块包括:驱动薄膜晶体管、第一开关元件、第二开关元件、第一电容和驱动控制单元;
[0008] 所述驱动薄膜晶体管,其栅极连接第一节点,源极连接电源正电压输出端,漏极连接所述发光二级管的阳极;
[0009] 所述发光二级管的阴极连接电源负电压输出端;
[0010] 所述第一电容位于第一节点与作为驱动控制单元的第一连接端的第二节点之间;
[0011] 所述第一开关元件串联在作为驱动控制单元的第二连接端的第三节点和数据线之间;
[0012] 所述第二开关元件串联在电源正电压输出端和第一节点之间;
[0013] 所述驱动控制单元包括阈值电压与驱动薄膜晶体管的阈值电压相匹配的匹配管,位于第一开关元件和第一电容之间,用于通过控制所述第一电容充放电,在清除第一电容中原来数据电压的同时将所述驱动控制单元中的匹配管的阈值电压和新的数据电压写入第一电容中从而补偿所述驱动薄膜晶体管的阈值电压。
[0014] 较佳的,所述驱动控制单元包括第三开关元件、第四开关元件和第五开关元件;其中,所述第三开关元件串联在第三节点和第二节点之间;第四开关元件与第三开关元件反向并联,共同设置在第三节点和第二节点之间;所述第五开关元件串联在第二节点和参考电压输出端之间。
[0015] 较佳的,所述电路还包括感应模块,所述感应模块包括第六开关元件、第七开关元件、第二电容、放大薄膜晶体管和感应元件;
[0016] 所述第六开关元件,串联在第一节点和放大薄膜晶体管的栅极之间;
[0017] 所述第七开关元件,串联在放大薄膜晶体管的漏极和感应线之间;
[0018] 所述第二电容,串联在放大薄膜晶体管的栅极与第七开关元件的控制端之间;
[0019] 所述感应元件,连接所述放大薄膜晶体管的栅极;
[0020] 所述感应模块复用驱动模块中的电源正电压以及扫描信号,用于通过控制感应模块中的第二电容充放电,使得手指的触控信号能被感应模块中的放大薄膜晶体管放大。
[0021] 较佳的,所述第一至第七开关元件为第一至第七开薄膜晶体管;具体的:
[0022] 所述第一薄膜晶体管,其栅极与本行像素的扫描信号连接,源极与数据线连接,漏极与第三节点连接;
[0023] 所述第二薄膜晶体管,其栅极与本行像素的扫描信号连接,源极与电源正电压输出端连接,漏极与第一节点连接;
[0024] 所述第三薄膜晶体管,其栅极与漏极同时连接第二节点,源极与第三节点连接;
[0025] 所述第四薄膜晶体管,其栅极与漏极同时连接第三节点,源极与第二节点连接;
[0026] 所述第五薄膜晶体管,其栅极连接本行像素的控制信号,源极连接第二节点,漏极连接参考电压输出端;
[0027] 所述第六薄膜晶体管,其栅极连接本行像素的扫描信号,源极连接第一节点,漏极连接放大薄膜晶体管的栅极;
[0028] 所述第七薄膜晶体管,其栅极连接下一行像素的扫描信号,源极连接放大薄膜晶体管的漏极,漏极连接感应线。
[0029] 所述放大薄膜晶体管,其栅极连接第六薄膜晶体管的漏极,源极连接电源正电压,漏极连接第七薄膜晶体管的源极;
[0030] 较佳的,所述第四薄膜晶体管与所述驱动薄膜晶体管的尺寸和形状相同。实际工艺过程中,可将所述第四薄膜晶体管设置在与驱动薄膜晶体管邻近的位置,根据两个相同设计的薄膜晶体管电性较匹配的原理(即,在同一像素内部,两个相同设计的薄膜晶体管由于相互的位置非常接近,工艺环境也非常一致,因此工艺上引起的电性差异非常小,可以近似为相同,换而言之,第五薄膜晶体管的阈值电压和驱动薄膜晶体管的阈值电压近似相同),用于补偿驱动薄膜晶体管的阈值电压,消除驱动薄膜晶体管的阈值电压对驱动电流的影响。
[0031] 较佳的,所有薄膜晶体管均为P型薄膜晶体管。
[0032] 较佳的,上述薄膜晶体管均为多晶硅薄膜晶体管,或者均为非晶硅薄膜晶体管,或者均为氧化物薄膜晶体管。
[0033] 较佳的,所述感应元件为感应电极,用于当人触摸该感应电极时,与人体之间形成感应电容。
[0034] 本发明实施例提供了一种显示面板,所述显示面板包括上述的发光二极管像素单元电路。
[0035] 本发明实施例提供的像素单元电路包括驱动模块和感应模块,所述驱动模块中设置有驱动薄膜晶体管、第一开关元件、第一电容、第二开关元件和驱动控制单元,通过所述驱动控制单元对第一电容的充放电,在清除原来数据电压的同时将匹配管的阈值电压和新的数据电压写入第一电容中从而补偿驱动管的阈值电压,使得用于驱动发光二极管发光的驱动电流不受驱动薄膜晶体管的阈值电压的影响,同时,通过所述驱动控制模块引入参考电压,由于参考电压源在电路中只作为一个参考基准用于对第一节点提供电平参照而并无持续的电流从线路中流过,因而线路的内阻并不引起参考电平在到达第一节点后电位下降,因而参考电压作为一个电压值出现在电流公式中不管是电路工作阶段还是非工作阶段都是恒定的,因而消除了线路内阻对发光电路的影响,使得在该像素电路中,同一灰阶电压下发光二极管的驱动电流是一致的,采用该电路的显示面板的亮度不会有差异,从而提高了显示面板亮度的均一性。

附图说明

[0036] 图1为现有技术中2T1C像素驱动电路;
[0037] 图2为2T1C像素驱动电路各信号端的信号时序图;
[0038] 图3为本发明实施例提供的一种像素驱动电路的电路图;
[0039] 图4为本发明实施例提供的像素电路中各信号端的信号时序图
[0040] 图5为本发明实施例提供的第一阶段像素驱动电路的等效电路图;
[0041] 图6为本发明实施例提供的第二阶段像素驱动电路的等效电路图;
[0042] 图7为本发明实施例提供的第三阶段像素驱动电路的等效电路图。

具体实施方式

[0043] 本发明实施例提供了一种发光二极管像素单元电路和显示面板,用以解决因驱动薄膜晶体管的阈值不同所导致的显示面板亮度不均的问题。
[0044] 下面结合附图,对本发明进行说明。
[0045] 参见图3,图3为本发明实施例提供的有源矩阵主动有机发光二极管AMOLED像素单元电路,该电路包括:驱动模块31、感应模块32和发光二极管33;
[0046] 具体的,所述驱动模块31包括:驱动薄膜晶体管DTFT、第一薄膜晶体管T1、第二薄膜晶体管T2、第一电容C1和驱动控制单元311;其中,所述驱动控制单元311包括第三薄膜晶体管T3、第四薄膜晶体管T4和第五薄膜晶体管T5。
[0047] 所述驱动薄膜晶体管DTFT,其栅极连接第一节点P1,源极连接电源正电压VDD输出端,漏极连接有源矩阵主动有机发光二级管AMOLED的阳极。
[0048] 所述第一电容C1,位于第一节点P1与第二节点P2之间。
[0049] 所述第一薄膜晶体管T1,其栅极与本行像素的扫描信号G(n)连接,源极与数据线Ldata连接,漏极与第三节点P3连接;
[0050] 所述第二薄膜晶体管T2,其栅极与本行像素的扫描信号G(n)连接,源极与电源正电压VDD输出端连接,漏极与第一节点P1连接;
[0051] 所述第三薄膜晶体管T3,其栅极与漏极同时连接第二节点P2,源极与第三节点P3连接;
[0052] 所述第四薄膜晶体管T4,其栅极与漏极同时连接第三节点P3,源极与第二节点P2连接;
[0053] 所述第五薄膜晶体管T5,其栅极连接本行像素的控制信号C(n),源极连接第二节点P2,漏极连接参考电压输出端Vref。
[0054] 具体的,所述感应模块32包括:第六薄膜晶体管T6、第七薄膜晶体管T7、放大薄膜晶体管ATFT、第二电容C2和感应电极321。
[0055] 所述第六薄膜晶体管T6,其栅极连接本行像素的扫描信号G(n),源极连接第一节点P1,漏极连接放大薄膜晶体管ATFT的栅极。
[0056] 所述第七薄膜晶体管T7,其栅极连接下一行像素的扫描信号G(n+1),源极连接放大薄膜晶体管的漏极ATFT,漏极连接感应线Lsense。
[0057] 第二电容C2,连接在放大薄膜晶体管ATFT的栅极和第七薄膜晶体管T7的栅极之间。
[0058] 所述感应电极321,连接放大薄膜晶体管ATFT的栅极,用于当人触摸该感应电极时,与人体之间形成感应电容Cf,引起放大薄膜晶体管ATFT的栅极的电位发生变化,产生变化的感应电流。
[0059] 此外,所述有源矩阵主动有机发光二级管AMOLED的阳极连接驱动薄膜晶体管DTFT的漏极,阴极连接电源负电压VSS。
[0060] 图4为各信号端的时序图,下面结合图4对本发明实施例提供的有源矩阵有机发光二极管像素单元电路的工作方法进行说明,其中,所有薄膜晶体管均为低电平导通,高电平截止。
[0061] 第一阶段S1,参见图5,图5为该阶段的等效电路图;下一行像素的扫描信号G(n+1)为高电平VGH,使得响应于下一行像素的扫描信号G(n+1)的第七薄膜晶体管T7截止,放大薄膜晶体管ATFT的漏极处于空置状态;
[0062] 本行像素的扫描信号G(n)为低电平VGL,本行像素的控制信号C(n)为高电平VGH,使得第一薄膜晶体管T1、第二薄膜晶体管T2和第六薄膜晶体管T6导通,第五薄膜晶体管T5截止;数据线上输出灰阶电压信号Vd,所述灰阶电压信号Vd对应的灰阶电压大小为Vh,所述Vh为高电平,因此第四薄膜晶体管T4截止;由于第二节点P2的电位较低,因此第三薄膜晶体管T3导通,此时,数据线的电压Vh通过所述第一薄膜晶体管T1和第三薄膜晶体管T3对第一电容C1充电,使得第二节点P2的电位上升至Vh-|Vth3|,其中,所述|Vth3|为第三薄膜晶体管T3的阈值电压;电源正电压VDD通过第二薄膜晶体管T2对第一电容C1充电,使得第一节点P1的电位上升至VDD,同时,电源正电压VDD通过所述第二薄膜晶体管T2和第六薄膜晶体管T6对第二电容C2充电,使得第四节点P4、即放大薄膜晶体管ATFT的栅极电位上升至VDD;
[0063] 同时,由于下一行像素的扫描信号G(n+1)为高电平VGH,因此第五节点P5的电位上升至VGH。
[0064] 第二阶段S2,参见图6,图6为该阶段的等效电路图;G(n)保持低电平,C(n)和G(n+1)保持高电平,数据线上的电压从高电平Vh跳变为低电平Vdata,因此,第一薄膜晶体管T1、第二薄膜晶体管T2和第六薄膜晶体管T6保持导通,第五薄膜晶体管T5截止和第七薄膜晶体管T7保持截止。由于在上一阶段中对第一电容C1充电使得第二节点P2的电位上升至Vh-|Vth3|,数据线上的电压跳变为Vdata后,使得第三节点P3的电位降低,第三薄膜晶体管T3截止,第四薄膜晶体管T4开启,第一电容C1通过所述第四薄膜晶体管T4逐渐放电,当第三节点P3的电位下降至Vdata+|Vth4|时,第四薄膜晶体管T4截止,其中,所述|Vth4|为第四薄膜晶体管T4的阈值电压;
[0065] 此时,第一电容两端的电压Vc1为:
[0066] Vc1=VDD-(Vdata+|Vth4|);
[0067] 第二电容两端的电压Vc2为:
[0068] Vc2=VDD-VGH;
[0069] 第三阶段S3,参见图7,图7为该阶段的等效电路图;G(n)跳变为高电平VGH,C(n)跳变为低电平。第一薄膜晶体管T1、第二薄膜晶体管T2和第六薄膜晶体管T6截止,第五薄膜晶体管T5导通;由于第一节点P1处于悬空状态,因此第一电容C1上的电压保持不变,但是由于第五薄膜晶体管T5的导通,使得第二节点P2处的电位上升至Vref,同时由于第一电容的耦合作用,第一节点P1处、即驱动薄膜晶体管DTFT栅极的电位也发生变为,此时,驱动薄膜晶体管DTFT栅极的电位为:
[0070] Vg=Vp1=VDD+Vref-(Vdata+|Vth4|)
[0071] 其中,Vg为驱动薄膜晶体管DTFT栅极的电位,Vp1为第一节点处的电位,Vref为参考电压。
[0072] 驱动薄膜晶体管DTFT的栅源电压为:
[0073] Vsg=Vs-Vg
[0074] =VDD-(VDD+Vref-(Vdata+|Vth4|))
[0075] =Vdata+|Vth4|-Vref;
[0076] 其中,Vsg为驱动薄膜晶体管DTFT的栅源电压,Vs为驱动薄膜晶体管DTFT的源极电压。
[0077] 由于第四薄膜晶体管T4为驱动薄膜晶体管DTFT的匹配管,两者的阈值电压近似相等,因此通过驱动薄膜晶体管DTFT的饱和电流即OLED的发光电流大小Ioled为:
[0078] Ioled=Kd(Vsg-|Vthd|)2
[0079] =Kd(Vdata+|Vth4|-Vref-|Vthd|)2
[0080] =Kd(Vdata-Vref)2
[0081] 其中,Kd为与工艺和驱动设计有关的常数。
[0082] G(n+1)跳变为低电平VGL,使得第七薄膜晶体管T7导通;由于第六薄膜晶体管T6截止,放大薄膜晶体管ATFT的栅极悬空,因此当G(n+1)电位跳变为低电平时,通过第二电容C2的耦合作用,第四节点P4处、即放大薄膜晶体管ATFT的栅极电位也会跟着向下跳变。所述放大薄膜晶体管ATFT栅极电位变化的大小,跟连接在其栅极上的感应电极321上是否有触摸动作发生有关。
[0083] 当在感应电极321上有触摸动作发生时,由于人体与感应电极321之间会形成耦合电容Cf,因此第四节点P4的电位为:
[0084] Vp4=VDD+(VGL-VGH)*C2/(C2+Cf)
[0085] 其中,Vp4为第四节点P4的电位。
[0086] 此时,放大薄膜晶体管ATFT的源极与栅极之间的电压V1sg为:
[0087] V1sg=Vs-Vg=Vs-Vp4
[0088] =VDD-[VDD+(VGL-VGH)*C2/(C2+Cf)]
[0089] =(VGH-VGL)*C2/(C2+Cf)
[0090] 相应的,此时通过感应线Lsense的感应电流Ise大小为:
[0091] Ise=Ka(Vsg-|Vtha|)2=Ka(V1sg-|Vtha|)2
[0092] =Ka[(VGH-VGL)*C2/(C2+Cf)-|Vtha|]2
[0093] 其中,Vtha为放大管的阈值电压,Ka为放大管与工艺和设计有关的常数。
[0094] 当在感应电极321上没有有触摸动作发生时,第四节点P4的电位为:
[0095] Vp4=VDD-(VGH-VGL)
[0096] 此时,放大薄膜晶体管ATFT的源极与栅极之间的电压V2sg为:
[0097] V2sg=Vs-Vg=Vs-Vp4
[0098] =VDD-[VDD-(VGH-VGL)]
[0099] =VGH-VGL
[0100] 相应的,此时通过感应线Lsense的感应电流Ise大小为:
[0101] Ise=Ka(Vsg-|Vtha|)2=Ka(V2sg-|Vtha|)2
[0102] =Ka[(VGH-VGL)-|Vtha|]2
[0103] 综上,当有触摸动作发生时,由于耦合电容Cf的分压作用,引起放大薄膜晶体管ATFT的源极与栅极之间的电压变小,放大薄膜晶体管ATFT的放大能力减弱,从而使得有触摸动作发生时的Ise感应电流的较没有触控动作发生时的感应电流Ise小,因此,该电路中通过感应电流即可判断该处是否有触控动作发生。
[0104] 本发明实施例还提供了一种显示面板,所述显示面板包括上述的有源矩阵主动有机发光二极管AMOLED像素单元电路。
[0105] 综上所述,本发明实施例提供的有源矩阵AMOLED像素单元电路包括驱动模块和感应模块;所述驱动模块中设置有驱动薄膜晶体管、第一开关元件、第一电容、第二开关元件和驱动控制单元,通过所述驱动控制单元对第一电容的充放电,在清除原来数据电压的同时将匹配管的阈值电压和新的数据电压写入第一电容中从而补偿驱动管阈值电压,使得用于驱动发光二极管发光的驱动电流不受驱动薄膜晶体管的阈值电压的影响,同时,通过所述驱动控制模块引入参考电压,消除线路内阻对发光电路的影响,使得在该像素电路中,同一灰阶电压下AMOLED的驱动电流是一致的,采用该电路的显示面板的亮度不会有差异,从而提高了显示面板亮度的均一性。更进一步的,本发明还将将触控模块集成在该电路中,复用了驱动模块中电源正电压VDD以及本行像素的和下一行像素的扫描信号G(n)、G(n+1),用于通过控制感应模块中的第二电容充放电,以便于手指的触控信号能被放大晶体管放大,在不增加电路结构和操作复杂性的同时,很好的实现了显示面板的触控功能。此外,该电路中采用单一的P型薄膜晶体管,从而降低了制作工艺的复杂程度和成本[0106] 需指出的是,尽管上述实施例中,以单一采用P型薄膜晶体管为例进行了说明,然而,上述电路还可以轻易的改成采用单一的N型薄膜晶体管或CMOS管电路;此外,还可以将触控功能部分去掉,将该驱动触控电路改为纯粹的像素发光驱动电路。而且,尽管上述实施例中以有源矩阵有机发光二极管为例进行了说明,然而本发明不限于使用有源矩阵有机发光二极管的显示装置,也可以应用于使用其他各种发光二极管的显示装置。
[0107] 显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。