在高沸点溶剂中组装片层结构或类双锥体结构金属纳米簇的方法转让专利

申请号 : CN201310288514.7

文献号 : CN103341638B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张皓武振楠李祥伟李婷婷杨柏

申请人 : 吉林大学

摘要 :

一种在两种高沸点溶剂中组装金属纳米簇成为片层结构或类双锥体结构的方法,属于金属纳米簇组装技术领域。即将事先制备好的烷基硫醇配体稳定的金属纳米簇放置在两种高沸点溶剂中,通过简单的加热处理实现对于二维片层结构或类双锥体结构的组装。这种组装方法,在微观领域中,对于组装技术的发展和小尺寸纳米簇界面的研究具有很大的价值。本发明在组装的过程中操作简便,危险性小,并且具有良好的实验重复性。

权利要求 :

1.一种在高沸点溶剂中组装片层结构或类双锥体结构金属纳米簇的方法,其步骤如下:

1)室温下,将金属源HAuCl4·4H2O或CH3COOAg溶于高沸点溶剂1中,金属源的用量为

0.121~0.486mmol,在磁力搅拌下,将烷基硫醇逐滴加入,搅拌0.1~1h,即可得到烷基硫醇稳定的金属纳米簇溶液;其中,金属源与烷基硫醇的摩尔用量比为1:4.3;

2)将得到的烷基硫醇稳定的金属纳米簇溶液加入到高沸点溶剂2中,高沸点溶剂1与高沸点溶剂2的体积比为1:7~1:15,将混合后的溶液在真空或常压氮气保护的条件下缓慢升温至120~150℃反应0.1~1h,从而得到二维片层结构或类双锥体结构的金属纳米簇;高沸点溶剂1和高沸点溶剂2是二苄醚、1-十八烯或液体石蜡中的一种,且高沸点溶剂

1和高沸点溶剂2不相同。

2.如权利要求1所述的一种在高沸点溶剂中组装片层结构或类双锥体结构金属纳米簇的方法,其特征在于:烷基硫醇的通式为HSCnH2n+1,n为5~16的整数。

3.如权利要求2所述的一种在高沸点溶剂中组装片层结构或类双锥体结构金属纳米簇的方法,其特征在于:烷基硫醇是HSC16H33、HSC12H25、HSC10H21或HSC8H17。

4.如权利要求1所述的一种在高沸点溶剂中组装片层结构或类双锥体结构金属纳米簇的方法,其特征在于:步骤(2)中所述的升温速率为6~12℃/min。

说明书 :

在高沸点溶剂中组装片层结构或类双锥体结构金属纳米簇

的方法

技术领域

[0001] 本发明属于金属纳米簇组装技术领域,具体涉及一种在两种高沸点的溶剂中组装片层结构或类双锥体结构金属纳米簇的方法,特别是涉及一种事先由巯基分子做还原剂和稳定剂制备疏水的金属纳米簇、以小尺寸的金属纳米簇作为结构基元、在两种高沸点的溶剂中通过简单的加热处理组装成为片层结构或类双锥体结构的方法。

背景技术

[0002] 组装纳米粒子成为2维(2D)纳米片层结构可以有力地促进人们对于微观材料界面的研究,并且也是创造出低维度的应用在包括光学、电学、磁学和生物学等领域的新型前沿材料的重要手段,因此成为众多研究者关注的焦点。随着人们对纳米片层材料的需求日益增加,各种各样的合成/组装方法应运而生,其中对于纳米粒子的自组装的研究尤为广泛。然而,目前大量的工作都是针对由数百个原子组成的纳米粒子(>10nm)为结构基元组装成为二维片层结构的报道,实现对于由几个或几十个原子组成的纳米簇(<2nm)组装成为二维片层结构是非常困难的。这是因为纳米簇周围热浮动能与纳米簇之间的相互作用力相仿,对纳米簇的组装结构具有很强的破坏力;此外,由于金属纳米簇的尺寸很小,其较高的表面能也限制了其各向异性的组装。于是探索新颖、简便、高效的组装方法去实现对于小尺寸金属纳米簇的片层结构的组装是研究人员亟需解决的问题。从而有力地促进人们对于微观材料界面的研究,创造出低维度的应用在包括光学,电学,磁学和生物学等领域的新型前沿材料。

发明内容

[0003] 本发明的目的就是提供一种简单的组装方法,从而有效地解决了小尺寸金属纳米簇的片层结构或类双锥体结构的组装问题,即将事先制备好的烷基硫醇配体稳定的金属纳米簇放置在两种高沸点溶剂中,通过简单的加热处理实现对于二维片层结构或类双锥体结构的组装。这种组装方法,在微观领域中,对于组装技术的发展和小尺寸纳米簇界面的研究具有很大的价值。
[0004] 本发明在组装的过程中操作简便,危险性小,并且具有良好的实验重复性。具体来说,本发明的步骤如下:
[0005] 1)室温下,将金属源溶于高沸点溶剂1中,金属源的用量为0.121~0.486mmol,在磁力搅拌下,将烷基硫醇逐滴加入,搅拌0.1~1h,即可得到烷基硫醇稳定的金属纳米簇溶液;其中,保证金属源与烷基硫醇的摩尔用量比为1:4.3不变(否则过多的金属源会在高温下碳化或者过多的硫醇会在高温下促使小金属簇长大从而不利组装结构的构筑)。
[0006] 2)将得到的金属纳米簇溶液加入到高沸点溶剂2中,高沸点溶剂1与高沸点溶剂2的体积比为1:7~1:15,将混合后的溶液在真空或常压氮气保护的条件下缓慢升温至
120~150℃反应0.1~1h,从而得到二维片层结构或类双锥体结构的金属纳米簇。
[0007] 通过改变两种高沸点溶剂的体积比例(1:7~1:15),反应过程中的真空度(0.08MPa)和升温速率(6~12℃/min),即可得到不同形貌(六边形,无定型,规则树叶等等)的片层结构(厚度为1.2~20nm)或类双锥体结构(厚度为20~80nm)等等。
[0008] 上述实验方法所用原料为金属源(金源或银源)、极性不同的高沸点溶剂、烷基硫醇。金属源可以是HAuCl4·4H2O、AgNO3,CH3COOAg等;高沸点溶剂1和高沸点溶剂2不相同,可以是二苄醚、1-十八烯或液体石蜡等;烷基硫醇的通式为HSCnH2n+1,n为5~16的整数(如HSC16H33、HSC12H25、HSC10H21、HSC8H17等不同C链长度的硫醇)。

附图说明

[0009] 图1:本发明制备的宽为100~200nm、长为300~1000nm,厚度为1.2~1.8nm的纳米Au片层组装体的透射电镜照片,二苄醚体积为2mL,HAuCl4·4H2O的摩尔量为0.486mmol,十二烷基硫醇(HSC12H25)的摩尔量为2.1mmol,液体石蜡的体积为15mL,反应条件是在真空条件(0.08MPa)下缓慢升温(6℃/min)至140℃并且在140℃反应1h;
[0010] 图2:本发明制备的得到尺寸为边长大约是1um,厚度为1.2~1.8nm的形状规则的六边形的片层组装体的透射电镜照片,二苄醚体积为2mL,HAuCl4·4H2O的摩尔量为0.486mmol,十二烷基硫醇的摩尔量为2.1mmol,液体石蜡的体积为15mL,反应条件是在通N2条件下缓慢升温(6℃/min)至140℃并且在140℃反应1h;
[0011] 图3:本发明制备的得到宽为100~500nm、长为500~1000nm,厚度为10~20nm的纳米Ag片层组装体的透射电镜照片,二苄醚体积为2mL,CH3COOAg的摩尔量为
0.486mmol,十二烷基硫醇的摩尔量为2.1mmol,液体石蜡的体积为15mL,反应条件是在真空条件下(0.08MPa)缓慢升温(6℃/min)至140℃并且在140℃反应1h;
[0012] 图4:本发明制备的宽为100~200nm、长为300~1000nm,厚度为1.2~1.8nm的纳米Au片层组装体的透射电镜照片,二苄醚体积为2mL,HAuCl4·4H2O的摩尔量为0.486mmol,十二烷基硫醇的摩尔量为2.1mmol,1-十八烯的体积为30mL,反应条件是在真空条件下(0.08MPa)缓慢升温(6℃/min)至140℃并且在140℃反应1h;
[0013] 图5:本发明制备的宽为50~100nm、长为300~1000nm,厚度为1.2~1.8nm的纳米Au片层组装体的透射电镜照片,二苄醚体积为2mL,HAuCl4·4H2O的摩尔量为0.486mmol,十二烷基硫醇的摩尔量为2.1mmol,液体石蜡的体积为15mL,反应条件是在真空条件下(0.08MPa)缓慢升温(6℃/min)至140℃,之后立即将三颈瓶放置在冰水浴中冷却至室温;
[0014] 图6:本发明制备的类双锥体,厚度为20~80nm(纳米Au组装体的透射电镜照片,二苄醚体积为1mL,HAuCl4·4H2O的摩尔量为0.486mmol,十二烷基硫醇的摩尔量为2.1mmol,液体石蜡的体积为7.5mL,反应条件是在真空条件(0.08MPa)下缓慢升温(6℃/min)至140℃并且在140℃反应1h;
[0015] 图7:本发明制备的类树叶状,厚度为1.2~1.8nm的纳米Au片层组装体的透射电镜照片,二苄醚体积为2mL,HAuCl4·4H2O的摩尔量为0.486mmol,十二烷基硫醇的摩尔量为2.1mmol,液体石蜡的体积为15mL,反应条件是在真空条件(0.08MPa)下快速升温(12℃/min)至140℃并且在140℃反应1h;
[0016] 图8:本发明制备的宽为100~200nm、长为300~1000nm,厚度为1.2~5nm的纳米Au片层组装体的透射电镜照片,二苄醚体积为2mL,HAuCl4·4H2O的摩尔量为0.121mmol,十六烷基硫醇的摩尔量为0.52mmol,液体石蜡的体积为15mL,反应条件是在真空条件(0.08MPa)下缓慢升温(6℃min)至140℃并且在140℃反应1h;
[0017] 由于片层组装体结构基元为小尺寸的纳米簇,对于环境的变化极其敏感,所以结构变化很明显。

具体实施方式

[0018] 下面结合实施例对本发明做进一步的阐述,而不是要以此对本发明进行限制。实施例1:
[0019] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.486mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇(Au15)。将得到的金纳米簇溶液加入放置了15mL的液体石蜡的三颈瓶中,混合后的溶液在真空条件下缓慢升温(6℃/min)至140℃,随后在140℃反应1h。如图1所示,得到厚度为1.2~1.8nm、宽为100~200nm、长为300~1000nm不等的片层组装体。
[0020] 实施例2:
[0021] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.486mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇。将得到的金纳米簇溶液加入放置了15mL的液体石蜡的三颈瓶中,混合后的溶液在通N2条件下缓慢升温(6℃/min)至140℃,随后在140℃反应1h。如图2所示,得到厚度为1.2~1.8nm、尺寸为1um的形状规则的六边形的片层组装体。
[0022] 实施例3:
[0023] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.486mmol的CH3COOAg,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的银纳米簇。将得到的银纳米簇溶液加入放置了15mL的液体石蜡的三颈瓶中,混合后的溶液在真空条件下缓慢升温(6℃/min)至140℃,随后在140℃反应1h。如图3所示,得到厚度为10~20nm、宽为100~500nm、长为500~1000nm的片层结构。
[0024] 实施例4:
[0025] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.486mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇。将得到的金纳米簇溶液加入放置了30mL的1-十八烯的三颈瓶中,混合后的溶液在真空条件下(0.08MPa)缓慢升温(6℃/min)至140℃,随后在140℃反应1h。如图4所示,得到厚度为1.2~1.8nm、宽为100~200nm、长为300~1000nm的片层结构。
[0026] 实施例5:
[0027] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.486mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇。将得到的金纳米簇溶液加入放置了15mL的液体石蜡的三颈瓶中,混合后的溶液在真空条件下缓慢升温(6℃/min)至140℃,随后立即冷却。如图5所示,得到厚度为1.2~1.8nm、宽为50~100nm、长为300-1000nm不等的片层组装体。
[0028] 实施例6:
[0029] 在10mL的烧杯中加入1mL二苄醚,并且溶有0.486mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇。将得到的金纳米簇溶液加入放置了7.5mL的液体石蜡的三颈瓶中,混合后的溶液在真空条件下缓慢升温(6℃/min)至140℃,随后在140℃反应1h。如图6所示,得到厚度为20~80nm的类双锥体的组装结构。
[0030] 实施例7:
[0031] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.486mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入2.1mmol的十二烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇。将得到的金纳米簇溶液加入放置了15mL的液体石蜡的三颈瓶中,混合后的溶液在真空条件下快速(12℃/min)升温至140℃,随后在140℃反应1h。如图7所示,得到厚度为1.2~1.8nm的类树叶状的片层组装结构。
[0032] 实施例8:
[0033] 在10mL的烧杯中加入2mL二苄醚,并且溶有0.121mmol的HAuCl4·4H2O,在室温磁力搅拌下,逐滴地加入0.52mmol的十六烷基硫醇,然后保持搅拌1h,即可得到十二烷基硫醇稳定的金属纳米簇。将得到的金纳米簇溶液加入放置了10mL的液体石蜡的三颈瓶中,混合后的溶液在真空条件下(0.08MPa)缓慢升温(6℃/min)升温至140℃,随后在140℃反应1h。如图7所示,得到厚度为1.2~5nm的片层组装结构。