陶瓷粉末和层叠陶瓷电容器转让专利

申请号 : CN201310104506.2

文献号 : CN103360059B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 水野洋一

申请人 : 太阳诱电株式会社

摘要 :

本发明提供一种陶瓷粉末和层叠陶瓷电容器。所提供的陶瓷粉末的适当烧制温度范围大,生产性优秀,特别是对1μm以下的薄层电介质层的形成有用,并且以具有钙钛矿构造的钛酸钡为主成分,由此能够提供成品率高的MLCC制品。该陶瓷粉末为通过SEM观察测定的平均粒径(中值径)为200nm以下的包含具有钙钛矿构造的钛酸钡的陶瓷粉末,该钛酸钡的通过TEM观察测定的孪晶缺陷比例为13%以上、晶格的c/a为1.0080以上。

权利要求 :

1.一种陶瓷粉末,其特征在于:该陶瓷粉末为包含通过SEM观察测定的中值径为80~200nm的具有钙钛矿构造的钛酸钡的陶瓷粉末,该钛酸钡的通过TEM观察测定的孪晶缺陷的比例为13%以上,晶格的c/a为1.0080以上。

2.如权利要求1所述的陶瓷粉末,其特征在于:所述钛酸钡的孪晶缺陷的比例为13~23%。

3.如权利要求1或2所述的陶瓷粉末,其特征在于:所述钛酸钡的晶格中的c/a为1.0091~1.0105。

4.一种层叠陶瓷电容器,其特征在于:通过将由权利要求1~3中任一项记载的陶瓷粉末的烧结体形成的电介质层和内部电极层交替层叠而成。

说明书 :

陶瓷粉末和层叠陶瓷电容器

技术领域

[0001] 本发明特别涉及在使用薄层电介质层的层叠陶瓷电容器(MLCC)中有用的、包含具有钙钛矿构造的钛酸钡的陶瓷粉末和能够使用该陶瓷粉末的MLCC。

背景技术

[0002] 层叠陶瓷电容器(MLCC:Multi-Layer Ceramic Capacitor,多层陶瓷电容器)用于便携式设备、通信设备等的多种多样的电子设备。
[0003] 近年,MLCC等的电子部件的小型化、高性能化是一种明显的潮流,以MLCC为例,其小型化、大容量化显著。MLCC的容量与构成MLCC的基础构造的电介质层的层叠数成比例,与每一层的电介质层的厚度成反比例,因此期望将电介质层的厚度薄至例如1μm以下,且使层叠数增加。
[0004] 作为这样的电介质层的形成材料的陶瓷粉末,广泛使用具有钙钛矿构造的钛酸钡粉末。
[0005] 从确保性能、可靠性的观点出发,而且从物理性而言,为了使上述电介质层的厚度变薄,钛酸钡粉末的细微化是很重要的。
[0006] 在此,作为适合于电介质层的薄层化的钛酸钡类化合物的合成方法,提案有将含有碳酸钡粉末和二氧化钛粉末的混合粉末粉碎混合于有机溶剂中,对粉碎混合的上述混合粉末进行烧制而得到钛酸钡类化合物的粉末的方法(专利文献1)。
[0007] 关于以专利文献1的方法得到的钛酸钡类化合物粉末,记载有其平均粒子径为100nm以下,在10%以上的粒子的内部存在孪晶缺陷(twin fault),粒度分布的标准偏差为
20以下,并且使用该粉末时,能够抑制表面粗糙度的不均匀,由此能够抑制MLCC的短路率、绝缘电阻的不良。
[0008] 【现有技术文献】
[0009] 【专利文献】
[0010] 【专利文献1】:日本特开2011-132071号公报

发明内容

[0011] 【发明要解决的课题】
[0012] 但是,在专利文献1中,虽然对于具体的电特性相关的数据没有公开,但一般而言这样的100nm以下的小粒径钛酸钡陶瓷粉末,在烧制成为电介质层时,对应于例如氧分压、温度等烧制条件的变动,得到的电介质层的电特性的变动幅度较大,即适当的烧制温度范围狭窄。
[0013] 通常在制造MLCC时,对被称为印刷电路基板(green sheet)的内部电极层和含有陶瓷粉末的层的层叠体进行集成、层叠而制成多个MLCC成型体,将这些成型体放入烧制炉一次进行烧制处理。
[0014] 因此,对各成型物进行完全均等的加热是困难的,将产生烧制不均匀,产生烧结过度进行、或相反地烧结受到抑制的部分,所以如果适当烧制温度范围狭窄,则产生次品,成品率降低。
[0015] 于是,根据专利文献1记载的方法,无法期待高的成品率,即使由于烧制条件的变动、例如温度或氧分压的小的变动,所得到的MLCC的特性不仅受到大的影响,而且成品率也将大幅降低。
[0016] 在此,本发明的目的在于提供一种适当烧制温度范围大、生产性优秀、特别是对1μm以下的薄层电介质层的形成有用的、以具有钙钛矿构造的钛酸钡为主成分的陶瓷粉末,并且提供由此能够实现高成品率且可靠性高的质量均匀的MLCC产品。
[0017] 【用于解决课题的技术手段】
[0018] 本发明的发明人发现,平均粒径为一定值以下,且包含一定比例以上的孪晶缺陷,晶格的c/a为一定值以上时,含有正方性(tetragonality)高的钛酸钡的陶瓷粉末能够解决上述课题,由此完成了本发明。
[0019] 即,本发明为包含通过SEM观察测定的平均粒径(中值径)为200nm以下的具有钙钛矿构造的钛酸钡的陶瓷粉末,该钛酸钡的通过TEM观察测定的孪晶缺陷比例为13%以上,晶格的c/a为1.0080以上的陶瓷粉末。
[0020] 根据得到优质的电介质层的观点,优选上述钛酸钡的平均粒径为80~200nm。
[0021] 构成本发明的陶瓷粉末的具有钙钛矿构造的钛酸钡中,优选其孪晶缺陷的比例为13~23%,晶格中的c/a为1.0091~1.0105。使用这样的范围的本发明的陶瓷粉末时,能够以高成品率生产出MLCC。
[0022] 进而本发明的MLCC为将由本发明的陶瓷粉末的烧结体形成的电介质层与内部电极层交替层叠而成的器件。
[0023] 【发明的效果】
[0024] 根据本发明,能够提供适当烧制温度范围大、生产性优秀、特别是对于1μm以下的薄层电介质层的形成有用的、以具有钙钛矿构造的钛酸钡为主正分的陶瓷粉末,使用该陶瓷粉末时,能够以高成品率制造MLCC,因此还能够削减MLCC的制造成本。

附图说明

[0025] 图1是表示形成有孪晶缺陷的钛酸钡粒子的示意图。
[0026] 图2是本发明的层叠陶瓷电容器的概略纵截面图。
[0027] 【符号说明】
[0028] 1 层叠陶瓷电容器
[0029] 10 陶瓷烧结体
[0030] 11 层叠体
[0031] 12 电介质层
[0032] 13 内部电极层
[0033] 15 覆盖层
[0034] 20 外部电极

具体实施方式

[0035] 如上所述,本发明的陶瓷粉末包含具有钙钛矿构造的钛酸钡,该钛酸钡的通过扫描型电子显微镜(SEM)观察测定的平均粒径(中值径)为200nm以下。
[0036] 上述平均粒径是通过对钛酸钡的粉末样本进行SEM观察,令n=500,取得其中值径而求得的。
[0037] 平均粒径比200nm大时,不能够得到厚度为1μm以下、且平滑的可靠性高的电介质层。
[0038] 另外,平均粒径通常为80nm以上,基于使用本发明的陶瓷粉末得到的电介质层的薄层化的观点,优选为80~200nm。此外,对于平均粒径的调整方法,在后文叙述。
[0039] 接着,具有上述钙钛矿构造的钛酸钡,其通过透过型电子显微镜(TEM)观察而测定的孪晶缺陷的比例为13%以上。孪晶缺陷的比例,通过对上述钛酸钡粉末进行TEM观察,令n=100对形成孪晶的部分进行计数而测定。形成孪晶缺陷的钛酸钡粒子的示意图如图1所示。
[0040] 在本发明中,通过使具有钙钛矿构造的钛酸钡的孪晶缺陷的比例为13%以上,且其晶格中的c/a为一定值以上,可以认为这些表示出一定的复合效应(synergism),对本发明的陶瓷粉末赋予较宽的适当烧制温度范围。
[0041] 基于这样的观点,上述孪晶缺陷的比例优选为13~23%。此外,对于孪晶缺陷的比例的调整方法,在后文叙述。
[0042] 具有上述钙钛矿构造的钛酸钡的晶格中的c/a为如上所述的1.0080以上。c/a能够通过公知的粉末X射线衍射法对钛酸钡的衍射峰值进行测定,将得到的衍射峰值以里德伯尔德法(rietveld method)进行解析、算出a轴和c轴的晶格常数而求得。
[0043] 这样,钛酸钡的正方性(tetragonality,四方性)高、且孪晶缺陷的比例为一定值以上的本发明的陶瓷粉末的适当烧制温度范围大,使用该粉末能够以高成品率制造MLCC。
[0044] 另外,在钛酸钡的正方性高时,其介电常数变高,能够实现MLCC的高电容量,因此是优选的。
[0045] 基于以上观点,c/a为1.0091~1.0105时,使用本发明的陶瓷粉末得到的MLCC的电容不均匀变为约2%以下,因此更加优选。此外,对于c/a的调整方法,在后文叙述。
[0046] 接着,对于本发明的陶瓷粉末的制造方法进行说明。该制造方法,只要构成上述粉末的主成分的钛酸钡能够达到以上说明的各种参数即可,没有特别的限定,例如能够如下所述这样考虑各种条件、主要因素而进行调整制造。
[0047] 一般而言,首先通过使钛原料和钡原料反应而合成钛酸钡,对其进行热处理并进行烧制,由此得到陶瓷粉末,为了根据需要调整粒径而进行粉碎处理,并且根据需要与各种添加化合物混合。
[0048] 作为上述钛酸钡的合成方法,公知有现有技术中的各种方法,例如已知有溶胶凝胶法(sol-gel)、水热法、固相法等。
[0049] 其中,溶胶凝胶法、水热法具有抑制孪晶缺陷的发生,并且使c/a值降低的倾向。
[0050] 固相法具有使孪晶缺陷的发生增多,并且使c/a值变高的倾向。
[0051] 进而,在已合成的钛酸钡中的、钡与钛的比例(Ba/Ti),具有与化学计量法(化学计量值)(stoichiometry)相比稍大时c/a的值变高、相反为稍小时c/a的值降低的倾向。对于孪晶缺陷的比例几乎没有影响。
[0052] 并且上述热处理在本发明中优选分为水热处理和加热处理这两个阶段。
[0053] 上述加热处理的温度高或时间长时,具有孪晶缺陷的发生比例升高,c/a的值变高的倾向,相反地,加热处理的温度低或时间短时,具有孪晶缺陷的发生被抑制、且c/a的值降低的倾向。
[0054] 上述水热处理,通过将用溶胶凝胶法等合成的钛酸钡粉末投入水、规定的水溶液等的液体中,以液体作为介质对上述粉末赋予热能量而实现。
[0055] 水热处理温度优选为100℃以上,如果不足100℃则不能够期待提高钛酸钡的正方性的效果。此外,水热处理的温度通常为200℃以下。
[0056] 水热处理的时间没有特别限制,但只要是1小时以上就能够充分地进行水热处理,通常为12小时以下。另外,水热处理时的压力为1MPa以上时能够期待充分的效果。
[0057] 进一步,水热处理用的液体可以是水,优选为含有规定浓度的具有上述钙钛矿构造的钛酸钡的A位(A site)金属离子、即钡离子的水溶液,期望使用含有在处理粉末中所含的A位金属的摩尔数的0.1倍以上的A位金属离子的水溶液。
[0058] 水热处理结束后,对钛酸钡粉末进行干燥,然后施加热处理,由此使粒子生长,得到具有所期望的平均粒径的钛酸钡粉末。另外通过该热处理,钛酸钡的孪晶缺陷的比例和晶格的c/a值进一步提高。
[0059] 上述加热处理的条件没有特别的限定,通常为500~1200℃/0.5~6小时的条件,优选为890~970℃/2~6小时的条件。另外该加热处理可以在大气气氛下进行,也可以在N2等的气氛下进行。
[0060] 通过这样以一定的温度进行规定的时间的加热处理,对粒子生长的程度进行控制,实现所期望的平均粒径。烧制之前,钛酸钡粉末的平均粒径通常为10~40nm,但通过该加热处理(烧制),通常能够生长至80~200nm。
[0061] 通过以上说明的加热处理,能够使钛酸钡的孪晶缺陷的比例提高,而且能够提高晶格的c/a值。
[0062] 将这样得到的钛酸钡粉末,根据需要进行粉碎处理,通过调节粒径或与分级处理组合对粒径进行调整。
[0063] 该粉碎处理可以是湿式的,也可以是干式的,但从干燥凝聚的观点出发,优选为干式粉碎。此外,进行干式粉碎时,具有c/a值下降的倾向。对于孪晶缺陷的比例几乎没有影响。
[0064] 在本发明中,综合以上各操作中的倾向,对各个条件等进行适当调节、设定,制造满足本发明规定的平均粒径、孪晶缺陷比例和c/a值的具有钙钛矿构造的钛酸钡粉末。
[0065] 特别是,在本发明中,优选通过溶胶凝胶法或固相法制造钛酸钡,将所制造的钛酸钡以110~120℃/2~24小时/pH13.0~13.5的条件进行水热处理,对水热处理后的钛酸钡以890~970℃/2~6小时的条件进行加热处理,根据需要对加热处理后的钛酸钡进行干式粉碎处理,得到钛酸钡粉末。
[0066] 本发明的陶瓷粉末,包含例如通过以上方式得到的钛酸钡粉末,如后所述,根据需要而含有各种添加化合物。
[0067] 例如如上所述那样得到的本发明的陶瓷粉末,适当烧制温度范围宽,并且平均粒径小,所以使用该粉末能够以高成品率制造具有厚度1μm以下的电介质层的高品质的MLCC。所制造的MLCC,具有足够的静电电容,而且每个产品的静电电容的不均匀程度较小,几乎没有缺陷品。
[0068] 接着,对本发明的一实施方式的层叠陶瓷电容器进行说明。图2是本发明的层叠陶瓷电容器1的概略纵截面图。
[0069] 层叠陶瓷电容器1大致包括:具有按规格确定的晶片尺寸和形状(例如1.0×0.5×0.5mm的长方体)的陶瓷烧结体10、和在陶瓷烧结体10的两侧形成的一对外部电极20。陶瓷烧结体10以钛酸钡的粒子结晶为主成分,在内部具有电介质层12和内部电极层13交替层叠而成的层叠体11、和作为层叠方向上下的最外层而形成的覆盖层15。
[0070] 层叠体11根据静电电容、所要求的耐压等的规格,具有由2片内部电极层13所夹的电介质层12的厚度为1μm以下(例如900nm左右)、且整体的层叠数为数十~数百的高密度多层结构。
[0071] 在层叠体11的最外层部分形成的覆盖层15,保护电介质层12和内部电极层13免受外部的湿气、污染物(contamination)等的污染,防止它们的经时劣化。
[0072] 层叠陶瓷电容器1例如以如下所述的方式制造。首先,将以钛酸钡为主成分的微粒子的原料粉末与添加化合物一起进行湿式混合、干燥、粉碎而调制电介质粉末(本发明的陶瓷粉末)。作为上述添加化合物,例如为Mg、Y、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Cr、V、Mn、Co、Ni、Nb、Ta、Mo、W、Si、Li、B、Na或K的氧化物。这些添加化合物通常相对于1摩尔钛酸钡添加共计0.01~0.1摩尔。
[0073] 将调制后的电介质粉末用聚乙烯醇缩丁醛(polyvinyl butyral)树脂等的粘接剂和乙醇(ethanol)等的有机溶剂进行湿式混合,例如通过印模涂布机(Die Coater)法、刮刀法,在基材上涂敷厚度1μm以下的带状的电介质印刷电路基板并使其干燥。然后,在电介质印刷电路基板的表面,将含有有机粘接剂的金属导电膏通过丝网印刷、凹版印刷(gravure printing)进行印刷,由此配置内部电极层13的图案。作为上述金属,从成本的观点出发广泛采用镍。
[0074] 此外,可以在上述金属导电膏上作为共材均匀分散平均粒径为50nm以下的钛酸钡。然后,以例如15cm×15cm的大小进行冲压,将备齐的电介质印刷电路基板以内部电极层13和电介质层12相互交错的方式层叠规定层数。在层叠的电介质印刷电路基板的上下压附作为覆盖层15的覆盖片,以规定的芯片尺寸(例如1.0mm×0.5mm)切割,然后将作为外部电极20的Ni导电膏涂布于所切割的层叠体的两侧面并进行干燥。由此,得到层叠陶瓷电容器1的成型体。
[0075] 将这样得到的层叠陶瓷电容器1的成型体,在约350℃的N2气氛中脱粘接剂后,在-11N2、H2、H2O的混合气体(氧分压约为1.0×10 MPa)中以1100~1280℃进行10分钟~2小时的烧制,由此得到层叠陶瓷电容器1。
[0076] 所得到的层叠陶瓷电容器1中,内部电极层13以端缘在电介质层12的长度方向两端面交替露出的方式埋设,在内部电极层13的端缘露出的部分与外部电极20连接。
[0077] 另外,上述电介质层12的厚度通常为3μm以下,优选为0.5~1μm,上述内部电极层13的厚度通常为0.5~3μm。在本发明的陶瓷粉末中,将作为其主成分的钛酸钡的平均粒径控制为200nm以下,因此即使是这样的薄层电介质层,在其表面也能够实现优秀的平滑性,能够得到短路等不良情况难以发生的层叠陶瓷电容器。
[0078] 进而通过上述烧制,形成具有由作为上述电介质粉末的主成分的钛酸钡形成的核部、和由上述添加化合物以及钛酸钡的固溶体(solid solution)形成的壳部的核壳构造的粒子,由此对电介质层赋予良好的温度特性,即使MLCC暴露于周边环境的温度变化中,静电电容等的性能也几乎不发生变化。
[0079] 【实施例】
[0080] (实施例1)
[0081] 通过以下方法获得具有钙钛矿构造的钛酸钡粉末。
[0082] 首先,将以溶胶凝胶法合成的平均粒径:15nm、Ba/Ti比:1.0021的钛酸钡粉末,以120℃/6小时/pH13.5的条件进行水热处理,干燥后在N2气氛中以970℃/2小时的条件进行加热处理(烧制),得到具有钙钛矿构造的钛酸钡粉末。上述钛酸钡的平均粒径为145nm,含有孪晶缺陷的比例为16%,c/a为1.0101。
[0083] 此外关于平均粒径,对粉末样本进行SEM观察,对500个粒子的粒径进行测定,将其中值径作为平均粒径。
[0084] 关于双晶比例,对粉末样本进行TEM观察,对100个粒子中形成孪晶的部分进行计数来得到该比例。
[0085] 进而c/a通过进行粉末X射线衍射测定,实施里德伯尔德解析而求得。
[0086] 以所得到的钛酸钡粉末为原料,按X7R类电介质组成{(100BaTiO3-1.0Ho2O3-1.0MgO-0.7MnO2-1.5SiO2);单位mol}得到陶瓷粉末,利用通常方法制作MLCC的成型物,将其在烧制炉内以进行烧制,制作电介质层数为50层、镍内部电极层数为51、电介质层的1层的厚度1μm的MLCC。
[0087] 针对100个MLCC样本,测定其静电电容,对其平均值和相对平均值的标准偏差进行评测,可知结果为以下所示,得到电容分布非常均匀的MLCC。
[0088] [式1]
[0089]
[0090] 对于上述标准偏差(静电电容的不均匀),不均匀的程度增大时与静电电容相关的成品率下降,因此该数值不足3.0%时为合格。
[0091] 这样,由于样本的静电电容的不均匀程度较小,由此可知本发明的陶瓷粉末的适当烧制温度范围宽,生产性高。
[0092] 将以上的结果汇总于下述表1和表2。此外,对制后的MLCC进行TEM解析,基于其结果能够确认,在所使用的MLCC中,含有与其制造中使用的钛酸钡粉末原料的孪晶缺陷的比例同等的比例的孪晶缺陷。
[0093] (比较例1)
[0094] 将实施例1中得到的具有钙钛矿构造的钛酸钡粉末,用气流式干式粉碎机(喷射式研磨机)进行2次(two-pass)处理,上述粉末的平均粒径达到130nm、c/a达到1.0078。另外含有孪晶缺陷的粒子的比例与进行粉碎处理前相同,为16%。
[0095] 以该钛酸钡粉末为原料,以与实施例1相同组成得到陶瓷粉末,制成电介质层数为50、镍内部电极层数为51、电介质层的1层的厚度为1μm的MLCC,针对100个MLCC样本,对其静电电容和相对静电电容的平均值的标准偏差进行评测,可知结果为以下所示,得到电容分布不良、静电电容的不均匀程度大的MLCC。
[0096] [公式2]
[0097]
[0098] 将以上的结果汇总于下述表1和表2。此外,对烧制后的MLCC进行TEM解析,基于其结果能够确认,在所使用的MLCC中,含有与其制造中使用的陶瓷粉末原料的孪晶缺陷的比例同等的比例的孪晶缺陷。
[0099] (实施例2~13、比较例2~4)
[0100] 对钛酸钡的合成法、热处理前后的平均粒径、Ba/Ti比、各种热处理条件、粉碎条件、孪晶缺陷的生成比例和c/a值如下述表1所示进行变更,除此之外与实施例1同样地制造钛酸钡粉末。
[0101] 以所得到的钛酸钡粉末为原料,以与实施例1相同的组成调制陶瓷粉末,利用通常方法得到MLCC的成型物,将其在烧制炉内烧制,制成镍内部电极层数为51、电介质层的1层的厚度为1μm的MLCC。针对100个MLCC样本,对其静电电容和相对静电电容的平均值的标准偏差进行评价。
[0102] 结果如下述表2所示。此外,在所有的例子中,对烧制后的MLCC进行TEM解析,基于其结果能够确认,在所使用的MLCC中,含有与其制造中使用的陶瓷粉末原料的孪晶缺陷的比例同等的比例的孪晶缺陷。
[0103] 【表1】
[0104]
[0105] 通过例如实施例1和2及比较例1的比较,可知进行干式粉碎时,钛酸钡粉末的平均粒径变小,对孪晶缺陷比例没有影响,c/a变小,对实施例11~13进行比较时,可知加热处理的时间长时,平均粒径变大,孪晶缺陷的比例和c/a都变高。
[0106] 另外通过比较例4可知,基于钛酸钡粉末的制造条件,孪晶缺陷比例、c/a都不能够实现。
[0107] 【表2】
[0108]