污水源热泵机组专用污水换热器转让专利

申请号 : CN201310341956.3

文献号 : CN103363822B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨胜东

申请人 : 北京瑞宝利热能科技有限公司杨胜东

摘要 :

本发明涉及一种利用城市原生污水作为冷、热源,对建筑物进行供暖、空调的污水源热泵机组专用污水换热器及其系统,包括壳体(1)、污水进水口(2)、前管箱(3)、制冷剂出口(4)、制冷剂入口(5)、污水换热通道检修口(6)、底座(7)、污水出水口(8)、后管箱(9)、换热管排(10)、污水换热通道(11)、污水通道折流板(12)、制冷剂通道折流板(13)、管板(16)等组成。

权利要求 :

1.污水源热泵机组专用污水换热器,其特征在于包括壳体(1)、污水进水口(2)、前管箱(3)、制冷剂出口(4)、制冷剂入口(5)、污水换热通道检修口(6)、底座(7)、污水出水口(8)、后管箱(9)、换热管排(10)、污水换热通道(11)、污水通道折流板(12)、制冷剂通道折流板(13)、管板(16),换热管(14)与管板(16)进行胀接,换热管(14)与换热管(14)之间间隙由间隔条(15)进行密封,间隔条(15)采用双曲面结构,曲面与换热管(14)表面紧密贴附,间隔条(15)两侧与管板(16)内侧固定,中部与污水通道折流板(12)固定,n根换热管(14)与n根间隔条(15)组合成换热管排(10),n排换热管排(10)平行布置,垂直于换热管排(10)长度方向交错排列,与壳体(1)组成可折流的污水换热通道(11),污水走壳程,流向与换热管排(10)长度方向垂直;前管箱(3)、后管箱(9)与管板(16)之间采用法兰连接,前管箱(3)、后管箱(9)、管板(16)、换热管(14)管内组成制冷剂换热通道,制冷剂走管程,可根据需要由制冷剂通道折流板(13)将换热管排(10)分隔成n个管程。

2.根据权利要求1所述的污水源热泵机组专用污水换热器,其特征在于壳体外侧设有污水换热通道检修口(6),主要对污水换热通道(11)进行维护。

3.根据权利要求1所述的污水源热泵机组专用污水换热器,其特征在于换热器内制冷剂与污水换热流程为:制冷剂换热流程,换热管(14)管口一端连接前管箱(3),另一端连接后管箱(9),制冷剂通道折流板(13)将前管箱(3)和后管箱(9)、换热管(14)分隔成多个流程,制冷剂由制冷剂入口(5)进入前管箱(3)左下角内,再进入换热管(14)管内沿分隔的流程往复循环与污水进行换热,吸收污水中热量蒸发后,由制冷剂出口(4)排出;污水换热流程,两侧管板(16)和壳体(1)围成一个封闭区域,换热管排(10)平行布置,垂直于换热管排(10)长度方向交错排,换热管排(10)与换热管排(10)管间距3-6cm,形成污水换热通道(11),污水通道折流板(12)将换热管排(10)分隔成n个换热区域,污水由污水进水口(2)进入,在污水通道折流板(12)分隔的第一个区域内,自上而下垂直于换热管排(10)长度方向往返流动换热,到底部后,沿换热管排(10)长度方向进入第二个区域内,自下而上垂直于换热管排(10)长度方向往返流动换热,到顶部后,沿换热管排(10)长度方向进入第三个区域内,自上而下垂直于换热管排(10)长度方向往返流动换热,到底部后,沿换热管排(10)长度方向进入第n个区域内,最后从污水出水口(8)离开换热器。

4.根据权利要求1所述的污水源热泵机组专用污水换热器,其特征在于将换热管(14)排进行竖向排列,换热管排(10)与壳体交错排列形成污水换热通道(11)。

5.一种如权利要求1所述的污水源热泵机组专用污水换热器应用于热泵机组的方法,该热泵机组由污水换热器(17)、压缩机(18)、油分离器(19)、清水换热器(20)、电子膨胀阀(22)组成,制冷剂经压缩机(18)压缩成高温高压的气体后经油分离器(19)过滤后,进入清水换热器(20)换热后冷凝,冷凝后的制冷剂经电子膨胀阀(22)节流后,进入污水换热器(17)与污水进行换热,换热后蒸发进入压缩机(18)进行压缩,实现循环。

说明书 :

污水源热泵机组专用污水换热器

技术领域

[0001] 本发明涉及一种利用城市原生污水作为冷、热源,对建筑物进行供暖、空调的污水源热泵机组专用污水换热器及其系统。

背景技术

[0002] 在利用城市原生污水作为热泵低位冷热源,为建筑物供暖空调具有重要的节能与环保价值,是缓解能源消耗紧张、减轻环境污染的有效途径之一,但原生污水中含有大量的污杂物,如不经过任何处理的情况下,直接进入热泵机组进行换热,其蒸发器或冷凝器很容易被堵塞,机组无法正常运行。
[0003] 另外,城市原生污水中含有大量的毛发、纤维、泥沙等物质,这些物质往往小于过滤网眼直径,系统长时间运行后,通过过滤网的毛发、纤维也比较多,进入蒸发器或冷凝器后,便滞留在换热设备的进水侧,堵塞换热管,运行时间越长,堵塞越严重。
[0004] 如果采用中间加换热设备,即污水与中介水进行换热(中介水采用系统软化水),中介水再进入热泵机组进行热交换,由于增加了一套换热系统,夏季中介水与原生污水换热后的温度要高出原生污水约5℃左右,冬季中介水与原生污水换热后的温度要低于原生污水约5℃左右,与原生污水直接进热泵机组进行换热相比较,热泵机组的效率相对较低,另外,中介水与污水进行换热,增加了中介水循环泵和中间换热设备,这也是增加了整个热泵系统的初投资和运行费用,机房的占地面积也较大。
[0005] 有些壳管式污水换热器换热管排采用管与管并排,多个管口焊接一根总管,单个换热管泄露时,维修比较麻烦。

发明内容

[0006] 为解决原生污水直接进蒸发器或冷凝器容易堵塞、中间换热影响热泵机组的效率及蒸发器、壳管式污水换热器维修比较麻烦,本发明提供了一种污水源热泵专用污水换热器及其系统。
[0007] 应用原理:
[0008] 1、如图1、图2、图3、图4、图5、图6、图7、图8、图9所示,本发明的污水源热泵机组专用污水换热器包括壳体、污水进水口、前管箱、制冷剂出口、制冷剂入口、污水换热通道检修口、底座、污水出水口、后管箱、换热管排、污水换热通道、污水通道折流板、制冷剂通道折流板、管板等组成,换热管与管板进行胀接,换热管与换热管之间间隙由间隔条进行密封,间隔条采用双曲面结构,曲面与换热管表面紧密贴附,间隔条两侧与管板内侧固定,中部与污水通道折流板固定,n根换热管与n根间隔条组合成换热管排,n排换热管排平行布置,垂直于换热管排长度方向交错排列,与壳体组成可折流的污水换热通道,污水走壳程,流向与换热管排长度方向垂直;前管箱、后管箱与管板之间采用法兰连接,前管箱、后管箱、管板、换热管管内组成制冷剂换热通道,制冷剂走管程,可根据需要由制冷剂通道折流板将换热管排分隔成n个管程。
[0009] 2、如图1、图2所示,壳体外侧设有污水换热通道检修口,主要对污水换热通道进行维护。
[0010] 3、换热器内制冷剂与污水换热流程为:
[0011] 制冷剂换热流程:如图3所示,换热管管口一端连接前管箱,另一端连接后管箱,制冷剂通道折流板将前管箱和后管箱、换热管分隔成多个流程,制冷剂由制冷剂入口进入图中前管箱左下角内,再进入换热管管内沿分隔的流程往复循环与污水进行换热,吸收污水中热量蒸发后,由制冷剂出口排出。
[0012] 污水换热流程:如图10、图11所示,两侧管板和壳体围成一个封闭区域,换热管排垂直于换热管长度方向交错排,换热管排与换热管排管间距3-6cm,形成污水换热通道,污水通道折流板将换热管排分隔成n个换热区域,污水由污水进水口进入,在污水通道折流板分隔的第一个区域内,自上而下垂直于换热管排长度方向往返流动换热,到底部后,沿换热管排长度方向进入第二个区域内,自下而上垂直于换热管排长度方向往返流动换热,到顶部后,沿换热管排长度方向进入第三个区域内,自上而下垂直于换热管排长度方向往返流动换热,到底部后,沿换热管排长度方向进入第n个区域内,最后从污水出水口离开换热器。
[0013] 4、图10所示的是本发明的另一种结构形式,将换热管排进行竖向排列,管排与壳体交错排列形成污水往复换热通道。
[0014] 5、如图11所示,本发明的原生污水源热泵循环系统由污水换热器、压缩机、油分离器、清水换热器、电子膨胀阀等组成,制冷剂经压缩机压缩成高温高压的气体后经油分离器过滤后,进入清水换热器换热后冷凝,冷凝后的制冷剂经电子膨胀阀节流后,进入污水换热器与污水进行换热,换热后蒸发进行压缩机进行压缩,实现循环。

附图说明

[0015] 图1、图2-本发明的外型图
[0016] 图3-本发明的结构示意图
[0017] 图4-图3的C-C截面剖面图
[0018] 图5-图3的A-A剖面图
[0019] 图6-图3的B-B剖面图
[0020] 图7-图3的I处示意图
[0021] 图8-图3的II处示意图
[0022] 图9-图4的III处放大图
[0023] 图10、11-本发明的污水流向图
[0024] 图12-本发明的另一种结构示意图
[0025] 图13-污水源热泵原理图
[0026] 附图图面说明:
[0027] 1-壳体;2-污水进水口;3-前管箱;4-制冷剂出口;5-制冷剂入口;6-污水换热通道检修口;7-底座;8-污水出水口;9-后管箱;10-换热管排;11-污水换热通道;12-污水通道折流板;13-制冷剂通道折流板;14-换热管;15-间隔条;16-管板;17-污水换热器;18-压缩机;19-油分离器;20-清水换热器;21-干燥过滤器;22-电子膨胀阀。

具体实施方式

[0028] 1、如图1、图2、图3、图4、图5、图6、图7、图8、图9所示,本发明的污水源热泵机组专用污水换热器包括壳体(1)、污水进水口(2)、前管箱(3)、制冷剂出口(4)、制冷剂入口(5)、污水换热通道检修口(6)、底座(7)、污水出水口(8)、后管箱(9)、换热管排(10)、污水换热通道(11)、污水通道折流板(12)、制冷剂通道折流板(13)、管板(16)等组成,换热管(14)与管板(16)进行胀接,换热管(14)与换热管(14)之间间隙由间隔条(15)进行密封,间隔条(15)采用双曲面结构,曲面与换热管(14)表面紧密贴附,间隔条(15)两侧与管板(16)内侧固定,中部与污水通道折流板(12)固定,n根换热管(14)与n根间隔条(15)组合成换热管排(10),n排换热管排(10)平行布置,垂直于换热管排(10)长度方向交错排列,与壳体(1)组成可折流的污水换热通道(11),污水走壳程,流向与换热管排(10)长度方向垂直;前管箱(3)、后管箱(9)与管板(16)之间采用法兰连接,前管箱(3)、后管箱(9)、管板(16)、换热管(14)管内组成制冷剂换热通道,制冷剂走管程,可根据需要由制冷剂通道折流板(13)将换热管排(10)分隔成n个管程。
[0029] 2、如图1、图2所示,壳体外侧设有污水换热通道检修口(6),主要对污水换热通道(11)进行维护。
[0030] 3、换热器内制冷剂与污水换热流程为:
[0031] 制冷剂换热流程:如图3所示,换热管(14)管口一端连接前管箱(3),另一端连接后管箱(9),制冷剂通道折流板(13)将前管箱(3)和后管箱(9)、换热管(14)分隔成多个流程,制冷剂由制冷剂入口(5)进入图中前管箱(3)左下角内,再进入换热管(14)管内沿分隔的流程往复循环与污水进行换热,吸收污水中热量蒸发后,由制冷剂出口(4)排出。
[0032] 污水换热流程:如图10、图11所示,两侧管板(16)和壳体(1)围成一个封闭区域,换热管排(10)平行布置,垂直于换热管排(10)长度方向交错排,换热管排(10)与换热管排(10)管间距3-6cm,形成污水换热通道(11),污水通道折流板(12)将换热管排(10)分隔成n个换热区域,污水由污水进水口(2)进入,在污水通道折流板(12)分隔的第一个区域内,自上而下垂直于换热管排(10)长度方向往返流动换热,到底部后,沿换热管排(10)长度方向进入第二个区域内,自下而上垂直于换热管排(10)长度方向往返流动换热,到顶部后,沿换热管排(10)长度方向进入第三个区域内,自上而下垂直于换热管排(10)长度方向往返流动换热,到底部后,沿换热管排(10)长度方向进入第n个区域内,最后从污水出水口(8)离开换热器。
[0033] 4、图10所示中的是本发明的另一种结构形式,将换热管(14)排进行竖向排列,换热管排(10)与壳体交错排列形成污水换热通道(11)。
[0034] 5、如图11所示,本发明的原生污水源热泵循环系统由污水换热器(17)、压缩机(18)、油分离器(19)、清水换热器(20)、电子膨胀阀(22)等组成,制冷剂经压缩机(18)压缩成高温高压的气体后经油分离器(19)过滤后,进入清水换热器(20)换热后冷凝,冷凝后的制冷剂经电子膨胀阀(22)节流后,进入污水换热器(17)与污水进行换热,换热后蒸发进行压缩机(18)进行压缩,实现循环。