小晶粒三维存储器转让专利

申请号 : CN201310091513.3

文献号 : CN103367365B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张国飙

申请人 : 成都海存艾匹科技有限公司

摘要 :

本发明提出一种小晶粒三维存储器,其存储元采用小晶粒二极管。小晶粒二极管含有小晶粒材料,其晶粒尺寸G远小于二极管尺寸D。小晶粒材料可以是纳米晶材料或非晶材料。小晶粒二极管的特征尺寸f小于单晶晶体管的特征尺寸F。

权利要求 :

1.一种小晶粒三维存储器,其特征在于含有:

一含有一半导体衬底(00)的衬底层(50),该衬底层含有多个有效晶体管(58a、58b);

至少一叠置在所述衬底层(50)上方且通过多个连接通道孔(51)与所述衬底层耦合的存储层(60),该存储层(60)含有多个存储元(68a、68b…),每个存储元(68a)含有一个特征尺寸(f)不大于40nm的小晶粒二极管(61),所述小晶粒二极管(61)不含非晶材料且晶粒尺寸(G)小于二极管尺寸(D);

所述存储层(60)的特征尺寸(f)小于所述衬底层(50)的特征尺寸(F)。

2.根据权利要求1所述的小晶粒三维存储器,其特征还在于:该小晶粒二极管(61)含有纳米晶材料。

3.根据权利要求2所述的小晶粒三维存储器,其特征还在于:该纳米晶材料的晶粒尺寸(G)小于10nm。

4.根据权利要求1所述的小晶粒三维存储器,其特征还在于:所述存储层(60)含有掩膜编程只读存储元或电编程存储元。

5.根据权利要求1所述的小晶粒三维存储器,其特征在于还含有:至少一叠置在所述存储层(60)上方的另一存储层(80),该存储层(80)的特征尺寸(f*)小于所述衬底层(50)的特征尺寸(F)。

说明书 :

小晶粒三维存储器

技术领域

[0001] 本发明涉及集成电路领域,更确切地说,涉及基于二极管的、存储元分布在三维空间的单片半导体存储器。

背景技术

[0002] 三维存储器(3-dimensional memory,简称为3D-M)是一个单片(monolithic)半导体存储器,它含有多个相互堆叠的存储层。如图1所示,三维存储器含有一个衬底层30和至少一个存储层40。衬底层30含有多个有效晶体管(38a、38b…)。这些晶体管形成在单晶半导体衬底00内,它们是单晶晶体管。每个晶体管含有栅极34和源/漏32。三维存储层40含有多条地址选择线(42、46…)和存储元(48a、…)。每个存储元48a位于两条地址选择线(42和46)的交叉处,它含有一薄膜二极管41和一存储膜43。薄膜二极管41防止存储元之间的串扰,存储膜43决定存储元48a中存储的数据。
[0003] 中国专利申请200810183936.7提出了一种窄线宽三维存储器。图1中的三维存储器是一窄线宽三维存储器,其存储层40中地址选择线46的最小周期p小于衬底层30中晶体管栅极34的最小周期P。一个经常被专业人士忽视的事实是:三维存储器中的薄膜二极管41为多晶二极管,它基于多晶半导体材料(如多晶硅);与常规的单晶二极管相比,多晶二极管具有不同的电气特性。这在图1中有进一步的描述。图1概要地画出了存储元48a中薄膜二极管41的晶粒结构,图中的虚线表示晶粒边界。在三维存储器的缩尺换代过程中,当薄膜二极管41的尺寸D与多晶硅的晶粒尺寸G接近时,尤其是当薄膜二极管41的特征尺寸f缩尺到40nm以下(包括40nm)时,每个薄膜二极管41仅含少量晶粒(如a、b、c、d、e),这导致其电气特性难以控制:即使两个薄膜二极管采用完全相同的设计(即具有相同的版图形状和相同的横截面),它们的电流-电压(伏-安)特性也可以差异很大。因此,窄线宽三维存储器会有较大的读写出错率。另外,由于多位元(multi-bit-per-cell)对存储元中电流的一致性要求极高,较大的电流波动也使窄线宽三维存储器难以实现多位元。
[0004] 综上所述,窄线宽三维存储器的性能较差,且难以提高存储容量。为了克服这些缺陷,本发明提出一种小晶粒三维存储器。

发明内容

[0005] 本发明的主要目的是提高窄线宽三维存储元的性能。
[0006] 本发明的另一目的是增加窄线宽三维存储器的存储容量。
[0007] 本发明的另一目的是降低窄线宽三维存储元的读写出错率。
[0008] 本发明的另一目的是提高窄线宽三维存储元性能的稳定性。
[0009] 根据这些以及别的目的,本发明提供了一种小晶粒三维存储器,它对窄线宽三维存储器做了进一步改进。
[0010] 为了使三维存储器中存储层内的薄膜二极管具有可控的电气特性,本发明提出一种小晶粒三维存储器,它尤其适合于薄膜二极管的特征尺寸f缩尺到40nm以下(包括40nm)的三维存储器。小晶粒三维存储器中的薄膜二极管是小晶粒二极管。小晶粒二极管含有小晶粒材料,其晶粒尺寸G远小于二极管尺寸D。小晶粒材料的一个例子是纳米晶(nano-crystalline)材料。由于小晶粒二极管含有大量晶粒,单个晶粒导致的电流波动可以被平均掉。因此,小晶粒二极管具有可控的电气特性(如较小的电流波动),这可以极大地降低三维存储器的读写出错率。作为一个极端的例子,小晶粒二极管还可以采用非晶材料,以实现更好的电流控制,从而使三维存储器—尤其是三维掩膜编程只读存储器(3D-MPROM)—实现多位元(multi-bit-per-cell)。
[0011] 与单晶晶体管比较,小晶粒二极管结构更为简单,故其缩尺换代更为容易。具体说来,单晶晶体管的缩尺换代受多种因素限制,如受光刻工艺、栅极材料、栅绝缘层材料、沟道设计、源漏设计等因素的限制;而小晶粒二极管的缩尺换代所受的限制要少得多,一般说来它仅受光刻工艺和晶粒尺寸限制。因此,存储层(小晶粒二极管)的特征尺寸f可以小于衬底层(单晶晶体管)的特征尺寸F。存储层(小晶粒二极管)的特征尺寸f还可以小于同期量产快闪存储器(flash)的特征尺寸Ff。
[0012] 相应地,本发明提出一种小晶粒三维存储器,其特征在于含有:一含有一半导体衬底(00)的衬底层(50),该衬底层含有多个有效晶体管(58a、58b);至少一叠置在所述衬底层(50)上方且通过多个连接通道孔(51)与所述衬底层耦合的存储层(60),该存储层(60)含有多个存储元(68a、68b…),每个存储元(68a)含有一个特征尺寸(f)不大于40nm的小晶粒二极管(61),所述小晶粒二极管(61)的晶粒尺寸(G)小于二极管尺寸(D);所述存储层(60)的特征尺寸(f)小于所述衬底层(50)的特征尺寸(F)。
[0013] 本发明还提出一种非晶多位元三维掩膜编程只读存储器,其特征在于含有:一含有一半导体衬底(00)的衬底层(50),该衬底层含有多个有效晶体管(58a、58b);至少一叠置在所述衬底层(50)上方且通过多个连接通道孔(51)与所述衬底层耦合的存储层(60),该存储层(60)含有多个掩膜编程只读存储元(68b、68d…),每个存储元存储的数据大于一位(bit),每个存储元含有一个特征尺寸(f)不大于40nm的非晶二极管(61);所述存储层(60)的特征尺寸(f)小于所述衬底层(50)的特征尺寸(F)。

附图说明

[0014] 图1是一种窄线宽三维存储器的截面图(以往技术)。
[0015] 图2是一种小晶粒三维存储器的截面图。
[0016] 图3A和图3B是两种分别代表“0”和“1”状态的三维掩膜编程只读存储元(3D-MPROM)的截面图。
[0017] 图4是一种一次写入三维只读存储元(3D-OTP)的截面图。
[0018] 图5是一种多次写入三维只读存储元(3D-RWM)的截面图。
[0019] 图6是一种非晶多位元3D-MPROM的截面图。

具体实施方式

[0020] 图2描述了一种小晶粒三维存储器。它含有一个衬底层50和至少两个存储层(60、80)。衬底层50含有多个有效晶体管(58a、58b…)。这些晶体管形成在单晶半导体衬底00内,它们是单晶晶体管。这里,有效晶体管是指具有一定功能的晶体管。这些功能包括支持功能(如三维存储器的周边电路)和存储功能(如基于晶体管的半导体存储器,包括RAM和ROM)。晶体管的栅极周期P为相邻晶体管(58a、58b)两个栅极的中心距离,其最小值是该衬底层50特征尺寸F的两倍。一般说来,衬底层的特征尺寸 F也是单晶晶体管的特征尺寸F。
[0021] 存储层(60、80)堆叠在衬底层50之上。它们通过连接通道孔(51、53…)与衬底层50耦合。每个存储层60含有多条地址选择线(62、66…)和多个存储元(68a…)。每个存储元68a位于两条地址选择线(62和66)的交叉处,它含有一薄膜二极管61和一存储膜63。在本发明中,二极管(也被称为准导通膜)并不仅限于传统意义上的二极管,它泛指任何具有如下电气特性的两端口半导体器件:当其上所加电压的数值小于读电压或方向与读电压不同时,其所导通的电流值小于读电流。薄膜二极管61可以具有多种形式。举例说,它可以由反向掺杂的半导体材料(如硅、锗、碳等)构成;它也可以由一层薄的介质材料(如金属氧化膜、或轻微掺杂/无掺杂的非晶半导体材料等)构成。在存储层60中,地址选择线的周期p是存储阵列中两条相邻地址选择线(如68c、68d)的中心距离,其最小值是该存储层
60特征尺寸f的两倍。一般说来,存储层的特征尺寸f也是薄膜二极管的特征尺寸 f。类似地,对于存储层80来说,地址选择线的周期p*是存储阵列中两条相邻地址选择线(如88c、
88d)的中心距离,其最小值是该存储层80特征尺寸f*的两倍。一般说来,存储层80的特征尺寸f*也是薄膜二极管的特征尺寸 f*。
[0022] 图2进一步描述了存储元68a中薄膜二极管61的晶粒结构,图中的虚线表示晶粒边界。本发明中的薄膜二极管61是小晶粒二极管。小晶粒二极管含有小晶粒材料,其晶粒尺寸G远小于二极管尺寸D。这里,晶粒尺寸G是晶粒在各个方向上的最大尺寸,二极管尺寸D是二极管在各个方向上的最小尺寸(如其长度、宽度、厚度中的最小值)。由于小晶粒二极管61含有大量晶粒,单个晶粒导致的电流波动可以被平均掉。因此,小晶粒二极管具有可控的电气特性(如较小的电流波动),这可以极大地降低三维存储器的读写出错率。小晶粒三维存储器尤其适合于薄膜二极管的特征尺寸f缩尺到40nm以下(包括40nm)的三维存储器。
[0023] 由于三维存储器的特征尺寸仅为数十纳米(如40nm),因此在小晶粒二极管61中的小晶粒材料最好采用纳米晶(nano-crystalline)材料。纳米晶材料是指在非晶相中含有尺寸为纳米量级的小晶粒。在本发明中,纳米晶材料的晶粒尺寸G最好小于10nm。纳米晶材料的例子包括:纳米晶硅、纳米晶锗、纳米晶碳等。纳米晶材料(如纳米晶硅)可以采用形成非晶硅的常规低温淀积技术来形成,如PECVD等。
[0024] 与单晶晶体管比较,小晶粒二极管结构更为简单,故其缩尺换代更为容易。具体说来,单晶晶体管的缩尺换代受多种因素限制,如受光刻工艺、栅极材料、栅绝缘层材料、沟道设计、源漏设计等因素的限制;而小晶粒二极管的缩尺换代所受的限制要少得多,一般说来它仅受光刻工艺和晶粒尺寸限制。相应地,小晶粒二极管与单晶晶体管遵循不同的缩尺换代规律:
[0025] 1)小晶粒二极管的特征尺寸f可以小于单晶晶体管的特征尺寸 F,如当单晶晶体管使用F=40nm的技术时,小晶粒二极管可以使用 f=30nm的技术。也就是说,存储层60、80的特征尺寸f、f*可以小于衬底层50的特征尺寸 F;
[0026] 2)小晶粒二极管的缩尺换代周期比单晶晶体管短,如单晶晶体管需要三年换一代,而小晶粒二极管仅需要二年换一代。因此,小晶粒二极管和单晶晶体管特征尺寸的差距随时间会越变越大。
[0027] 在三维存储器中,由于单晶晶体管(58a、58b…,位于衬底00里)和小晶粒二极管(68a、68b…,位于衬底00上方)处于不同电路层,它们由不同的工艺步骤独立形成,这样衬底层50(含单晶晶体管)和存储层60、80(含小晶粒二极管)可以分别采用不同的技术形成。相应地,小晶粒三维存储器的衬底层50只需要采用较为便宜的F技术(如40nm),而不需要采用较为昂贵的f技术(如30nm),这样能降低整体生产成本。
[0028] 尤其重要的是,小晶粒三维存储器中存储层的特征尺寸f可以小于同期量产快闪存储器(flash)的特征尺寸Ff。这里,同期量产快闪存储器是指与小晶粒三维存储器同时期在商业上大规模生产的、最先进的快闪存储器;其特征尺寸Ff是其悬浮栅晶体管的特征尺寸。例如说,当量产快闪存储器采用Ff=40nm的技术时,小晶粒三维存储器可以采用f<40nm(如~30nm)的技术。虽然快闪存储器在现有的半导体存储器中具有最大的存储密度,小晶粒三维存储器会取代快闪存储器成为具有最大存储密度的半导体存储器。
[0029] 图3A-图5描述了多种小晶粒三维存储元。其中,图3A和图3B描述了两种小晶粒三维掩膜编程只读存储元(3D-MPROM);图4和图5描述了两种一种小晶粒三维电编程存储元(3D-EPM)。
[0030] 图3A和图3B描述了两个3D-MPROM存储元68a,它们分别代表“0”和“1”状态。其存储膜63是一层绝缘介质65。如果存储元中含有该绝缘介质65,则代表“0”状态(图
3A);如果不含有,则代表“1”状态(图3B)。有关3D-MPROM的具体细节可以参考美国专利
5,835,396等。
[0031] 图4描述了一种3D-EPM存储元68a。该存储元是一次写入三维只读存储元(3D-OTP),其存储膜63是一层反熔丝膜67。该存储元通过反熔丝膜67的击穿与否来决定其所存储的状态。有关3D-OTP的具体细节可以参考美国专利5,835,396和6,034,882等。
[0032] 图5描述了另一种3D-EPM存储元68a。该存储元是多次写入三维只读存储元(3D-RWM),它可以是Resistive Random Access Memory(ReRAM)、phase-change memory(PCM)或programmable metallization cell(PMC)等。存储膜63是一层多次写入膜69,其状态改变可以逆转。它可以含有金属氧化膜(如氧化钛、氧化镍等)、chalcogenide glass或electrolyte等材料。有关3D-RWM的具体细节可以参考美国专利7,847,330等。
[0033] 在本发明中,非晶被认为是纳米晶的极端例子:当晶粒尺寸很小时,纳米晶即变成非晶。即使在纳米尺度的二极管中,非晶材料也展现了极其优良的电气特性:含有非晶材料的非晶二极管具有很小的电流波动。虽然非晶二极管的导通电流较小,但是它仍然适用于不需要大电流、但需要严格控制电流波动的器件。
[0034] 非晶二极管很适用于3D-MPROM。因为采用掩膜编程,3D-MPROM不要电编程,其存储元中流过的电流仅是读电流。由于读电流很小,且远远小于写电流,非晶二极管适合于3D-MPROM。而且,由于其电流波动很小,非晶二极管还可以使3D-MPROM实现多位元。
[0035] 图6描述了一种非晶多位元3D-MPROM。与图2类似,其存储层60、80的特征尺寸f、f*均小于其衬底层50的特征尺寸 F。每个存储元68a含有一个非晶二极管61,其特征尺寸最好不大于40nm。非晶二极管61含有非晶材料。举例说,非晶二极管61是一个非晶p-i-n二极管,其p、i、n膜由不同掺杂的非晶硅构成。该实施例中的每个存储元存储两位(bit):存储元68a-68d分布存储“0”、“1”、“2”、“3”。在这些存储元中,存储元68a只含有非晶二极管61,它具有第一伏-安特性;存储元68b还含有第一电阻膜71,该电阻膜71位于非晶二极管61之上,该存储元68b具有第二伏-安特性;存储元68c还含有第二电阻膜73,该电阻膜73位于非晶二极管61之下,该存储元68c具有第三伏-安特性;存储元68d还含有第一和第二电阻膜71、73,它具有第四伏-安特性。电阻膜71、73可以是一层薄的介质膜(如氧化硅、氮化硅或非晶硅等),它能该改变存储元的伏-安特性。有关多位元3D-MPROM的具体细节可以参考中国专利申请201010194950.4。
[0036] 虽然以上说明书具体描述了本发明的一些实例,熟悉本专业的技术人员应该了解,在不远离本发明的精神和范围的前提下,可以对本发明的形式和细节进行改动。这并不妨碍它们应用本发明的精神。因此,除了根据附加的权利要求书的精神,本发明不应受到任何限制。